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Copper-surface-mediated synthesis of acetylenic
carbon-rich nanofibers for active metal-free
photocathodes
Tao Zhang1, Yang Hou1,2, Volodymyr Dzhagan3, Zhongquan Liao4, Guoliang Chai5, Markus Löffler6,

Davide Olianas7, Alberto Milani7, Shunqi Xu1, Matteo Tommasini 7, Dietrich R.T. Zahn 3, Zhikun Zheng1,

Ehrenfried Zschech4,6, Rainer Jordan8 & Xinliang Feng1

The engineering of acetylenic carbon-rich nanostructures has great potential in many

applications, such as nanoelectronics, chemical sensors, energy storage, and conversion, etc.

Here we show the synthesis of acetylenic carbon-rich nanofibers via copper-surface-

mediated Glaser polycondensation of 1,3,5-triethynylbenzene on a variety of conducting (e.g.,

copper, graphite, fluorine-doped tin oxide, and titanium) and non-conducting (e.g., Kapton,

glass, and silicon dioxide) substrates. The obtained nanofibers (with optical bandgap of

2.51 eV) exhibit photocatalytic activity in photoelectrochemical cells, yielding saturated

cathodic photocurrent of ca. 10 µA cm−2 (0.3–0 V vs. reversible hydrogen electrode). By

incorporating thieno[3,2-b]thiophene units into the nanofibers, a redshift (ca. 100 nm) of

light absorption edge and twofold of the photocurrent are achieved, rivalling those of state-of-

the-art metal-free photocathodes (e.g., graphitic carbon nitride of 0.1–1 µA cm−2). This work

highlights the promise of utilizing acetylenic carbon-rich materials as efficient and sustainable

photocathodes for water reduction
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Photoelectrochemical cells (PECs) offer the promise of pro-
ducing electric energy and hydrogen through artificial
photosynthesis by integrating the collection of solar energy

and the electrolysis of water into a photoelectrode1. PECs are
based on photochemical reactions at the junction of semi-
conductor and electrolyte, in which electrons and holes that
generated upon solar absorption by semiconductors (p-type or n-
type) are driven into electrolyte solution by applied electric field
at the junction, driving a redox reaction, e.g., the reduction of H+

to H2 for p-type semiconductor2. To enable their practical use in
the field of environmental and clean energy, semiconductor
materials need to be low-cost and prepared from abundant
resources using scalable approaches1,3,4, which preclude the uti-
lization of the most reported, efficient PECs systems, such as
metal oxides2,5,6, metal chalcogenides, and transition-metal
dichalcogenides7–10.

Synthetic conjugated polymers, composed of a delocalized π-
electron system, present a new generation of sustainable semi-
conductors for solar-energy utilization1,3,11–13. They offer tunable
energy levels, low-cost facile synthesis, and respectable solid-state
charge-transport characteristics. These promising characteristics
have motivated intense investigation into the design and synthesis
of conjugated polymer semiconductors for photocatalytic H2

evolution3,11,12,14,15. The most representative material is graphitic
carbon nitride (g-C3N4)11,16–19 and many analogs and composites
have also been reported, such as poly(azomethine)s20, hydrazone-
based covalent organic frameworks21, triazine-based frame-
works22, and biopolymer-activated g-C3N4

23. Recently, pyrene-
based conjugated polymers have shown promising performance
in direct solar water reduction24–26, suggesting that carbon-rich
frameworks are a new family of synthetic polymer semi-
conductors for solar-to-chemical conversion.

Acetylenic carbon-rich materials (e.g., graphyne, graphdiyne,
and related analogs), containing diacetylenic linkages between
carbon hexagons in an extended π-conjugation structure, are
predicted to exhibit unique electronic, optical, and mechanical
properties27–30. Recently, the great potential of acetylenic carbon-
rich materials as photocatalysts was illustrated by the visible-
light-driven degradation of water pollutants (i.e., phenol and
methyl orange) using bulk poly(diphenylbutadiyne) nanofibers29.

In this study, we report an efficient and generic approach for
scalable fabrication of acetylenic carbon-rich nanofibers through
a Cu-surface mediated Glaser polycondensation. Large-area (up
to 4 × 12 cm) poly(1,3,5-triethynylbenzene) (PTEB) nanofiber
films (with thicknesses from several to hundreds of nanometers)
can be grown on various conducting and non-conducting sub-
strates. The obtained PTEB nanofibers are interconnected and
have a broad range of visible light absorption (up to 500 nm),
corresponding to an optical bandgap of 2.51 eV. We demonstrate
that the nanofibers synthesized on conductive substrates can
function as metal-free photocathodes for PEC devices, and a
saturated photocurrent density up to ca. 10 µA cm−2 can be
achieved at 0.3–0 V vs. reversible hydrogen electrode (RHE).
Furthermore, we show that the PTEB photocathode, by incor-
porating of thieno[3,2-b]thiophene unit in the conjugated fra-
meworks, exhibited a ca. 100 nm redshift of the absorption edge
and a twofold enhancement in the photocurrent, which is
superior to those of state-of-the-art metal-free photocathode
materials (in the range of 0.1–1 µA cm−2; Supplementary
Table 1). These results indicate that the Cu-surface-mediated
synthetic approach is promising to directly fabricate various
acetylenic carbon-rich nanomaterials as photocathodes for PECs.

Results
Synthesis and structure characterization. The impetus for the
current synthetic strategy is derived from the observation that

metallic copper is able to produce CuI/II species in polar liquids or
alkaline solutions31,32. As both CuI and CuII salts have been
widely used as catalysts for Glaser coupling reaction33,34, we
expected that the Cu species generated from the metallic copper
surface would be able to catalyze the C–C coupling reaction,
which could afford acetylenic frameworks on a solid substrate
(Supplementary Fig. 1). As illustrated in Fig. 1a, a clean Cu wafer
was immersed in a mixture of 1,3,5-triethynylbenzene (TEB,
0.5 mgmL−1) and ligand (piperidine, 1 µL mL−1) in pyridine at
60 °C for 24 h. The C–C coupling of TEB occurred at the
Cu–liquid interface where various Cu species were dissolved,
yielding a yellowish PTEB framework deposited directly on the
Cu wafer surface (Fig. 1b). In this process, the copper wafer is not
only the catalyst (i.e., CuI and CuII) source for Glaser coupling
reaction but also the substrate for the growth of PTEB nanofibers.

The scanning electron microscopy (SEM) images in Fig. 1c
demonstrate that the obtained PTEB nanofibers are distributed
uniformly over the entire Cu surface. However, some nanofibers
tended to adhere together, resulting in larger bundles ranging
from 20 to 80 nm in diameter (Fig. 1c, inset). Individual
nanofibers ranging from 5 to 15 nm in diameter could be clearly
observed on PTEB (grown on a Cu grid) using transmission
electron microscopy (TEM) (Fig. 1d and e). We found that PTEB
was grown on the Cu surface at an constant rate of δd= 10 nm h
−1 within 72 h (Supplementary Fig. 2a); therefore, the thickness
of the PTEB nanofiber film is controllable in a quite broad range
from several (e.g., 6.7 nm) to hundreds of nanometers (e.g.,
750 nm) by varying the reaction time (Supplementary Figs. 2b-d).
For instance, a 230 nm-thick film of PTEB nanofibers was
obtained after 24 h of reaction on the Cu surface (Supplementary
Fig. 3a) and further energy dispersive X-ray (EDX) elemental
mapping images provide a clear contrast of different layers
(PTEB, Cu, and Si) on the cross-section (Supplementary Figs. 3b-
g). The film was rather robust and capable of handling and
transferring onto arbitrary substrates (e.g., aluminum foil;
Supplementary Fig. 4) after etching away Cu with aqueous
ammonium persulfate solution (0.1 g mL−1) using the standard
poly(methyl methacrylate) (PMMA) method (see Methods). The
scalability was demonstrated by the preparation of a large-area
PTEB film (4 × 12 cm; Supplementary Fig. 5) using only 10 mL of
the dilute reaction solution, as indicated above. The resulting
nanofiber film was uniform over the entire surface.

Raman spectroscopy has been shown to be one of the best
techniques to study the structure of carbon-rich materials and
identify diacetylenic moieties35. The presence of the Raman line
at 2209 cm−1 in the PTEB nanofibers (Fig. 1f), assigned to the
C≡C stretching, is a strong evidence for the formation of
conjugated diacetylenic linkages due to the reaction of the
terminal alkyne (which exhibits a C≡C stretch at 2106 cm−1;
Supplementary Fig. 6)36,37. The Raman peaks at 989 and 1581 cm
−1 can be assigned respectively to the ring breathing and ring
stretching of aromatic moieties38. The observed peaks match well
with the simulated Raman signals obtained from density
functional theory (DFT) calculations, which supports the
proposed assignments (Methods, Fig. 1f, and Supplementary
Figs. 7-9). It should be noted that the slight mismatch of the
simulated C≡C stretching peak is expected, partly because of the
much higher polymer chain length of the as-prepared PTEB
nanofibers (the PTEB model used in DFT calculation)39, and
partly because of intermolecular interactions not included in the
model, but operating in the bulk material. X-ray photoelectron
spectroscopy (XPS) (Fig. 1g) reveals that the PTEB film contains
only elemental carbon. Deconvolution of the C 1 s core level
spectra (at 284.1 eV) displays the major fractions of sp1 and sp2

hybridized carbons with binding energies at 283.8 and 284.5 eV,
respectively (Fig. 1h)40–42. The structure of PTEB was further
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confirmed by additional characterizations using Fourier trans-
form infrared spectroscopy (FTIR; Supplementary Fig. 10).

Although we demonstrated that PTEB nanofibers fabricated on
Cu are able to be transferred onto arbitrary substrates
(Supplementary Fig. 4), the direct growth of nanofibers on a
target substrate enables high structural stability and excellent
mechanical adhesion, which are required for the fabrication of
high-performance devices with long-term stability43. It was
reported that Cu species (i.e., CuI and CuII) generated from a
metallic Cu surface could out-diffuse to initiate controlled radical
polymerizations on the surface of a facing substrate (Fig. 2a)31,32.
These results led us to believe that the Glaser coupling reaction,
which is catalyzed by similar Cu species, is likely to be achieved

on other substrates with the assistance of a Cu wafer. To this end,
a bare and planar substrate (e.g., graphite foil) was sandwiched
with a Cu wafer and immersed in the reaction solution as above.
After an indicated time interval, the Cu wafer was separated and a
uniform PTEB layer was observed on the graphite after
thoroughly cleaning with various solvents (e.g., pyridine,
dichloromethane, and methanol, sequentially). Finally, a wide
variety of substrates, including conducting (e.g., graphite foil,
nickel, titanium, Si wafer, and fluorine-doped tin oxide (FTO)
glass (Fig. 2b, c and Supplementary Fig. 11a and d) and non-
conducting substrates (e.g., Kapton foil, glass, and SiO2 wafer)
(Fig. 2d and Supplementary Fig. 11c), were coated with PTEB
films by this approach. More interestingly, the morphologies of

Metallic Cu

Experimental
DFT simulation

C1s

O1s

Si2s
Si2p

C1s

a

b

e

f

Diameter (nm)

R
at

io
 (

%
)

50

40

30

20

10

0

500 1000 1500 25002000

Binding energy (eV)

292 288 284 280

Binding energy (eV)

1000 800 600 400 200 0

Experimental
C-C sp2

C-O and C=O
Envelope
Background

C-C sp

Dilute monomer solution

24 h, 60 °C

dc

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

Raman shift (cm–1)

>2
5

0–
5

5–
10

10
–1

5

15
–2

0

20
–2

5

g h

Fig. 1 Synthesis and characterization of PTEB nanofibers. a Reaction scheme and employed molecules. b Photograph of the PTEB layer synthesized on a Cu
wafer. The coupling reaction occurs only at the Cu–liquid interface, resulting in the selective formation of PTEB netwrok on Cu surface. c Scanning electron
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the PTEB frameworks vary with the type of substrate. For
instance, isolated PTEB nanofibers were observed on the surface
of nickel (ca. 8 nm), FTO (ca. 9 nm), Kapton (ca. 10 nm) and
glass (ca. 13 nm), whereas the nanofibers obtained on graphite
(ca. 40 nm) and titanium surfaces (ca. 15 nm) tended to form
large bundles. This result implies that the surface properties of the
substrate had a crucial role in the formation of PTEB nanofibers
of distinct morphologies, due to heterogeneous nucleation and
polymerization process at each substrate (Fig. 2a). Control
experiments showed that no such nanofibers were formed when
Cu salts (used in classical Glaser coupling) or high concentrations
of monomer (i.e., 5 mgmL−1) were applied.

Formation mechanism. Based on these results, we propose a
mechanism according to a previous model describing the
synthesis of polyaniline nanofibers on a solid substrate via step-
wise electrochemical polymerization44,45. Typically, two plausible
nucleation sites are proposed, i.e., bulk solution and solid sub-
strate, in the synthesis of PTEB through the Cu-surface-mediated
approach. These two nucleation sites compete with each other.
For example, concentrated monomer (or catalyst) leads to iden-
tical or even faster polymerization of TEB in solution than that of
on solid substrates. However, in a dilute monomer (or catalyst)
solution, heterogeneous nucleation and polymerization preferably
occurs on solid substrate. As such, many reactive nucleation
centers can be formed on the solid substrate at a faster rate than
in solution at the beginning of the reaction (Fig. 2a). These initial
nucleation sites minimize the energy barrier at the interface for
the formation of PTEB nanofibers on various substrates. There-
fore, the reason for the varied PTEB morphologies on different
substrates could be put forward as: different substrates have dif-
ferent surface energy and roughness that resulted in varied
nucleation rates, which not only affected the reaction kinetics of

Glaser coupling at the interface, but also the approximation of
monomer to the surface of substrate.

Following this scenario, micro-patterned PTEB structures were
prepared using a Cu grid closely attached to the substrate as both
a catalyst source and a stencil mask (see Methods). Glaser
polycondensation can be initiated in the mesh region of the grid,
at which the monomer solution and solubilized Cu species are
able to interact. In the end, well-defined hexagonal arrays of
PTEB frameworks with diameters of ca. 40 μm were fabricated on
the SiO2 substrate (Supplementary Figs. 12a-c). Furthermore, the
carbon elemental mapping based on EDX spectroscopy con-
firmed the PTEB patterning (Supplementary Fig. 12d). The
corresponding EDX spectra show that the sample contains
carbon, oxygen, and silicon, where oxygen and silicon originate
from the substrate. Such stencil lithography allows Glaser
polycondensation on planar substrates to be spatially patterned
over a large area without the use of disruptive materials (e.g.,
photoresists or chemical etchants), demonstrating the wide
potential of this technique46,47.

Optical and electronic structure characterization. The
ultraviolet-visible (UV-vis) absorption spectrum of PTEB shows
several transition modes in visible wavelengths with an absorp-
tion edge of 500 nm (Fig. 3a), and the film has a goldish color on
a transparent PET substrate (Fig. 3a, inset). The transmittance
spectrum (Supplementary Fig. 13) reveals a ca. 80% transmittance
at λ= 550 nm48,49; meanwhile, a maximum ca. 70% absorption is
observed for the PTEB layer at λ= 490 nm, corresponding to an
average thickness of ca. 230 nm. We note that there is no obvious
difference in the absorption spectra of the PTEB nanofibers
grown on different substrates (Supplementary Fig. 14).

The optical bandgap (Ebg) estimated from the Tauc plot [i.e.,
plotting (αhν)r vs. hν, where α is absorption coefficient, h Planck
constant, ν photon frequency, and r= 2 for a direct bandgap
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Fig. 2 Synthesis of PTEB nanofibers on various substrates. a Illustration of the synthetic strategy: (i) catalytic Cu species, generated on the surface of the
Cu wafer, out-diffuse at the interface with the assistance of a ligand; (ii) the solubilized Cu species react with alkyne terminal monomers (i.e., TEB) and
catalyze Glaser polycondensation at the confined interface; (iii) the facing substrate offers nucleation sites to attach oligomers and polymers forming
nanofibers; (iv) PTEB nanofibers grow continuously until complete consumption of the monomer at the confined interface. The distance between the Cu
wafer and substrate is ca. 0.2 mm. SEM images of the PTEB nanofibers grown on different substrates: b graphite foil, c nickel plate, and d Kapton foil.
Insets: photographs of each sample. Scale bar: b 1 µm, c and d 100 nm
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material] is ~ 2.51 eV (Fig. 3b)3. Such bandgap is sufficient to
overcome the theoretical endothermic-change in the process of
water-splitting (i.e., 1.23 eV). In addition to an appropriate
bandgap, the conduction band of a material need to match the
donating energy level of water and the valence band match the
electron accepting water level that are important to water splitting
in PECs. Thus, ultraviolet photoelectron spectroscopy (UPS) was
used to determine the energy level of valence band (i.e., Evb) of
PTEB. The Evb 6.63 eV was calculated by subtracting the UPS
width (Fig. 3c) from excitation energy (HeI, 21.22 eV). Further-
more, the conduction band energy Ecb was determined to be
4.12 eV from Evb – Ebg. These values (in vacuum level) were
converted to electrochemical potentials according to standard
reference electrode, e.g., 0 V vs. RHE is equal to − 4.44 eV vs.
vacuum level3. We can see from Fig. 3d that the reduction energy
level for H2O to H2 is located below the Ecb of PTEB and the
oxidation energy level for H2O to O2 is above the Evb of PTEB,
which agrees with DFT calculation results (Supplementary
Fig. 15). The electronic band structures of PTEB are consistent
with the theory of 1,3,5-graphdiyne reported by Barth et al.28

Thus, the proper position of the band structures of PTEB permit
the efficient transfer of photo-generated electrons and holes,
respectively, and promise the PTEB nanofibers as photoelectrodes
for PECs for hydrogen production. Such optical properties are
analogous to those of the most representative metal-free
photoelectrode material, g-C3N4

11.

PEC characterization. PEC experiments were conducted with the
PTEB nanofibers on a titanium substrate as photocathode in a
solution of 0.01 M Na2SO4 (pH 6.8) (Fig. 4a). The PEC char-
acterization was performed in a 3-electrode setup with applied
bias relative to the reference electrode (Ag/AgCl). The PTEB
photocathode gave an apparent photoresponse to light on/off
switching at an applied bias under chopped irradiation (100 mW
cm−2) (Fig. 4b and Supplementary Fig. 16). The appearance of
the cathodic photocurrent suggests that PTEB has typical p-type
semiconductor behavior50. In addition, a saturated cathodic
photocurrent density of ca. 10 µA cm−2 was obtained on ca.
230 nm-thick PTEB below 0.3 V vs. RHE (after subtracting the
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dark current). This value is superior to most reported metal-free
photoelectrodes, such as g-C3N4

17–19,23,51 and analogs23,52, red
phosphorus53,54, and silicon carbide55, which are typically in the
range of 0.1–1 µA cm−2 (Supplementary Table 1). In our own
experiments, the g-C3N4-based photocathode, prepared according
to a previously reported method56, yielded a much lower pho-
tocurrent of ca. 2 µA cm−2 than the PTEB photocathode (Fig. 4c).
We can confirm that the observed photocurrent at PTEB elec-
trodes is due to the light absorption of PTEB nanofibers, as the
incident-photon-to-current (IPCE) spectrum matches well with
the UV-Vis absorption spectrum (Supplementary Fig. 17).
Moreover, we found that the photocurrent strongly related to the
thickness of PTEB layer, and both thinner and thicker films gave
lower photocurrent density (Supplementary Fig. 18). Therefore,
the optimization of PTEB film thickness to reach equilibrium
between the light adsorption capability and charge transfer effi-
ciency is necessary to achieve the optimized PEC performance.
When a consistent bias voltage of 0.5–0 V vs. RHE (i.e., − 0.1 to
− 0.6 V vs. Ag/AgCl) was applied to the PTEB photoelectrode
(Fig. 4d), respectively, the transient photocurrents exhibited
good switching behavior at all applied bias voltages. A reduced
charge-transport resistance under irradiation was detected
for the PTEB photocathode, as the arc radius with light irradia-
tion was lower than that in dark (Fig. 4e). These results verify
that photoelectrons and holes were generated over the PTEB
nanofibers under light irradiation. Given that PTEB is an
organic polymer, the stability of the photocathode was further
studied. An insignificant change in the photocurrent was
observed over 2 h of constant irradiation (Fig. 4f), and the

Raman spectrum remained unchanged after the PEC test
(Supplementary Fig. 19), which suggest the good stability of the
PTEB photocathodes.

PTEB-co-PDET copolymer photocathode. For polymeric pho-
tocathodes, one of the most important advantages is their rich
synthetic modularity, allowing to tailor their structural, optical,
and electronic properties. In general, the optical properties of a
photocathode material can significantly affect its PEC perfor-
mance, because photogenerated carriers under light irradiation
are prerequisites for PEC reactions57. As one example, we show
the tuning of the absorption spectrum, and hence the optical
bandgap of the PTEB photocathode via the copolymerization of
TEB with 2,5-diethynylthieno[3,2-b]thiophene (DET), which has
been used extensively in the preparation of high-performance
polymers for organic solar cells because of its wide absorption in
visible-light region58. It can be clearly seen that the incorporation
of DET monomer into the PTEB backbone greatly changes its
color appearance (i.e., from yellow to red) (Fig. 5a), which results
in a > 100 nm redshift of the absorption edge in the UV-vis
spectrum (Fig. 5b). The relative loading of DET in the final
copolymer structure was determined by EDX spectrum, which
gave a structure with subunits PTEB1.3-co-PDET1 (Supplemen-
tary Fig. 20a). Although, SEM image reveals that the PTEB1.3-co-
PDET1 copolymer showing larger nanofiber (bundle) morphol-
ogy (Supplementary Fig. 20b), we found that the photocurrent
density of the copolymer (PTEB1.3-co-PDET1) was obviously
improved (more than twofolds) from ca. 10 µA cm−2 to ca. 21 µA
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cm−2 at 0 V vs. RHE (i.e., − 0.6 V vs. Ag/AgCl; Fig. 5c). This
value is comparable to that of the B13C2 (ca. 16 µA cm−2 at
– -0.76 V vs. Ag/AgCl, i.e., − 0.16 V vs. RHE) (Supplementary
Table 1)50 and even inorganic 2D WSe2 thin films (ca. 40 µA cm
−2 at 0 V vs. RHE, i.e., − 0.2 V vs. Ag/AgCl)9. The PTEB1.3-co-
PDET1 has a conduction band minimum of − 1.47 V vs. NHE
(Fig. 5d and Supplementary Fig. 21), which is much higher than
the pristine PTEB (− 0.68 V) as well as theoretical value of H2

evolution (0 V vs. NHE). In addition, the conductivity, σ, of the
PTEB1.3-co-PDET1 copolymer film was found to be of 1.9 × 10−5

S cm–1, which is an order of magnitude greater than pristine
PTEB film (i.e., 3.0 × 10−6 S cm–1) (Supplementary Fig. 22).
Thereby, it is reasonable to conclude that by introduction of
PDET segment in the PTEB structure, not only the light
absorption range was enlarged but also the electronic band
structure and charge transfer capability for water reduction were
improved for the PTEB1.3-co-PDET1 photocathode.

Discussion
To gain insights on the PEC activity of PTEB nanofiber for water
reduction, we evaluated the effects of the sacrificial reagents on
photocurrent density of PTEB photocathode. In this respect, the
transient photocurrent density of PTEB photocathode was
examined in 0.01M Na2SO4 electrolyte (pH 6.8) in the presence
of electron scavenger (10−5 M Cu2+, it reacts with electron to
yield Cu+)59. The reduction of Cu2+ is thermodynamically and

kinetically more facile than the reduction of water. As such, the
cathodic photocurrent density at PTEB nanofibers is noticeably
accelerated (to ca. 18 µA cm−2 at 0.3 V vs. RHE) in the presence
of Cu2+ (Supplementary Fig. 23). The significant enhancement of
photocurrent implies that the electron-hole recombination rate
decreased due to the reaction of Cu2+ with photogenerated
electron, leaving excess holes at the photoelectrode. We analyzed
the gaseous product from the PEC cell after irradiation using a
gas chromatograph (GC) and a moderate amount of H2 pro-
duction (2.53 µmol in 10 h at 0 V vs. RHE) was detected on PTEB
cathode (Supplementary Fig. 24). The amount of H2 production
is close to the value from theoretical calculation, suggesting the
photocurrent of PTEB cathode mainly attributing to the PEC
water reduction (Supplementary Fig. 24). Furthermore, in a PTEB
nanofibers film-based photocatalytic cell60,61, a total amount of
11.4 µmol H2 gas was produced after 10 h reaction without
noticeable deterioration of the activity within 30 h (Supplemen-
tary Fig. 25). The average H2 evolution rate of the PTEB nano-
fibers was about 1.14 µmol h−1, with an apparent quantum
efficiency of 1.83% at 420 nm (see Methods). Notably, a parti-
cularly high rate of > 11,400 µmol h−1 g−1 for photocatalytic H2

evolution was obtained, if the mass weight (< 0.1 mg) of PTEB
nanofibers film was considered. To gain more insights on the
active sites of PTEB for H2 evolution reaction, the reaction pro-
cess of proton adsorption–reduction–hydrogen adsorption was
simulated using DFT calculations62 and the free-energy changes
were calculated regarding to four different carbon atoms of PTEB
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(Fig. 6a). The reaction pathways for both single and dual sites H2

evolution from water reduction were studied, and corresponding
free-energy variations indicate that site 1 and site 3 are favorable
for single-site H2 evolution (Fig. 6b), and the sites 1 and 2 are
favorable for dual-site H2 evolution (Fig. 6c). The DFT results
imply that carbon atoms of benzene ring (in PTEB) are dominant
active sites for photocatalytic H2 evolution, which agrees with the
results from Cooper et al.24 proving that carbon-rich polymers
(based on phenylenes and pyrenes) are able to catalyse photo-
catalytic H2 production from water.

In this work, the superior PEC performance of the PTEB
nanofibers can be shown in the following ways: first, the light
adsorption region of a photoelectrode can significantly affect its
usable light source. The PTEB nanofibers absorb light in a wide
visible range from ultraviolet to blue region and show a similar
profile as g-C3N4 (bandgap of 2.7 eV)11 with an absorption edge
around 500 nm (bandgap of 2.51 eV) (Fig. 3a, b). This indicates
that PTEB can be excited by broader regions of solar light and a
large amount of electron and holes can be produced under irra-
diation. Second, the efficiency of electron-hole separation is
another crucial factor that determines the performance of a
photoelectrode. The interconnected nanofibrous structure of
PTEB offers a short diffusion distance, which results in an
enhanced charge transport and a high surface area for fast
interfacial charge collection, largely contributing to the con-
siderable PEC activity (Fig. 2b–d and Supplementary Figs. 11 and
26)43. More importantly, the direct growth of PTEB frameworks

on conductive substrates can greatly enhance electron transfer
and adhesion between the substrate and the active component
and enhance the structural stability for long-term operation29,43.

In conclusion, the method described herein affords a facile and
scalable approach for the synthesis of acetylenic carbon-rich
nanofibers via Cu-surface mediated Glaser polycondensation. In
this process, both conductive and non-conductive substrates can
be uniformly coated with PTEB nanofibers; meanwhile, micro-
patterned PTEB was achieved using a patterned Cu grid as a
stencil mask. We demonstrated that the PTEB nanofibers fabri-
cated on conductive substrates can be directly utilized as metal-
free photocathodes in PEC for H2 production, affording a satu-
rated photocurrent of ca. 10 µA cm−2 at 0.3–0 V vs. RHE. The
achieved photocurrent is largely improved to ca. 21 µA cm−2

through the introduction of thieno[3,2-b]thiophene units in the
backbone of PTEB framework. These results clearly illustrate that
acetylenic PTEB frameworks can serve as a promising polymeric
photocathode in PEC devices for hydrogen production. Owing to
the diversity of terminal alkynes and the chemical tailorability of
the C≡C triple bond (e.g., thiol-yne reaction63, cycloaddition with
cyano-containing acceptor molecules64, and metal coordina-
tion65), it is feasible to further improve the PEC performance with
a much broader set of acetylenic carbon-rich frameworks and
composites. Therefore, this work offers opportunities in the
development of metal-free photocathode materials for solar water
reduction.
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Methods
Materials. All the reagents were obtained from Sigma-Aldrich and used as
received. Copper wafer (MicroChemicals GmbH, Germany): Prime CZ-Si wafer 4
inch, one side polished, p-type (boron), total-thickness-variation < 10 μm, 1–10Ω
cm; 10 nm titanium adhesion layer; 200 nm copper (purity > 99.9 %), root-mean-
square roughness < 10 nm. Copper foil (thickness 0.25 mm, 99.98%) was purchased
from Sigma-Aldrich. The copper was consecutively washed with portions of 3 M
HCl (in methanol), methanol and ethanol under ultrasonication (2 min), and dried
under a flow of argon. The cleaned copper wafer was immediately used for
catalysis.

Synthesis of PTEB on Cu wafer or foil. Typically, TEB (5 mg, 0.033 mmol) and
piperidine (10 µL, 0.1 mmol) were added in a glass bottle containing 10 mL pyr-
idine as solvent. The freshly cleaned copper was submerged into a reaction mixture.
Afterwards, the bottle was sealed and heated to 60 °C in an oven for a certain time.
Repetitive series of experiments gave no significant differences in terms of the
resulting PTEB layer thickness and morphology. After reaction, the samples were
immediately washed with fresh pyridine, dichloromethane, and methanol
sequentially. Finally, the substrates were blow-dried by a jet of dry nitrogen and a
golden yellow film was obtained uniformly on the substrate.

Transfer of PTEB. To transfer the PTEB film on copper to another substrate (e.g.,
PET), the film was coated with PMMA resist (Allresist GmbH product number
AR-P671.04, dissolved in chlorobenzene), and cured at 90 °C for 10 min. The
copper substrate was etched away by a water solution of ammonium persulfate
(0.25 g mL−1) in 2 h. After being rinsed thoroughly with deionized water, the
PMMA/PTEB film was transferred to a target substrate. The samples were natu-
rally dried in air for 1 h and stored in high vacuum (room temperature) for 24 h to
enhance the adhesion of PTEB with targeted substrate surface. PMMA was
removed by thorough rinsing in acetone and cured in isopropyl alcohol.

Synthesis of PTEB on other substrates. A planar substrate (e.g., SiO2 wafer,
graphite, titanium, nickel, FTO, glass, and Kapton) piece cleaned by water and
ethanol was sandwiched with a copper wafer in a distance of d= 0.1 mm adjusted
by two spacers. The assembly was immersed in the reaction mixture as indicated
above and the washing procedures are similar.

Patterned PTEB network. Patterned PTEB film was fabricated on SiO2 wafer by
using copper grid as both a catalyst source and a stencil mask. The samples were
clamped with copper TEM grids with various hole sizes (Plano, Germany) and
immersed in the reaction mixture as described above. The distance between the
copper grid and substrate has an important role on fabricating positive and
negative patterns on the substrate, where negative patterned PTEB film was
obtained by a direct attachment of copper grid to the substrate and positive pattern
was achieved by close attachment assisted by the evaporation of a drop of iso-
propanol due to capillary force.

Synthesis of g-C3N4. Bulk g-C3N4 was synthesized according to a reported pro-
cedure with some modifications. In a typical synthesis, 5.0 g urea was heated at
550 °C in Ar atmosphere with a rate of 2 °C per min for 4 h56. The obtained sample
was deposited onto as-washed (using 3M HCl in methanol) titanium plate with
controlled thickness of ca. 250 nm using spin-coating to form a film
photoelectrode.

Synthesis of PTEB1.3-co-PDET1 on Cu substrate. Typically, TEB (2.5 mg,
0.017 mmol), DET (2.5 mg, 0.013 mmol), and piperidine (8.9 µL, 0.09 mmol) were
added in a glass bottle containing 10 mL pyridine as solvent. The freshly cleaned
copper was immersed in the reaction mixture. The following procedures are similar
to the synthesis of PTEB on Cu substrate.

Synthesis of PTEB1.3-co-PDET1 on other substrates. A planar substrate (e.g.,
titanium and quartz glass) piece cleaned by water and ethanol was sandwiched with
a copper wafer in a distance of d= 0.1 mm adjusted by two spacers. The assembly
was immersed in the reaction mixture mentioned above and washing procedures
are similar.

PEC measurements. The polarization curves of as-prepared PTEB nanostructured
on titanium plate as photocathodes were performed using a three-electrode setup
contains working electrode (PTEBs), counter electrode (Pt wire), and reference
electrode (Ag/AgCl). The simulated sunlight was from a 200W Xenon lamp
(100 mW cm−2) coupled with an AM 1.5 G filter (Newport). An electrochemical
analyzer (CHI 760 E) was applied to measure the LSV characteristic of the elec-
trodes, with 1 mV s−1 scan rate, and there is no correction on data for any losses of
uncompensated resistance. The electrolyte (0.01 M Na2SO4, pH= 6.8) was degas-
sed for 30 min by flushing high purity argon at room temperature (ca. 25 °C) before
the measurement. The EIS spectra were recorded by applying a 10 mV AC signal in
the frequency range from 100 K to 0.01 Hz at a DC bias of 0.3 V vs. RHE (i.e. −

0.3 V vs. Ag/AgCl). Current density was calculated using the exposed geometric
surface area of 1.0 cm2 of the photoelectrode

ðJphotocurrent density ¼ Jmeasured photocurrent=Sexposed geometric surface areaÞ ð1Þ

The applied potential vs. Ag/AgCl is converted to RHE potential using the fol-
lowing equation:

ERHE ¼ EAg=AgCl þ 0:059pHþ E0
Ag=AgClðE0

Ag=AgCl ¼ 0:199VÞ ð2Þ

The amount of H2 evolved on the PTEB photocathode was measured by GC
equipped with a thermal conductivity detector (TCD, N2 carrier) at 0 V vs. RHE
of applied bias in 0.01M Na2SO4 solution under AM 1.5 G irradiation
(100 mW cm−2)

The IPCE was measured by using a Xenon lamp (100 mW cm−2, AM 1.5 G)
with specific wavelength filters to select the required wavelength of light. IPCE can
be expressed as:

IPCEð%Þ ¼ JphðmA=cm2Þ ´ 1240ðV � nmÞ
λðnmÞ ´ JlightðmW=cm2Þ ´ 100 ð3Þ

where the JPh and Jlight are the real photocurrent density and light intensity at the
wavelength λ.

Photocatalytic H2 evolution. The PTEB nanofibers film-based photocatalytic cell
for H2 evolution test was constructed according to a reported process60,61. In brief,
the PTEB nanofibers film (3 × 3 cm2, ca. 230 nm-thick) was placed at the center of
a gas-closed reaction cell with 120 mL 25% triethanolamine water solution with
magnetic stirring. The temperature of the reaction system was kept at around 25 °
C. A 200W Xenon lamp with a filter of λ > 420 nm was applied to execute the
photocatalytic reaction. The amount of H2 produced from water was determined
by GC equipped with a TCD.

The monochromatic illumination quantum yield (MIQY) for H2 evolution was
characterized using a similar setup but with a 420 nm band-pass filter. The MIQY
was calculated based on the equation:

MIQYð%Þ ¼ 100 ´ 2
´ ðthe number of evolvedH2 moleculesÞ

=the number of incident photos

ð4Þ

The number of the incident photons was determined using a radiant power
energy meter (Newport). The produced H2 molecules reached 1.3 μmol in 10 h, and
the MIQY was calculated as 1.83 %.

DFT calculation. Raman spectra: calculations were performed at B3LYP/6-31 G(d,p)
level of theory with the Gaussian09 suite of programs66 on a cluster model
representing a section of PTEB (Supplementary Fig. 7). The equilibrium structure
of this model, its Hessian, and polarizability derivatives were used as input to
compute the simulated Raman spectrum (Fig. 1f) in presence of heavy mass
(100 amu) at the peripheral atoms. As confirmed by a comparison (Supplementary
Fig. 8) with the results from periodic boundary conditions calculation (Crystal1467,
same functional and basis set as above), this approach allows to effectively quench
the vibrations of the peripheral moieties of the cluster model and their contribu-
tions to the simulated Raman spectrum. However, the results from the Gaussian09
calculation allow to more straightforwardly analyse and assign the vibrational
modes with a suite of ad hoc programs developed for graphene molecules in
Milano (Supplementary Fig. 9).

Hydrogen evolution reaction: DFT calculations were carried out by using
quantum ESPRESSO code68. The generalized gradient approximation of
Perdew–Burke–Ernzerhof was used for exchange correlation functional in DFT69.
In all the cases, spin polarization was considered in the calculation. The kinetic
energy cutoffs were set to 35 Ry and 350 Ry, respectively, for the wavefunction and
the charge. 3 × 3 × 1 k-points grids were used for structure optimization and total
energy calculations. The adsorption energies of intermediates are calculated by
using H2O (l) and H2 (g) as references. The free-energy variation is obtained by
DFT total energy calculations through adding corrections to entropy, zero point
energy, and solvation energy according to the method developed by Nørskov
et al.70. Thus, free energies can be obtained from total energies of intermediates by
adding some corrections:

ΔG ¼ ΔETotal þ ΔEZEP � TΔSþ ΔGs ± 0:0592pH± eUðS1Þ ð5Þ

where ETotal is DFT calculated total energy, ΔEZPE zero point energy, ΔS entropy,
and ΔGs (– 0.22 eV) solvation energy for reaction intermediate. The pH effect were
considered as 0.0592 pH and – 0.0592 pH for hydrogen evolution reaction (HER).
We set pH 7 in all the calculations. By considering external potential U, the free
energies corrected by eUred and – eUox for HER. According to the band structure in
the main text, the Ured and Uox for PTEB equal to − 1.01 and 1.40 V, respectively.
Both single site (Volmer–Heyrovsky) and dual sites (Volmer–Tafel) reaction
pathways were investigated for HER. The elementary steps for single-site HER
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process are:
� þHþ þ e� !� H ð6Þ

�HþHþ þ e� !� þH2 ð7Þ

where * denotes catalysts surface. For dual sites HER, the first and second
elementary steps are of electron transfer steps that are like Eq. 6, and the third step
is a Tafel step:

2�H !� þH2 ð8Þ

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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