

Totalsynthese von (±)-13-Methoxy-15-oxozoapatlin

Robert A. Britton, Edward Piers and Brian O. Patrick

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

J.Org.Chem. 2004, 69, 3068-3075.

Einleitung

- 1970 erstmalige Isolierung von (-)-Zoapatlin aus Zoapatl-Busch
 → neues Diterpenoid-Skelett, Zoapatlin als Klassenname
- Mitte der 90er Isolierung von (-)-15-Oxozoapatlin, (-)-13-Hydroxy-15-oxozoapatlin und (-)-13-Methoxy-15-oxozoapatlin aus verschiedenen Pflanzen (Parinari curatellifolia (Mobola-Pflaume) und Parinari capensis (Kap-Pflaume))
- biologische Aktivität
 - hemmt Pilzwachstum des Cladosporium cucumerinum (Verursacher der Gurkenkrätze)
 - Zellgift (ED₅₀ zwischen 0,3 und 16,5 µM) durch Eingriff in Zellteilungskreislauf bei menschlichen Krebszellen (Ketogruppe reagiert z. B. mit Thiol-Gruppe in Proteinen) → Einsatz als Krebstherapeutikum
 - Wirksam gegen Malaria (IC_{50} 0,67 µg/ml)

(±)-13-Methoxy-15-Oxozoapatlin

nach Piers et. al.

Retrosynthese

nach Piers et. al.

I.1 Michael-Addition

Mechanismusvorschlag:

nach Piers et. al.

nach Piers et. al.

II.2 Darstellung des Triflatenolethers

Mechanismusvorschlag:

nach Piers et. al.

II.3 Stille - Kupplung

nach Piers et. al.

Mechanismusvorschlag:

nach Piers et. al.

Selektivitätsberachtungen:

Orientierungsselektivität:

grober zevie Reenzient an Heme Dien / zeme Dienopr

kleiner LCAO-Koeffizient am HOMO_{Dien} / LUMO_{Dienophil}

endo/exo-Produkt (normaler Elektronenbedarf):

Lit.: Brückner, R. "Reaktionsmechanismen", 3. Aufl., 2004, S. 648-664.

Mechanismusvorschlag:

Lit.: Clayden, J.; Greeves, N.; Warren, S.; Wothers, P., "Organic Chemistry" 2004, S. 621.

nach Piers et. al.

II.6 Saure Hydrolyse

Mechanismus:

Lit.: Brückner, R. "Reaktionsmechanismen", 3. Aufl., 2004, S. 376.

nach Piers et. al.

II.7 Intramolekulare Aldolkondensation

nach Piers et. al.

Lit.: Brückner, R. "Reaktionsmechanismen", 3. Aufl., 2004, S. 554-566.

nach Piers et. al.

III.1 TPAP/NMO-Oxidation des 1° Alkohols zum Aldehyd

Mechanismus:

Lit.: Brückner, R. "Reaktionsmechanismen", 3. Aufl., 2004, S. 747.

nach Piers et. al.

III.2 Oxidation des Aldehyds zur Carbonsäure mit NaO₂Cl

Mechanismusvorschlag:

Abfangen der Säure mit 2-Methyl-2-buten:

a) MeCN, H₂O 4 eq NaHCO₃ RT, 5 min b) 2 eq I₂ RT, 1.5 h

(90 %)

(±)-13-Methoxy-15-oxozoapatlin

nach Piers et. al.

III.3 Iodolactonisierung zur Bildung des γ-Lactons

- Iodoniumion nach Markownikow-Regel geöffnet
- Entstehung des γ-Lactons gegenüber des δ-Lactons kinetisch bevorzugt

Lit.: J. Mulzer, "Halolactonization: The Career of a Reaction", aus *"Organic Synthesis Highlights*", J. Mulzer u. a. VCH, Weinheim, New York, etc., **1991**, S. 158-164.

III.3.1 Selektivitätsbetrachtungen

Rückseitenangriff der Carboxylat-Gruppe aus dem unteren Halbraum

- die Addition des Iods erfolgt zunächst reversibel in beiden Halbräumen des Moleküls.,
- der Ringschluss kann nur von der Unterseite erfolgen, weil die Carboxylat-Gruppe einzig im unteren Halbraum zum Ringschluss fähig ist
 - → im Produkt liegt lod nur im oberen Halbraum vor (Bildung des exocyclischen cis-Produktes)

nach Piers et. al.

III.4 Defunktionalisierung mit Tributylstannan

TECHNISCHE

UNIVERSITÄT

DRESDEN

Lit.: Brückner, R. "Reaktionsmechanismen", 3. Aufl., 2004, S. 44ff.

TECHNISCHE

UNIVERSITÄT

DRESDEN

(±)-13-Methoxy-15-oxozoapatlin

nach Piers et. al.

Mechanismusvorschlag für Nebenproduktbildung:

(±)-13-Methoxy-15-oxozoapatlin nach Piers et. al.

IV.1 Äquilibrierung der Doppelbindung

Mechanismusvorschlag:

nach Piers et. al.

nach Piers et. al.

IV.2 Grignard-Reaktion

IV.2.1 Mögliche Darstellung des Allens

$S_N 2'$ -Mechanismus:

Lit.: March, J., *Advanced organic chemistry: reactions, mechanisms and structure* **1992**, 4. edition, S. 440 Crandall, J. K.; Keyton, D.; Kohne, J.; *J. Org. Chem.* **1968**, *33*, S. 3655 www.airliquide.de/loesungen/produkte/gase/gasekatalog/stoffe/propadien_druck.html.

(±)-13-Methoxy-15-oxozoapatlin nach Piers et. al.

IV.2.2 Pd-katalysierte Addition des Allens

Mechanismusvorschlag:

Mechanismusvorschlag:

 $S_N 2'$ -Mechanismus

Allystannan reagiert nach S_N2'-Mechanismus

Lit.: Britton, R.; Piers, E.; Patrick, B., J. Org. Chem. 2004, 69, S. 3071.

IV.2.4. Grignard-Reaktion

Lit.: Brückner, R. "Reaktionsmechanismen", 2. Aufl., 2003, S. 426.

nach Piers et. al.

IV.3 Halogenierung mit NIS

Mechanismusvorschlag:

nach Piers et. al.

V.1 Einführung der TES-Schutzgruppe

Mechanismus:

Lit.: Carey, F. A.; Sundberg, R. J., "Organische Chemie" 1995, S. 1429.

nach Piers et. al.

V.2 Heck-Reaktion

Ringschluss und Verschiebung der Doppelbindung

Mechanismus:

Lit.: Link, J. T., Organic Reactions 2002, 60, S. 160-210.

nach Piers et. al.

Lit.: Link, J. T., Organic Reactions 2002, 60, S. 160-210.

nach Piers et. al.

V.3 Chemoselektive Reduktion der innercyclischen Doppelbindung

Mechanismus:

Oberflächenreduktion an Pd/C-Kat. – siehe Literatur

Lit.: Brückner, R. "Reaktionsmechanismen", 3. Aufl., 2004, S. 800.

nach Piers et. al.

V.4 Abspaltung der TES-Schutzgruppe

Mechanismus:

nach Piers et. al.

V.5 Williamson-Ethersynthese

Methylierung des Alkohols

Mechanismus:

Lit.: Brückner, R. "Reaktionsmechanismen", 3. Aufl., 2004, S. 96.

nach Piers et. al.

V.6 Oxidation unter C-C- Spaltung

Mechanismus:

Darstellung des RuO₄:

 $2 \operatorname{RuCl}_3 + 5 \operatorname{NalO}_4 + 3 \operatorname{H}_2 O \longrightarrow 2 \operatorname{RuO}_4 + 5 \operatorname{NalO}_3 + 6 \operatorname{HCl}$

Bildung des Diols:

Lit.: Brückner, R. "Reaktionsmechanismen", 3. Aufl., 2004, S. 744-758.

nach Piers et. al.

Reoxidation zum RuO₄:

Oxidation unter C-C- Spaltung:

nach Piers et. al.

V.7 α-Methylenierung

Mechanismusvorschlag:

Aldoladdition:

Lit.: Brückner, R. *"Reaktionsmechanismen",* 3. Aufl., **2004**, S. 561 Merten, J., Dissertation, TU Dresden **2005**.

nach Piers et. al.

Lit.: Brückner, R. *"Reaktionsmechanismen"*, 3. Aufl., **2004**, S. 561 Merten, J., Dissertation, TU Dresden **2005**.

nach Piers et. al.

(±)-13-Methoxy-15-oxozoapatlin

Schutzgruppen und Abkürzungen

AIBN	Azobisisobutyronitril	
DIBAL	Diisobutylaluminiumhydrid	
DMSO	Dimethylsulfoxid	
KHMDS	Kaliumhexamethyldisilazid	
LDA	Lithiumdiisopropylamid	
NMO	N-Methylmorpholin-N-oxid	
NIS	N-Iodsuccinimid	
PMP	Pentamethylpiperidin	
TBAF	Tetrabutylammoniumfluorid	
TEMPO	Tetramethylpiperidin-Nitroxyl	
TES	Triethylsilyl	
Tf	Trifluormethansulfonyl-	
TMS	Trimethylsilyl	
ТРАР	Tetrapropylammoniumperruthenat	
p-TsOH	p-Toluolsulfonsäure	

Reaktions-Übersicht

	Seite		Seite
Schutzgruppeneinführung:		Nucleophile Substitution:	
Ketalisierung	5	Williamson- Ethersynthese (S _N 2)	31
Einführung der TES- Gruppe	26	Allendarstellung (S _N 2')	22
Schutzgruppenabspaltung:		Halogenierung mit NIS	25
saure Hydrolyse der Acetale	11	Addition:	
Abspaltung der TES- Gruppe mit TBAF	30	Iodolactonisierung	16
Einführung einer guten Abgangsgruppe: Darstellung der Triflatenolethers	6	C-C- Knüpfungsreaktionen: <i>Michael</i> - Addition <i>Stille</i> - Kupplung	4 7/8
Oxidation: Alkohol zu Aldehyd mit TPAP/NMO Aldehyd zu Säure mit NaClO ₂ unter C-C- Spaltung mit RuCl ₃ /NalO ₄	14 15 32/33	Diels- Alder- Reaktion (Cycloaddition) intramolekulare Aldolkondensation Grignard- Reaktion Heck- Reaktion α- Methylenierung	9 12/13 24 27/28 34/35
Reduktion: Aldehyd zu Alkohol mit DIBAL eines Alkens mit H ₂ an Pd/C	10 29	Äquilibrierung: Äquilibrierung der Doppelbindung	20
Radikalreaktionen: radikalische Defunktionalisierung mit AIBN/Bu ₃ SnH	18	Organometall-Reaktion: Allen- Addition Transmetallierung	23 24