

Fakultät für Mathematik und Naturwissenschaften, Fachrichtung Chemie und Lebensmittelchemie, Professur für Organische Chemie I

Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten

Martin Wustmann, Juliane Ulbricht, Johanna Zessin, Sami Kummer, Loreen Zeitz, Cathleen Fischer

nach Rabea Hennig

Rabea Hennig und Peter Metz, Angew. Chem. 2009, 121, 1177 –1179

Terpene

• aus Isopreneinheiten aufgebaute Naturstoffe

- z.B. Monoterpene : aus zwei Isopreneinheiten aufgebaut
- vor allem in Pflanzen als Bestandteile ätherischer Öle, selten in Tieren
- große Vielfalt an Kohlenstoffgerüsten, wenige funktionelle Gruppen

3a-Hydroxy-15-ripperten

- cyclisches Diterpen
 - \rightarrow aufgebaut aus 4 Isopreneinheiten und damit 20 Kohlenstoffatomen
 - → ca. 2000 bekannt, fast ausschließlich (Poly)cyclen
- aus Abwehrsekreten der Soldaten verschiedener Termitenarten isoliert
- das 4-Desmethyl-3α-Hydroxy-15-ripperten zeigt gegenüber *B.subtilis* ATCC6633 (grampositives, stäbchenförmiges, begeißeltes Bakterium) im Test der minimale Hemmkonzentration (MHK) bei einer Konzentration von 128 μg/ml antibakterielle Wirkung
- P. Nuhn, Naturstoffchemie, 4. Auflage, Hirzel Verlag, Stuttgart, Leipzig, 2006.
- G. D. Prestwich, Biochem. Sys. Ecol. 1979, 7, 211-221.

G. Habermehl, P.E. Hamann, *Naturstoffchemie*, Springer-Verlag, Berlin, Heidelberg, **2008**. TU Dresden, 15.02.2011 Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten

2. Retrosynthese

3. Darstellung des Bicyclus

- Edukt für die Synthese stellt das Monoterpen (-)-Isopulegol dar, welches kommerziell erhältlich ist
 - \rightarrow 90 € / kg bei Sigma-Aldrich

Teilschritte zur Synthese des Bicyclus

- 1. Kettenverlängerung des Edukts
- 2. PCC-Oxidation zum Sechsringketon
- 3. Ringerweiterung zum 7-Ring
- 4. Darstellung des Diketons
- 5. Aldolkondensation zum Aufbau des Bicyclus

Darstellung des Trimethylsilyethers

Formale Hydromethallylierung

Teilschritte der Hydromethallylierung:

a) Hydroborierung mit Diethylboran

Mechanismusvorschlag:

- b) Bor-Zink-Austausch mit Diethylzink
- c) Transmetallierung auf Kupfer
- d) saure Spaltung des Silylethers
 - F. Langer, A. Devasagayaraj, P. Chavant, P. Knochel, Synlett, 1994, 410-412.
 - P. Knochel, Synlett, 1995, 393-403.
 - P. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117-2188.

3.1 Kettenverlängerung von (-)-Isopulegol

Mechanismusvorschlag:

Betrachtung des Nebenprodukes

- Nebenprodukt entsteht mit Ausbeute von 18 %
- liegt als Diastereomerengemisch vor (2.7:1, ¹H-NMR)

3.2 PCC-Oxidation zum Sechsringketon

Mechanismusvorschlag:

E. J. Corey, J. W. Suggs, *Tetrahedron Lett.* **1975**, *31*, *2647-2650*. R. Brückner, *Reaktionsmechanismen*, 3. Auflage, Spektrum **2007**, *742*.

TU Dresden, 27.01.2011

Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten

Folie 10 von 51

3.3 Ringerweiterung mit Trimethylsilyldiazonmethan

N. Hashimoto, T. Aoyama, T. Shioiri, Tetrahedron Lett., 1980, 21, 4619 - 4622.

TU Dresden, 27.01.2011

Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten

Folie 11 von 51

3.3 Ringerweiterung mit Trimethylsilyldiazonmethan

3.4 1,2-Carbonylshift

R. Brückner, "Reaktionsmechanismen", 3. Auflage, Spektrum Akademischer Verlag, 2004, 561.

TU Dresden, 27.01.2011

Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten Folie 14 von 51

3.4.2 Deoxygenierung

Aktivierung der Hydroxyleinheit:

- Vorbereitung f
 ür Defunktionalisierung nach *Tsuji*, *Trost*
- Hydroxylgruppe als bessere Abgangsgruppe aktivieren → Veresterung zu Carbonat
- Deprotonierung durch Lithiumbase
- Umsetzung mit EtOCOCI

- Katalysezyklus nach Tsuji, Trost
- Palladiumkatalysierte Reduktion mit Triethlyamin und Ameisensäure (Hydridquellen)
- milde Defunktionalisierung zu Olefin
- hohe Selektivität und Ausbeute
- Vorteile:
 - in situ herstellbare Katalysatorspezies
 - Herstellung nur eines Isomers
 - Ausbeuten in Multigramm-Maßstab

3.4.2 Deoxygenierung - Defunktionalisierung

Katalysezyklus:

- *in situ* hergestellte aktive
 Palladium(0)katalysatorspezies
- oxidative Addition des Katalysators an allylische C-O Bindung (A)
 - \rightarrow n-Allylpalladiumkomplex (B)
- Abgangsgruppe wird durch Formiat substituiert → unter CO₂Freisetzung abgespalten
 - → Palladiumhydridkomplex (D)
- reduktive Eliminierung
 - \rightarrow normal zwei isomere Olefine (E und F)
 - → speziell nur ein Isomer, da Konjugation zum Phenylring

С

J. Tsuji, *PureAppl. Chem.* **1989**, *61*, *1673-168*. J. Tsuji, T. Yamakawa, *Tetrahedron Lett.* **1979**, *7*, *613-616*.

TU Dresden, 27.01.2011

Totalsynthese von 4-Desmethyl-3a-hydroxy-

Folie 17 von 51

15-ripperten

- Generierung des Diketons durch oxidative Spaltung beider Doppelbindungen (nächster Schritt fällt für dieses Isomer weg)
 - 1. Osmuiumtetraoxidkatalysierte Dihydroxylierung
 - 2. Glycolspaltung

Organikum, 22.Auflage, WILEY-VCH, **2004**, *S. 306.* R. Brückner, *"Reaktionsmechanismen",* 3.Auflage, Spektrum Akademischer Verlag, **2004**, *758.*

TU Dresden, 27.01.2011

Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten

Folie 18 von 51

3.5 Darstellung des Diketons

- cis-Dihydroxylierung mit anschließender 1,2-Glykolspaltung
- Natriumperiodat: Cooxidanz zur Regenerierung des Katalysators und zur Spaltung des Diols
- Pyridin: Ligandenbeschleunigung (durch Koordination am Osmium)
- Aktivierung des Osmiums:

R. Brückner, Reaktionsmechanismen, 3. Auflage, Spektrum , 2007, 752, 758.

```
TU Dresden, 27.01.2011
```


3.5 Darstellung des Diketons

Mechanismusvorschlag:

3.6 Aldolkondensation zum Aufbau des Bicyclus

Gesamtgleichung:

Teilschritte zur Synthese des Tricyclus:

- 1. Diastereoselektive Allylierung
- 2. Wacker-Oxidation zum Diketon
- 3. Mirkowellenassistierte Aldolkondensation

4.1 Diastereoselektive Allylierung

- durch Einbringung einer Allylseitenkette
 Bereitstellung aller notwendigen Kohlenstoffatome
 zur Bildung des Fünfringes
- diastereoselektiv durch sterische Hinderung der Methylgruppe
 - → substratinduzierter Angriff von der β Seite des Moleküls

4.2 Wacker-Oxidation zum Diketon

Folie 24 von 51

- Umstieg PdCl₂/CuCl₂/Coox: O₂ auf PdCl₂/Coox: *p*-Benzochinon führte zur Verkürzung der Reaktionszeit und vereinfachten Versuchsaufbau durch Verzicht auf Sauerstoffatmosphäre
- Umstieg von DMF auf DMA führte zur Bildung von weniger Nebenprodukt

4.3 Mikrowellenassistierte Aldolkondensation

• Verwendung der Mikrowelle führt zu reduzierter Reaktionszeit und -temperatur

Gesamtgleichung:

Teilschritte der Synthese des Enolethers:

- 1. Reduktion zum Allylalkohol mit LiAlH₄
- 2. Williamson-Ethersynthese zum Propargylether
- 3. Intramolekulare Diels-Alder-Reaktion zum Enolether

5.1 Reduktion zum β-Allylalkohol

- es findet ein substratinduzierter Hydrid-Angriff über die konvexe Seite des Moleküls statt
 - → konkav/konvex-Lenkung
- die erhaltene Konfiguration des Alkohols ist entscheidend f
 ür die folgende IMDA, da nur
 über die konkave Seite des Molek
 üls die korrekte faciale Selektivit
 ät erreicht werden kann

5.2 Einführung des Dienophils

• Einführen des Dienophils (Propargylbromid) für die IMDA mittels *Williamson*-Ethersynthese und Phasentransferkatalyse

K. Maruoka, Asymmetric Phase Transfer Catalysis 2008, 2.

Intramolekulare Diels-Alder-Reaktion (IMDA) nach Kanematsu

Mechanismusvorschlag:

• die intramolekulare Diels-Alder Reaktion (IMDA) verläuft hoch stereoselektiv, da die Konfiguration des Ethers nur den Angriff über die konkave Seite des Moleküls zulässt

- → es kommt suprafacialen Angriff, wodurch das Ripperten-Grundgerüst aufgebaut wird und zudem
 - 6 von 7 stereogenen Zentren des 4-Desmethyl-3a-hydroxy-15-ripperten korrekt installiert vorliegen

S. K. Yeo, N. Hatae, M. Seki, K. Kanematsu, Tetrahedron 1995, 51, 3499-3506.

6. Finale Stufen der Synthese

Gesamtgleichung:

Teilschritte der finalen Stufen der Synthese:

- 1. Hydratisierung zum Lactol
- 2. TPAP Oxidation zum Lacton
- 3. a-Hydroxylierung mit MoOPH zum a-Hydroxylacton
- 4. Reduktion zum Triol mit KOH/LiAIH₄
- 5. Diolspaltung zum Hydroxyketon mit NaIO₄
- 6. Reduktion zum Diol mit Me₄NBH(OAC)₃
- 7. Schützung durch Einführen des MOM-Ethers
- 8. Derivatisierung zum Xanthogenat
- 9. Defunktionalsierung nach Barton McCombie
- 10. Entschützen des MOM-Ehters

6.1 Hydratisierung zum Lactol

Mechanismusvorschlag:

6.2 TPAP – Oxidation

Mechanismusvorschlag:

6.3 a-Hydroxylierung mit MoOPH

Mechanismusvorschlag:

→ substratkontrollierte a-Hydroxylierung von der konvexen Seite des Moleküls

Herstellung des MoOPH: $M_0O_3 + H_2O_2 + HMPA \longrightarrow M_0O_5 H_2O HMPA \xrightarrow{-H_2O} M_0O_5 HMPA \xrightarrow{-Py} M_0OPH$

E. Vedels, D. A. Engler, J. E. Telschow, J. Org. Chem. 1978, 43, 188-196.

TU Dresden, 27.01.2011

6.4 Reduktion zum Triol

- Hydroxyketon wird in einer 1. Reaktion verseift
 - → erfolgreiche Verhinderung der Bildung des unvollständig reduzierten Lactols

 anschließend kann mit einem Überschuss an LiAIH₄ die Reduktion zum Triol vorgenommen werden

6.5 Diolspaltung zum Hydroxyketon

Mechanismusvorschlag:

Finale Stufe der Synthese

1,3-anti-Reduktion

- Gegenwart von Essigsäure kommt es mit dem Alkohol zu einer Umesterung
- über einen cyclischen TS wird das Hydrid intramolekular übertragen
- Reste stehen äquatorial beziehungsweise pseudoäquatorial

D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem. Soc. **1988**, 110, 3560-3578. TU Dresden, 27.01.2011 Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten

Einbringen eines MOM-Ethers

es entstehen dabei noch die folgenden Nebenprodukte, welche nicht deoxygeniert werden können:

G. Stork, T. Takahashi, J. Am. Chem. Soc. 1977, 99, 1275-1276.

TU Dresden, 27.01.2011

6.8 Deoxygenierung der 5 β -Hydroxylgruppe

• Überführung des Alkohols in ein Xanthogenat, welches eine anschließende

Defunktionalisierung ermöglicht

P. Bernardelli, O. M. Moradej, D. Friedrich, J. Yang, F. Gallou, B. P. Dyck, R. W. Doskotch, T. Lange, L. A. Paquette, *J. Am. Chem. Soc.* **2001**, *123*, *9021-9032*.

6.8 Deoxygenierung der 5*β-Hydroxylgruppe Barton-McCombie*

Mechanismusvorschlag

D. H. R. Barton, S. W. McCombie, *J. Chem. Soc.*, *Perkin Trans. I* **1975**, 1574-1585. TU Dresden, 27.01.2011 Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten

6.9 Entschützung des MOM-Ethers

 Durch eine Acetalspaltung wird die MOM-Schutzgruppe entfernt. Mit dieser Variante können auch die bei der Schützung entstandenen Nebenprodukte in das *anti*-Diol zurückgeführt werden.

7. Einführung der Methylgruppe

7. Einführung der Methylgruppe

Weg A – Oxidation zum Keton

W. P. Griffith, S. V. Ley, G. P. Withcombe, A. D. White, *J. Chem. Soc., Chem. Commun.* 1987, 1625-1627.
W. P. Griffith, S. V. Ley, Aldrichim. Acta 1990, 23, 13-19.
S. V. Ley, J. Norman, W. P. Griffith, S. P. Marsden, *Synthesis* 1994, 639-666.

Weg A - Methylierung

- Basen zur Deprotonierung: NaH, tBuOK und eine Mischung aus KH und BEt₃
- Alkylierungsmittel: Mel

→ Ergebnis: nicht isolierbares Produktgemisch

- P. S. Wharton, C. E. Sundin, D. W. Johnson, H. C. Kluender, J. Org. Chem. 1972, 37,34-38.
- B. C. Ranu, U. Jana, J. Org. Chem. 1999, 64, 6380-6386.
- E. Negishi, S. Chatterjee, Tetrahedron Lett. 1983, 24, 1341-1344.
- D. Solé, X. Urbaneja, J. Bonjoch, Org. Lett. 2005, 7, 5461-5464.

Weg B - Methylierung

→ Ergebnis: nicht identifizierbares Produktgemisch

Weg C – Darstellung des Enons

E. Piers, R. W. Friesen, J. Chem. Soc., Chem. Commun. 1988, 125-126.

TU Dresden, 27.01.2011

7. Einführung der Methylgruppe

Weg C - Methylierung des Enons

Eintopf-1,4-Reduktion/ Methylierung

Zwei Möglichkeiten zur Stabilisierung des intermediär gebildeten Enolats zur Alkylierung:

a) via 1,4-Reduktion

→ Hydrierungsreagenzien: auf Aluminium basierende Cuprate

b) Birch-Reduktion via single electron transfer (SET)

→ Elektronendonator: Lithium

Aber: Methylierung von Enolat nicht erfolgreich → Zersetzung des Edukts

M. F. Semmelhack, R. D. Stauffer, A. Yamashita, *J. Org. Chem.* **1977**, *42*, *3180-3188*. E. J. Corey, B. E. Roberts, *J. Am. Chem. Soc.* **1997**, *119*, *12425-12431*.

7. Einführung der Methylgruppe

- Methylierung mit MeLi bei -78°C
 - → Ergebnis: nicht isolierbares Produktgemisch
- Methylierung mit Dimethylzink und eine Titan-Lewissäure

\rightarrow Ergebnis: Zersetzung des Edukts

Schlussfolgerung: Das Enon ist unter den angewendeten Reaktions-Bedingungen zu instabil

8. Ausblick

Problem

• Die fehlende Methylgruppe konnte nicht im Tetracyclus etabliert werden. Das kann auf die Empfindlichkeit der eingesetzten Substrate bzw. Produkte zurückgeführt werden.

Neue Synthesewege

I dee: Schützung der empfindlichen Olefineinheit

W. Yu, Y. Mei, Y. King, Z. Hua, Z. Jin, Org. Lett. 2004, 6, 3217-3219.
P. Chochrek, J. Wicha, Org. Lett. 2006, 8, 2551-2553.
E. J. Corey, R. A. E. Winter, J. Am. Chem. Soc, 1963, 85, 2677-2678.
TU Dresden, 27.01.2011 Totalsynthese von 4-Desmethyl-3a-hydroxy-15-ripperten

9. Zusammenfassung

- es wurde 4-Desmethyl-3a-hydroxy-15-ripperten mit einer Gesamtausbeute von 1,7 % synthetisiert
- > insgesamt wurden 7 stereogene Zentren von 3a-Hydroxy-15-ripperten korrekt installiert
- Schlüsseltransformation ist die intramolekulare Diels-Alder-Reaktion nach Kanematsu, nach welcher 5 von 7 stereogenen Zentren in gewünschter Konfiguration erhalten werden konnten

10. Reaktionsübersicht

Reduktionen:		Nucleophile Substitution:	
LIAIH ₄	15, 27, 34	Veresterung	15
Pd-Katalysiert	16	Williamson Ethersynthese	28
Hydroxyldirigiert	39	Schutzgruppenreaktionen	
Bu ₃ SnH	48	MOM-Gruppe einbringen	38
Oxidationen:		MOM-Gruppe entschützen	41
Wacker-Oxidation	24	TMSO-Gruppe einbringen	6
TPAP-Oxidation	32, 43	Sonstige:	
Oxidative Spaltung	18, 19	Ringerweiterung	11
PCC	10	Allylierung	23
Addition an die C,C-Doppelbindung		Derivatisierung	48
Aldolkondensation	14, 21, 25	Hydromethallylierung	6
Intramolekulare Diels-Alder-Rkt.	29	Diolspaltung	35
Hydratisierung	31	Deoxygenierung	39
Hydroxylierung	33	Methylierung	44, 46
Umlagerung			
Semipinacolumlagerung	47		

11. Abkürzungsverzeichnis

dba - Dibenzylidenaceton DBU – 1,8-Diazabicyclo[5.4.0]undec-7-en **DCM** - Dichlormethan DMA - N, N-Dimethylacetamid DMAP - 4-(Dimethyl-amino)-pyridin DMF - Dimethylformamid MoOPH - Oxodiperoxymolybdän-pyridin-hexamethylphosphoramid MoO₄L₁L₂ - Dioxoperoxymolybdän-pyridin-hexamethylphosphoramid MsCI - Mesylchlorid p-TsOH - para-Toluolsulfonsäure HMDS – Hexamethyldisilazan LA – Lewis-Säure LiHMDS – Lithiumhexamethyldisilazid HMPA – Hexamethylphosphorsäuretriamid PCC - Pyridiniumchlorochromat RT – Raumtemperatur TMS - Trimethylsilyl TPAP – Tetrapropylammoniumperruthenat t-Bu - tert-Butyl THF – Tetrahydrofuran $S_N 2$ – nukleophile Substitution (2. Ordnung) IMDA – intramolekulare Diels-Alder-Reaktion

Py – Pyridin MHK – minimale Hemmkonzentration

Vielen Dank für die Aufmerksamkeit!