

Totalsynthese von (+)-Sieboldin A

Zhang, X.-M.; Shao, H.; Tu, Y.-Q.; Zhang, F.-M.; Wang, S.-H. *J. Org. Chem.* **2012**, *77*, 8174-8181.

Vladimir Zamorano Álvarez, Jason Melidonie, Patrick Mélix, Christina Schneidermann, Benedikt Spindler

- 1. Lycopodium-Alkaloide
- 2. Sieboldin A
- 3. Retrosynthese
- 4. Totalsynthese
 - 4.1 Darstellung des Ketons und Enons
 - 4.2 Darstellung des Bromalkens
 - 4.3 Darstellung von Alopecuridin
 - 4.4 Darstellung von Sieboldin A
- 5. Zusammenfassung

1. Lycopodium-Alkaloide

- Lycopodium: Pflanzengattung, auch: Bärlappe
- lat. *lukos*, Wolf und *podion*, diminutiv Fuß
- 1881 Bödeker: Lycopodin aus Flachbärlappe gewonnen
- 1938 Achmatowicz, Uzieblo: Charakterisierung Lycopodin
- 1986-1990: L.-Alkaloide sind potente AChE-Inhibitoren
- über 200 spez. Substanzen
- 4 Untergruppen; Sieboldin A: Fawcettimine

Ma, X.; Gang, D.-R. Natural Product Report 2004, 21, 752-772.

2. Sieboldin A

- Fawcettimin-Klasse
- Cyclohexa- und Cyclopentanonring
- Aza-Cyclononanring
- N-Hydroxygruppe
- THF-Ring

- isoliert 2003 aus L. sieboldii (Japan) durch Kobayashi et al.
- erste stereoselektive Totalsynthese 2010 von Overman et al.
- 26.6.2012 bereits neue Totalsynthese veröffentlicht

Hirasawa, Y.; Morita, H.; Shiro, M.; Kobayashi, J. *Org. Lett.* **2003**, *5* (*21*),*3991.* Canham, S. M.; France, D. J.; Overman, L. E. *J. Am. Chem. Soc.* **2010**, *132*, 7876-7877.

TU Dresden, 31.01.2013

3. Retrosynthese

3. Retrosynthese

Zhang, X.-M.; Shao, H.; Tu, Y.-Q.; Zhang, F.-M.; Wang, S.-H. J. Org. Chem. 2012, 77, 8174-8181.

TU Dresden, 31.01.2013

4.1 Darstellung des Ketons und Enons

Synthese des Ketons:

Reaktionsgleichung:

Zhang, Xiao-Ming; Tu, Yong-Qiang; Zhang, Fu-Min; Shao, Hui; Meng, Xing; Angew. Chem Int. Ed 2011, 50, 3916-3919.

4.1 Darstellung des Ketons und Enons

Tiffeneau-Demjanov-artige Ringerweiterung

Brückner, R. Reaktionsmechanismen, Spektrum Akademischer Verlag 2004, 605ff.

TU Dresden, 31.01.2013

Hydrolyse und Decarboxylierung

Synthese des Enons 14:

(+)-Pulegon: 100 ml für 48,40 € bei Sigma Aldrich

Mutti, S.; Daubié, C.; Decalogne, F.; Fournier, R.; Rossi, P. Tetrahedron Lett. 1996, 37, 3125.

TU Dresden, 31.01.2013

4.2 Darstellung des Bromalkens

Elektrophile Addition/Halogenierung:

Reaktionsgleichung:

Mechanismus:

Corey-Bakshi-Shibata (CBS) – Reduktion:

Corey-Bakshi-Shibata (CBS) – Reduktion:

Synthese des CBS- Katalysators :

Clayden; Greeves; Warren; Wothers Organic Chemistry, Oxford University Press 2001, 1233-1234.

TU Dresden, 31.01.2013

Corey-Bakshi-Shibata (CBS) – Reduktion:

Corey ,E.J., Helal, C.J., Angew. Chem Int. Ed. 1998, 37, 1986-2012.

Johnson-Claisen-Umlagerung:

Johnson-Claisen-Umlagerung:

Johnson, W.S.; Bartlett, W.R.; Brocksom, T.J.; Li, T.; Faulkner, D.J.; Petersen, M.R. *J. Am. Chem. Soc.* **1970**, 92, 741-743. TU Dresden, 31.01.2013 Totalsynthese von (+)-Sieboldin A Folie 21 von 48

LiAlH₄ Reduktion:

Dess-Martin Oxidation:

Reaktionsgleichung:

TU Dresden, 31.01.2013

Wittig-Methylenierung:

4.3 Darstellung von Alopecuridin

Reaktionsgleichung:

d.r. = 6:1

in situ Bildung der Vinyl-Cer-Spezies:

Mechanismus:

Kupplung der Vinyl-Cer-Spezies an Keton 15:

Mechanismus:

Epoxidierung des Kupplungsproduktes:

Epoxidierung des Kupplungsproduktes:

Mögliche Konformationen:

- Angriff syn zur Allylgruppe
- Hydroxygruppe besitzt dirigierende Wirkung

Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Shao, H.; Meng, X. Angew. Chem Int. Ed **2011**, *50*, 3916-3919.

TU Dresden, 31.01.2013

Semipinakol-Umlagerung:

Mechanismus:

Schützung der Hydroxy-Gruppe:

Ozonolyse der Endständigen Doppelbindung:

Pinakol-Kupplung mit Samarium(II)-Iodid

Reaktionsgleichung:

TU Dresden, 31.01.2013

Pinakol-Kupplung mit Samarium(II)-Iodid

Mechanismus:

MOM-Entschützung

Reaktionsgleichung:

Beispiel einer MOM-Entschützung

Mechanismus:

TPAP-Oxidation

Beispiel einer TPAP-Oxidation

Mechanismus:

Brückner, R. Reaktionsmechanismen, Spektrum Akademischer Verlag, 2004, 747.

TU Dresden, 31.01.2013

BOC-Entschützung und Ringschluss

BOC-Entschützung und Ringschluss

Mechanismus:

BOC-Entschützung und Ringschluss

Mechanismus:

Oxidation

Oxidation

ÒН

33

Oxidation

Mechanismus:

- Totalsynthese von **14** bis **2** in 16 Schritten
- Gesamtausbeute von 1,32%
- Wichtige Schritte:
 - Semipinacol-Umlagerung
 - o intramolekulare Pinakol-Kupplung mit SmI₂
- aktuelle Veröffentlichung von Overman et al.

Canham, S.; France, D.; Overman, L.E. J. Org. Chem. 2013, 78, 9-34.

Ac	Acetyl
AChE	Acetylcholinesterase
aq.	in wässriger Lösung
Bn	Benzylgruppe
Boc	<i>tert</i> -Butyloxycarbonyl
Bu	Butyl
СРВА	Chlorperbenzoesäure
DCM	Dichlormethan
DIPEA	Diisopropylethylamin
eq.	Äquivalent
Et	Ethyl
НМРА	Hexamethylphosphorsäuretriamid
т	meta
Ме	Methyl
MTBE	Methyl- <i>tert-</i> butylether
NMO	N-Methylmorpholin-N-Oxid
МОМ	Methoxymethyl
Ph	Phenylgruppe
RT	Raumtemperatur
t	tertiär
<i>t</i> -AmONa	Natrium <i>tert</i> -Amylat
TBAI	Tetrabutylammoniumiodid
TFA	Trifluoressigsäure
THF	Tetrahydrofuran
ТРАР	Tetrapropylammoniumperrhuthenat

Danke für Ihre Aufmerksamkeit!

FRAGERUNDE

TU Dresden, 31.01.2013