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O Motivation
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Primitive positive constructions

We can consider the following posets on finite structures:

o pp definability: A <pes B if A= B and every relation in B has a pp
definition in A.
3X1,...,Xn(¢1 /\---/\(Dm).

o pp interpretability: A <j,« B (not necessarily on the same domain) if
there exists d € N and a partial surjective map f: A — B such that
preimages of relations of B are pp definable in A.

o pp constructability (Barto, Opr3al, Pinsker '18): A <con B if B is
homomorphically equivalent to B’ and A <,; B'.

Note:
0 <pefr <int» <con preserve the complexity of CSPs.

o CSP(A) isin P if A £con K3, and is NP-hard otherwise.
(Bulatov '17; Zhuk '17)
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The algebraic approach

Pol(A): the clone of polymorphisms of A (A finite ).
0 A <pe B iff Pol(A) C Pol(B). (e.g., Post's Lattice '41)
0 A <y B iff there is a clone homomorphism &£: Pol(A) — Pol(B).
s

§(nf) =77,
§(f (g1, 8n)) = E(F)(E(&1); - - - E(&n))-

(The Lattice of Interpretability Types of Varieties, Garcia and Taylor '84)
0 A <con B iff there is a minor-preserving map &: Pol(A) — Pol(B).

§(F(miy,s o omiy)) = E(F) (o).

Note: If Pol(A) = X and A <con B, then Pol(B) = .

Y: minor-condition (a.k.a. Height 1 condition, linear Mal'cev condition)

F..)~g(...).
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How powerful are pp constructions?

Chapter 2: "A challenge to Yanov and Muchnik"

Yanov, Muchnik '59

Let A be a finite set with at least three elements. Then the number of
clones on A is continuum.

minor minor

Two clones C and D collapse if C —— D and D —— C.
o If C has operation with image of size k, then C collapses with a
clone on k elements.
o All clones C with a constant operation collapse.
We managed to kill (collapse) all the clones that Yanov and Muchnik use
in their original proof.

Non trivial collapses: it suffices to study idempotent clones!

f(x,...,x)=x.
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Self-dual clones

A function on {0, 1,2} is self-dual if it preserves the relation

01 2
C3—<1 2 0)'

A clone C is self-dual if C C Pol(G3).

o Pol(G3) is a maximal clone.

o There is a complete classification of self-dual clones (Zhuk '15)

¢ continuum many self-dual clones;

t they are all idempotent.
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(Self-dual clones ; <pef) (Self-dual clones ; <con)

There are only countably many self-dual clones on {0,1,2} up to
minor-equivalence.
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‘/‘ l/‘ Oprsal '18

< Let A be a finite structure. Then either
Pol(A) has a Mal’cev operation or
A SCon B2~

Bulatov '01

There are only finitely many clones on
{0,1,2} with a Mal'cev operation.

o Region below B, : Wild!
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Open problems

E,={0,....,n—1} B, = (Structures on E,; <con)
PBrin = (All finite structures ; <con)

o Cardinality of 9337
o Minimal Taylor clones on E, vs atoms in 3.
(Barto, Brady, Bulatov, Kozik, Zhuk '21)

o Minimal Taylor clones on {0,1}: [V], [A], [d5], [m].
o Atoms in Po: [V] = [A], [d3], [m].

o Minimal Taylor clones on {0,1,2}: 24 (up to term-equivalence and
isomorphism) (Brady "21).

o Cardinality of Prin?
o Is Prin a lattice?



Thank youl
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Zhuk's Katana

We define the following relations

012y . (001 1 1\ B n
The w-relations: n,me N; AyU---UA, ={1,...,n},

TAg, An(X1s ooy Xmy Y1, - - -, ¥n) = 1 if and only if

Q x1,...,xm € {0,1},

Q for every i € {1,...,m}, if x; = 0 then y; € {0,1} for every j € A,
and

Qnotxy=-=Xp=y1=---=y,=0.
By M7 we denote the set of all (m + n)-ary predicates 74,

n= \J nnn=n
/

3<m+n</

,,,,, A, Finally:



Zhuk's Katana (4th power)

A=Pol(C,W,N); B=Pol |G, W,|]JB
i>3

[ )
A

G ={(x,y) EF?| Glxo,yo) A\x1 =y2 Axa = ys Ax3 = y1}

W= {(x,y) € F?| W(x0,Y0) Ax3s =0Ay3 < xo}

B = (o XY € P Bl ) A = o= = 0)
WE1,...,AW :{(X17"'>X 7_)/ PR n)e n+m|Bm+"(x21""aX2m>y217'-'7)/2n)

NN (WO X +2) A =0)
1,...,m}

NN (W) A <)}

ie{l,...,m} jEA;



