SELF-DUAL CLONES COLLAPSED

Albert Vucaj joint work with M. Bodirsky and D. Zhuk

TU Dresden

AAA101, Novi Sad, June 4-6, 2021

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 681988, CSP-Infinity).

- What are minor-preserving maps?
 - Primitive positive (pp) constructions
 - Minor conditions

- What are minor-preserving maps?
 - Primitive positive (pp) constructions
 - Minor conditions
- What are self-dual clones?

- What are minor-preserving maps?
 - Primitive positive (pp) constructions
 - Minor conditions
- What are self-dual clones?
- Motivation

- What are minor-preserving maps?
 - Primitive positive (pp) constructions
 - Minor conditions
- What are self-dual clones?
- Motivation
- Open problems

We can consider the following posets on finite structures:

• pp definability: $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ if A = B and every relation in \mathbb{B} has a pp definition in \mathbb{A} .

$$\exists x_1,\ldots,x_n(\Phi_1\wedge\cdots\wedge\Phi_m).$$

We can consider the following posets on finite structures:

• pp definability: $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ if A = B and every relation in \mathbb{B} has a pp definition in \mathbb{A} .

$$\exists x_1,\ldots,x_n(\Phi_1\wedge\cdots\wedge\Phi_m).$$

• pp interpretability: $\mathbb{A} \leq_{\operatorname{Int}} \mathbb{B}$ (not necessarily on the same domain) if there exists $d \in \mathbb{N}$ and a partial surjective map $f : A^d \to B$ such that preimages of relations of \mathbb{B} are pp definable in \mathbb{A} .

We can consider the following posets on finite structures:

• pp definability: $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ if A = B and every relation in \mathbb{B} has a pp definition in \mathbb{A} .

$$\exists x_1,\ldots,x_n(\Phi_1\wedge\cdots\wedge\Phi_m).$$

- pp interpretability: $\mathbb{A} \leq_{\operatorname{Int}} \mathbb{B}$ (not necessarily on the same domain) if there exists $d \in \mathbb{N}$ and a partial surjective map $f : A^d \to B$ such that preimages of relations of \mathbb{B} are pp definable in \mathbb{A} .
- pp constructability (Barto, Opršal, Pinsker '18): $\mathbb{A} \leq_{\mathsf{Con}} \mathbb{B}$ if \mathbb{B} is homomorphically equivalent to \mathbb{B}' and $\mathbb{A} \leq_{\mathsf{Int}} \mathbb{B}'$.

We can consider the following posets on finite structures:

• pp definability: $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ if A = B and every relation in \mathbb{B} has a pp definition in \mathbb{A} .

$$\exists x_1,\ldots,x_n(\Phi_1\wedge\cdots\wedge\Phi_m).$$

- pp interpretability: $\mathbb{A} \leq_{\operatorname{Int}} \mathbb{B}$ (not necessarily on the same domain) if there exists $d \in \mathbb{N}$ and a partial surjective map $f : A^d \to B$ such that preimages of relations of \mathbb{B} are pp definable in \mathbb{A} .
- pp constructability (Barto, Opršal, Pinsker '18): $\mathbb{A} \leq_{\mathsf{Con}} \mathbb{B}$ if \mathbb{B} is homomorphically equivalent to \mathbb{B}' and $\mathbb{A} \leq_{\mathsf{Int}} \mathbb{B}'$.

Note:

 $\bullet \leq_{\mathsf{Def}}, \leq_{\mathsf{Int}}, \leq_{\mathsf{Con}}$ preserve the complexity of CSPs.

We can consider the following posets on finite structures:

• pp definability: $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ if A = B and every relation in \mathbb{B} has a pp definition in \mathbb{A} .

$$\exists x_1,\ldots,x_n(\Phi_1\wedge\cdots\wedge\Phi_m).$$

- pp interpretability: $\mathbb{A} \leq_{\operatorname{Int}} \mathbb{B}$ (not necessarily on the same domain) if there exists $d \in \mathbb{N}$ and a partial surjective map $f : A^d \to B$ such that preimages of relations of \mathbb{B} are pp definable in \mathbb{A} .
- pp constructability (Barto, Opršal, Pinsker '18): $\mathbb{A} \leq_{\mathsf{Con}} \mathbb{B}$ if \mathbb{B} is homomorphically equivalent to \mathbb{B}' and $\mathbb{A} \leq_{\mathsf{Int}} \mathbb{B}'$.

Note:

- \bullet \leq_{Def} , \leq_{Int} , \leq_{Con} preserve the complexity of CSPs.
- CSP(\mathbb{A}) is in P if $\mathbb{A} \nleq_{\mathsf{Con}} \mathbb{K}_3$, and is NP-hard otherwise. (Bulatov '17; Zhuk '17)

Pol(A): the clone of polymorphisms of A (A finite).

• $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ iff $\mathsf{Pol}(\mathbb{A}) \subseteq \mathsf{Pol}(\mathbb{B})$. (e.g., Post's Lattice '41)

- Pol(A): the clone of polymorphisms of A (A finite).
 - $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ iff $\mathsf{Pol}(\mathbb{A}) \subseteq \mathsf{Pol}(\mathbb{B})$. (e.g., Post's Lattice '41)
 - $\mathbb{A} \leq_{\mathsf{Int}} \mathbb{B}$ iff there is a clone homomorphism $\xi \colon \mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$.

$$\xi(\pi_i^n) = \pi_i^n,$$

$$\xi(f(g_1, \dots, g_n)) = \xi(f)(\xi(g_1), \dots, \xi(g_n)).$$

(The Lattice of Interpretability Types of Varieties, Garcia and Taylor '84)

- Pol(A): the clone of polymorphisms of A (A finite).
 - $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ iff $\mathsf{Pol}(\mathbb{A}) \subseteq \mathsf{Pol}(\mathbb{B})$. (e.g., Post's Lattice '41)
 - $\mathbb{A} \leq_{\mathsf{Int}} \mathbb{B}$ iff there is a clone homomorphism $\xi \colon \mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$.

$$\xi(\pi_i^n) = \pi_i^n,$$

$$\xi(f(g_1, \dots, g_n)) = \xi(f)(\xi(g_1), \dots, \xi(g_n)).$$

(The Lattice of Interpretability Types of Varieties, Garcia and Taylor '84)

• $\mathbb{A} \leq_{\mathsf{Con}} \mathbb{B}$ iff there is a minor-preserving map $\xi \colon \mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$.

$$\xi(f(\pi_{i_1}^m,\ldots,\pi_{i_n}^m))=\xi(f)(\pi_{i_1}^m,\ldots,\pi_{i_n}^m).$$

Pol(A): the clone of polymorphisms of A (A finite).

- $\mathbb{A} \leq_{\mathsf{Def}} \mathbb{B}$ iff $\mathsf{Pol}(\mathbb{A}) \subseteq \mathsf{Pol}(\mathbb{B})$. (e.g., Post's Lattice '41)
- $\mathbb{A} \leq_{\mathsf{Int}} \mathbb{B}$ iff there is a clone homomorphism $\xi \colon \mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$.

$$\xi(\pi_i^n) = \pi_i^n,$$

$$\xi(f(g_1, \dots, g_n)) = \xi(f)(\xi(g_1), \dots, \xi(g_n)).$$

(The Lattice of Interpretability Types of Varieties, Garcia and Taylor '84)

• $\mathbb{A} \leq_{\mathsf{Con}} \mathbb{B}$ iff there is a minor-preserving map $\xi \colon \mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$.

$$\xi(f(\pi_{i_1}^m,\ldots,\pi_{i_n}^m))=\xi(f)(\pi_{i_1}^m,\ldots,\pi_{i_n}^m).$$

Note: If $Pol(\mathbb{A}) \models \Sigma$ and $\mathbb{A} \leq_{Con} \mathbb{B}$, then $Pol(\mathbb{B}) \models \Sigma$.

Σ: minor-condition (a.k.a. Height 1 condition, linear Mal'cev condition)

$$f(\ldots) \approx g(\ldots)$$
.

Chapter 1: "Two"

Chapter 1: "Two"

(Structures on $\{0,1\}$; \leq_{Con}) (Bodirsky, V.)

Chapter 2: "A challenge to Yanov and Muchnik"

Theorem (Yanov, Muchnik '59)

Let A be a finite set with at least three elements. Then the number of clones on A is continuum.

Chapter 2: "A challenge to Yanov and Muchnik"

Theorem (Yanov, Muchnik '59)

Let A be a finite set with at least three elements. Then the number of clones on A is continuum.

Two clones $\mathcal C$ and $\mathcal D$ collapse if $\mathcal C \xrightarrow{\mathsf{minor}} \mathcal D$ and $\mathcal D \xrightarrow{\mathsf{minor}} \mathcal C$.

- If C has operation with image of size k, then C collapses with a clone on k elements.
- All clones C with a constant operation collapse.

Chapter 2: "A challenge to Yanov and Muchnik"

Theorem (Yanov, Muchnik '59)

Let A be a finite set with at least three elements. Then the number of clones on A is continuum.

Two clones $\mathcal C$ and $\mathcal D$ collapse if $\mathcal C \xrightarrow{\mathsf{minor}} \mathcal D$ and $\mathcal D \xrightarrow{\mathsf{minor}} \mathcal C$.

- If C has operation with image of size k, then C collapses with a clone on k elements.
- ullet All clones ${\cal C}$ with a constant operation collapse.

We managed to kill (collapse) all the clones that Yanov and Muchnik use in their original proof.

Chapter 2: "A challenge to Yanov and Muchnik"

Theorem (Yanov, Muchnik '59)

Let A be a finite set with at least three elements. Then the number of clones on A is continuum.

Two clones $\mathcal C$ and $\mathcal D$ collapse if $\mathcal C \xrightarrow{\mathsf{minor}} \mathcal D$ and $\mathcal D \xrightarrow{\mathsf{minor}} \mathcal C$.

- If C has operation with image of size k, then C collapses with a clone on k elements.
- All clones C with a constant operation collapse.

We managed to kill (collapse) all the clones that Yanov and Muchnik use in their original proof.

Non trivial collapses: it suffices to study idempotent clones!

$$f(x,\ldots,x)=x.$$

Definition

A function on $\{0,1,2\}$ is self-dual if it preserves the relation

$$C_3 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}.$$

A clone C is self-dual if $C \subseteq Pol(C_3)$.

Definition

A function on $\{0,1,2\}$ is self-dual if it preserves the relation

$$C_3 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}.$$

A clone C is self-dual if $C \subseteq Pol(C_3)$.

• $Pol(C_3)$ is a maximal clone.

Definition

A function on $\{0,1,2\}$ is self-dual if it preserves the relation

$$C_3 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}.$$

A clone C is self-dual if $C \subseteq Pol(C_3)$.

- $Pol(C_3)$ is a maximal clone.
- There is a complete classification of self-dual clones (Zhuk '15)

Definition

A function on $\{0,1,2\}$ is self-dual if it preserves the relation

$$C_3 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}.$$

A clone C is self-dual if $C \subseteq Pol(C_3)$.

- $Pol(C_3)$ is a maximal clone.
- There is a complete classification of self-dual clones (Zhuk '15)

continuum many self-dual clones;

Definition

A function on $\{0,1,2\}$ is self-dual if it preserves the relation

$$C_3 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}.$$

A clone C is self-dual if $C \subset Pol(C_3)$.

- $Pol(C_3)$ is a maximal clone.
- There is a complete classification of self-dual clones (Zhuk '15)
 - continuum many self-dual clones;
 - they are all idempotent.

The lattice of self-dual clones

 $(\mathsf{Self\text{-}dual\ clones\ };\leq_{\mathsf{Def}})$

Theorem

There are only countably many self-dual clones on $\{0,1,2\}$ up to minor-equivalence.

Kill Bill

- Conjecture: \mathcal{B}_2 , \mathcal{C}_2 , and \mathcal{C}_3 are the only submaximal elements of \mathfrak{P}_3 .
- Region below C_3 : Completely described. (Bodirsky, V., Zhuk)

- Conjecture: \mathcal{B}_2 , \mathcal{C}_2 , and \mathcal{C}_3 are the only submaximal elements of \mathfrak{P}_3 .
- Region below C_3 : Completely described. (Bodirsky,V.,Zhuk)

Theorem (Opršal '18)

Let \mathbb{A} be a finite structure. Then either $\operatorname{Pol}(\mathbb{A})$ has a Mal'cev operation or $\mathbb{A} \leq_{\operatorname{Con}} \mathbb{B}_2$.

Theorem (Bulatov '01)

There are only finitely many clones on $\{0,1,2\}$ with a Mal'cev operation.

- Conjecture: \mathcal{B}_2 , \mathcal{C}_2 , and \mathcal{C}_3 are the only submaximal elements of \mathfrak{P}_3 .
- Region below C_3 : Completely described. (Bodirsky,V.,Zhuk)

Theorem (Opršal '18)

Let \mathbb{A} be a finite structure. Then either $\operatorname{Pol}(\mathbb{A})$ has a Mal'cev operation or $\mathbb{A} \leq_{\operatorname{Con}} \mathbb{B}_2$.

Theorem (Bulatov '01)

There are only finitely many clones on $\{0,1,2\}$ with a Mal'cev operation.

- Region below C_2 : Tame!
- Region below B₂: Wild!

$$\begin{split} E_n &= \{0,\dots,n-1\} & & \mathfrak{P}_n = (\mathsf{Structures} \ \mathsf{on} \ E_n; \leq_{\mathsf{Con}}) \\ \mathfrak{P}_{\mathsf{Fin}} &= (\mathsf{All} \ \mathsf{finite} \ \mathsf{structures} \ ; \leq_{\mathsf{Con}}) \end{split}$$

$$\begin{split} E_n &= \{0,\dots,n-1\} & & \mathfrak{P}_n = (\mathsf{Structures} \ \mathsf{on} \ E_n; \leq_{\mathsf{Con}}) \\ \mathfrak{P}_{\mathsf{Fin}} &= (\mathsf{All} \ \mathsf{finite} \ \mathsf{structures} \ ; \leq_{\mathsf{Con}}) \end{split}$$

• Cardinality of \mathfrak{P}_3 ?

$$\begin{split} \mathcal{E}_n &= \{0,\dots,n-1\} \\ &\qquad \mathfrak{P}_{\mathsf{Fin}} = (\mathsf{Structures} \ \mathsf{on} \ E_n; \leq_{\mathsf{Con}}) \\ &\qquad \mathfrak{P}_{\mathsf{Fin}} = (\mathsf{All} \ \mathsf{finite} \ \mathsf{structures} \ ; \leq_{\mathsf{Con}}) \end{split}$$

- Cardinality of \$\mathfrak{P}_3\$?
- Minimal Taylor clones on E_n vs atoms in \mathfrak{P}_n . (Barto, Brady, Bulatov, Kozik, Zhuk '21)

$$E_n = \{0, \dots, n-1\}$$
 $\mathfrak{P}_n = (\mathsf{Structures} \ \mathsf{on} \ E_n; \leq_{\mathsf{Con}})$ $\mathfrak{P}_{\mathsf{Fin}} = (\mathsf{All} \ \mathsf{finite} \ \mathsf{structures} \ ; \leq_{\mathsf{Con}})$

- Cardinality of \mathfrak{P}_3 ?
- Minimal Taylor clones on E_n vs atoms in \mathfrak{P}_n . (Barto, Brady, Bulatov, Kozik, Zhuk '21)

- Minimal Taylor clones on $\{0,1\}$: $[\lor]$, $[\land]$, $[d_3]$, [m].
- Atoms in \mathfrak{P}_2 : $[\vee] \equiv [\wedge]$, $[d_3]$, [m].

$$E_n = \{0, \dots, n-1\}$$
 $\mathfrak{P}_n = (\mathsf{Structures} \ \mathsf{on} \ E_n; \leq_{\mathsf{Con}})$ $\mathfrak{P}_{\mathsf{Fin}} = (\mathsf{All} \ \mathsf{finite} \ \mathsf{structures} \ ; \leq_{\mathsf{Con}})$

- Cardinality of \mathfrak{P}_3 ?
- Minimal Taylor clones on E_n vs atoms in \mathfrak{P}_n . (Barto, Brady, Bulatov, Kozik, Zhuk '21)

- Minimal Taylor clones on $\{0,1\}$: $[\lor]$, $[\land]$, $[d_3]$, [m].
- Atoms in \mathfrak{P}_2 : $[\vee] \equiv [\wedge]$, $[d_3]$, [m].
- Minimal Taylor clones on {0,1,2}: 24 (up to term-equivalence and isomorphism) (Brady '21).

$$E_n = \{0, \dots, n-1\}$$
 $\mathfrak{P}_n = (\mathsf{Structures} \ \mathsf{on} \ E_n; \leq_{\mathsf{Con}})$ $\mathfrak{P}_{\mathsf{Fin}} = (\mathsf{All} \ \mathsf{finite} \ \mathsf{structures} \ ; \leq_{\mathsf{Con}})$

- Cardinality of \$\mathfrak{P}_3\$?
- Minimal Taylor clones on E_n vs atoms in \mathfrak{P}_n . (Barto, Brady, Bulatov, Kozik, Zhuk '21)

- Minimal Taylor clones on $\{0,1\}$: $[\lor]$, $[\land]$, $[d_3]$, [m].
- Atoms in \mathfrak{P}_2 : $[\vee] \equiv [\wedge]$, $[d_3]$, [m].
- Minimal Taylor clones on {0,1,2}: 24 (up to term-equivalence and isomorphism) (Brady '21).
- Cardinality of \mathfrak{P}_{Fin} ?

$$E_n = \{0, \dots, n-1\}$$
 $\mathfrak{P}_n = (\mathsf{Structures} \ \mathsf{on} \ E_n; \leq_{\mathsf{Con}})$ $\mathfrak{P}_{\mathsf{Fin}} = (\mathsf{All} \ \mathsf{finite} \ \mathsf{structures} \ ; \leq_{\mathsf{Con}})$

- Cardinality of \mathfrak{P}_3 ?
- Minimal Taylor clones on E_n vs atoms in \mathfrak{P}_n . (Barto, Brady, Bulatov, Kozik, Zhuk '21)

- Minimal Taylor clones on $\{0,1\}$: $[\lor]$, $[\land]$, $[d_3]$, [m].
- Atoms in \mathfrak{P}_2 : $[\vee] \equiv [\wedge]$, $[d_3]$, [m].
- Minimal Taylor clones on {0,1,2}: 24 (up to term-equivalence and isomorphism) (Brady '21).
- Cardinality of \mathfrak{P}_{Fin} ?
- Is $\mathfrak{P}_{\mathsf{Fin}}$ a lattice?

Thank you!

Zhuk's Katana

We define the following relations

$$C_3 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}; \quad W = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \end{pmatrix}; \quad B_n = \{0,1\}^n \setminus \{(0,\ldots,0)\}.$$

The π -relations: $n, m \in \mathbb{N}$; $A_1 \cup \cdots \cup A_m = \{1, \ldots, n\}$,

$$\pi_{A_1,\ldots,A_m}(x_1,\ldots,x_m,y_1,\ldots,y_n)=1$$
 if and only if

- $x_1,\ldots,x_m \in \{0,1\},$
- ② for every $i \in \{1, ..., m\}$, if $x_i = 0$ then $y_j \in \{0, 1\}$ for every $j \in A_i$, and
- $oldsymbol{0}$ not $x_1 = \cdots = x_m = y_1 = \cdots = y_n = 0$.

By Π_n^m we denote the set of all (m+n)-ary predicates $\pi_{A_1,...,A_m}$. Finally:

$$\Pi^I = \bigcup_{3 \leq m+n \leq I} \Pi^m_n; \ \Pi = \bigcup_I \Pi^I.$$

Zhuk's Katana (4th power)

$$\mathcal{A} = \text{Pol}(C_{3}, W, \Pi); \quad \mathcal{B} = \text{Pol}\left(C_{3}, W, \bigcup_{i \geq 3} B_{i}\right).$$

$$C_{3}^{\mathbb{F}} := \{(x, y) \in F^{2} \mid C_{3}(x_{0}, y_{0}) \land x_{1} = y_{2} \land x_{2} = y_{3} \land x_{3} = y_{1}\}$$

$$W^{\mathbb{F}} := \{(x, y) \in F^{2} \mid W(x_{0}, y_{0}) \land x_{3} = 0 \land y_{3} \leq x_{0}\}$$

$$B_{n}^{\mathbb{F}} := \{(x^{1}, \dots, x^{n}) \in F^{n} \mid B_{n}(x_{0}^{1}, \dots, x_{0}^{n}) \land x_{3}^{1} = \dots = x_{3}^{n} = 0\}$$

$$\pi_{A_{1}, \dots, A_{m}}^{\mathbb{F}} := \{(x^{1}, \dots, x^{m}, y^{1}, \dots, y^{n}) \in F^{n+m} \mid B_{m+n}(x_{2}^{1}, \dots, x_{2}^{m}, y_{2}^{1}, \dots, y_{2}^{n})\}$$

$$\wedge \bigwedge_{i \in \{1, \dots, m\}, j \in A_{i}} (W(x_{0}^{i}, y_{0}^{j}) \land y_{3}^{j} \leq x_{0}^{i})\}$$