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Basics

Definition
A: τ -structure
φ(x1, . . . , xn): τ -formula

then the relation defined by φ is the relation:

{(a1, . . . , an) | A � φ(a1, . . . , an)}

? If the involved formula φ is primitive positive, then this relation is said
to be pp-definable in A.

? A primitive positive formula is a formula of the form:

∃ . . . ∃ (. . . ∧ . . . ∧ . . . )
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PP-Construction

Definition
A , B: relational structures

We say that B is a pp-power of A if it is isomorphic to a structure with
domain An (n ≥ 1) whose relations are pp-definable from A.

Definition
A pp-constructs B if B is homomorphically equivalent to a pp-power of A.

We consider the following quasi-order:

A ≤ B if and only if A pp-constructs B.

Every element in our poset is a ≡-class where the equivalence relation is

A ≡ B if and only if B ≤ A ≤ B.
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Motivation

Universal Algebra

Theorem (Barto, Opršal, Pinsker, (2015))

A, B: finite relational structures

A := Pol(A), B := Pol(B): their polymorphism clones.

Then the following are equivalent:
1 A pp-constructs B.
2 B ∈ ERPfinA. (remark: HSPfinA ⊆ ERPfinA)
3 There exists a minor-preserving map from A into B.

(i.e., a mapping h : A → B preserving height 1-identities)

CSP

FACT: If A ≤ B then CSP(B) is log-space reducible to CSP(A).
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Two-Element Structures

The previous theorem provides tools to prove collapses and separations.

Remark

If A � B then there is a finite set of h1-identities which is satisfied by
some operations in A but is not satisfied by any operation in B.
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Two Examples of Collapse
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Via Minor-Preserving Maps

Proposition

C clone.
D be clones with a constant operation.

Then C ≤ D.

? All clones with a constant operation collapse.

? Let All be the class of all clones with a
constant operation .

All: Top-Element in L
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Via PP-Construction

? NAE := {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
? 1IN3 := {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.

Theorem (Folklore)

Let A be any structure. The following are
equivalent:

1 A pp-constructs NAE .
2 A pp-constructs 1IN3.

? Pol(NAE) = [c]
? Pol(1IN3) = [∅]

⇒ [c] and [∅] collapse.

Proj: Bottom-Element in L
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An Example of Separation
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NL

To separate [p] from [∧]:
( p(x , y , z) = x ∧ (y ∨ z) )

Where to look for height 1 identities?
Universal Algebra.

? Quasi-Jonssón terms [’67]:

d0(x , y , z) ≈ d0(x , x , x)

dn(x , y , z) ≈ dn(z , z , z)

di (x , y , x) ≈ di (x , x , x) for all i
di (x , x , z) ≈ di+1(x , x , z) for i even
di (x , z , z) ≈ di+1(x , z , z) for i odd

Theorem (Barto, Kozik, (2009))

"Jonssón" ⇒ bounded linear width.
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On Complexity of Boolean CSPs

L

3LIN(2) 2SAT HORNSAT

STCON

[1] Allender, Bauland, Immerman, Schnoor,
Vollmer: The complexity of satisfiability
problems: Refining Schaefer’s theorem. [2009]

Classification in [1] and Collapses︸ ︷︷ ︸
Membership to L

Forbidding the pp-construction of
structures:

? DSTCON := 〈{0, 1}, 0, 1,≤〉

? D3LIN(2) : problem of solving systems
of linear equations over Z2

Conjecture (Larose, Tesson, (2009))

If a relational structure A pp-constructs neither
D3LIN(p), for any prime p, nor DSTCON then
CSP(A) is in L.
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Final Picture
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