Two-Element Structures modulo PP-Constructability

Albert Vucaj

TU Dresden

AAA97, Wien

Established by the European Comnission 2020 research and innovation programme (grant agreement No 681988, CSP-Infinity).
(1) The pp-constructability poset

* Partial order on the class of relational structures
$\star \mathbb{A} \leq \mathbb{B}$ iff \mathbb{A} "pp-constructs" \mathbb{B}
(2) Two-Element Structures
- Collapses
- Separations

O Applications for Complexity of Boolean CSPs
(1) The pp-constructability poset

* Partial order on the class of relational structures
$\star \mathbb{A} \leq \mathbb{B}$ iff \mathbb{A} "pp-constructs" \mathbb{B}
(2) Two-Element Structures
- Collapses
- Separations

O Applications for Complexity of Boolean CSPs

Genesis:

Barto, Opršal, Pinsker

Basics

Definition

- $\mathbb{A}: \tau$-structure
- $\phi\left(x_{1}, \ldots, x_{n}\right): \tau$-formula
then the relation defined by ϕ is the relation:

$$
\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \mathbb{A} \vDash \phi\left(a_{1}, \ldots, a_{n}\right)\right\}
$$

Basics

Definition

- $\mathbb{A}: \tau$-structure
- $\phi\left(x_{1}, \ldots, x_{n}\right): \tau$-formula
then the relation defined by ϕ is the relation:

$$
\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \mathbb{A} \vDash \phi\left(a_{1}, \ldots, a_{n}\right)\right\}
$$

\star If the involved formula ϕ is primitive positive, then this relation is said to be pp-definable in \mathbb{A}.
\star A primitive positive formula is a formula of the form:

$$
\exists \ldots \exists(\ldots \wedge \ldots \wedge \ldots)
$$

PP-Construction

Definition

- \mathbb{A}, \mathbb{B} : relational structures

We say that \mathbb{B} is a pp-power of \mathbb{A} if it is isomorphic to a structure with domain $A^{n}(n \geq 1)$ whose relations are pp-definable from \mathbb{A}.

PP-Construction

Definition

- \mathbb{A}, \mathbb{B} : relational structures

We say that \mathbb{B} is a pp-power of \mathbb{A} if it is isomorphic to a structure with domain $A^{n}(n \geq 1)$ whose relations are pp-definable from \mathbb{A}.

Definition

\mathbb{A} pp-constructs \mathbb{B} if \mathbb{B} is homomorphically equivalent to a pp-power of \mathbb{A}.

PP-Construction

Definition

- \mathbb{A}, \mathbb{B} : relational structures

We say that \mathbb{B} is a pp-power of \mathbb{A} if it is isomorphic to a structure with domain $A^{n}(n \geq 1)$ whose relations are $p p$-definable from \mathbb{A}.

Definition

\mathbb{A} pp-constructs \mathbb{B} if \mathbb{B} is homomorphically equivalent to a pp-power of \mathbb{A}.
We consider the following quasi-order:

$$
\mathbb{A} \leq \mathbb{B} \text { if and only if } \mathbb{A} \text { pp-constructs } \mathbb{B} \text {. }
$$

Every element in our poset is a \equiv-class where the equivalence relation is

$$
A \equiv \mathbb{B} \text { if and only if } \mathbb{B} \leq \mathbb{A} \leq \mathbb{B} \text {. }
$$

Motivation

- Universal Algebra

Motivation

- Universal Algebra

Theorem (Barto, Opršal, Pinsker, (2015))

- \mathbb{A}, \mathbb{B} : finite relational structures
- $\mathcal{A}:=\operatorname{Pol}(\mathbb{A}), \mathcal{B}:=\operatorname{Pol}(\mathbb{B})$: their polymorphism clones.

Then the following are equivalent:
(1) $\mathbb{A} p p$-constructs \mathbb{B}.
(3) $\mathcal{B} \in \operatorname{ERP}^{\text {fin }} \mathcal{A}$. (remark: $\operatorname{HSP}^{\text {fin }} \mathcal{A} \subseteq \operatorname{ERP}^{\text {fin }} \mathcal{A}$)

- There exists a minor-preserving map from \mathcal{A} into \mathcal{B}. (i.e., a mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ preserving height 1-identities)

Motivation

- Universal Algebra

Theorem (Barto, Opršal, Pinsker, (2015))

- \mathbb{A}, \mathbb{B} : finite relational structures
- $\mathcal{A}:=\operatorname{Pol}(\mathbb{A}), \mathcal{B}:=\operatorname{Pol}(\mathbb{B}):$ their polymorphism clones.

Then the following are equivalent:
(1) $\mathbb{A} p p$-constructs \mathbb{B}.
(3) $\mathcal{B} \in \operatorname{ERP}^{\text {fin }} \mathcal{A}$. (remark: $\operatorname{HSP}^{\text {fin }} \mathcal{A} \subseteq \operatorname{ERP}^{\text {fin }} \mathcal{A}$)

- There exists a minor-preserving map from \mathcal{A} into \mathcal{B}. (i.e., a mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ preserving height 1-identities)
- CSP

Motivation

- Universal Algebra

Theorem (Barto, Opršal, Pinsker, (2015))

- \mathbb{A}, \mathbb{B} : finite relational structures
- $\mathcal{A}:=\operatorname{Pol}(\mathbb{A}), \mathcal{B}:=\operatorname{Pol}(\mathbb{B}):$ their polymorphism clones.

Then the following are equivalent:
(1) $\mathbb{A} p p$-constructs \mathbb{B}.
(2) $\mathcal{B} \in \mathrm{ERP}^{\mathrm{fin}} \mathcal{A}$. (remark: $\mathrm{HSP}^{\mathrm{fin}} \mathcal{A} \subseteq \mathrm{ERP}^{\text {fin }} \mathcal{A}$)
(There exists a minor-preserving map from \mathcal{A} into \mathcal{B}. (i.e., a mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ preserving height 1-identities)

- CSP

FACT: If $\mathbb{A} \leq \mathbb{B}$ then $\operatorname{CSP}(\mathbb{B})$ is log-space reducible to $\operatorname{CSP}(\mathbb{A})$.

Two-Element Structures

The previous theorem provides tools to prove collapses and separations.

Remark

If $\mathbb{A} \nsubseteq \mathbb{B}$ then there is a finite set of h1-identities which is satisfied by some operations in \mathcal{A} but is not satisfied by any operation in \mathcal{B}.

Two-Element Structures

The previous theorem provides tools to prove collapses and separations.

Remark

If $\mathbb{A} \not \leq \mathbb{B}$ then there is a finite set of h1-identities which is satisfied by some operations in \mathcal{A} but is not satisfied by any operation in \mathcal{B}.

Two-Element Structures

The previous theorem provides tools to prove collapses and separations.

Remark

If $\mathbb{A} \not \leq \mathbb{B}$ then there is a finite set of h1-identities which is satisfied by some operations in \mathcal{A} but is not satisfied by any operation in \mathcal{B}.

Two-Element Structures

The previous theorem provides tools to prove collapses and separations.

Remark

If $\mathbb{A} \not \leq \mathbb{B}$ then there is a finite set of h1-identities which is satisfied by some operations in \mathcal{A} but is not satisfied by any operation in \mathcal{B}.

Two Examples of Collapse

Two Examples of Collapse

- Via Minor-Preserving Maps

Proposition

- \mathcal{C} clone.
- \mathcal{D} be clones with a constant operation. Then $\mathcal{C} \leq \mathcal{D}$.

Two Examples of Collapse

- Via Minor-Preserving Maps

Proposition

- \mathcal{C} clone.
- \mathcal{D} be clones with a constant operation. Then $\mathcal{C} \leq \mathcal{D}$.
\star All clones with a constant operation collapse.

Two Examples of Collapse

- Via Minor-Preserving Maps

Proposition

- \mathcal{C} clone.
- \mathcal{D} be clones with a constant operation.

Then $\mathcal{C} \leq \mathcal{D}$.
\star All clones with a constant operation collapse.

* Let All be the class of all clones with a constant operation.
All: Top-Element in \mathfrak{L}

Two Examples of Collapse

- Via PP-Construction

$$
\begin{aligned}
& \star \text { NAE }:=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\} \\
& \star \text { IIN3 }:=\{(0,0,1),(0,1,0),(1,0,0)\} .
\end{aligned}
$$

Theorem (Folklore)

Let \mathbb{A} be any structure. The following are equivalent:
(1) $\mathbb{A} p p$-constructs $\mathbb{N A} \mathbb{E}$.
(2) $\mathbb{A} p p$-constructs $1 \mathbb{I} \mathbb{N} 3$.

Two Examples of Collapse

- Via PP-Construction

$$
\begin{aligned}
& \star \text { NAE }:=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\} \\
& \star \text { IIN3 }:=\{(0,0,1),(0,1,0),(1,0,0)\} .
\end{aligned}
$$

Theorem (Folklore)

Let \mathbb{A} be any structure. The following are equivalent:
(1) $\mathbb{A} p p$-constructs $\mathbb{N A} \mathbb{E}$.
(2) $\mathbb{A} p p$-constructs $1 \mathbb{I} \mathbb{N} 3$.

$$
\begin{aligned}
& \star \operatorname{Pol}(\mathbb{N A E})=[c] \\
& \star \operatorname{Pol}(1 \mathbb{N} 3)=[\emptyset] \\
& \Rightarrow[c] \text { and }[\emptyset] \text { collapse. }
\end{aligned}
$$

Proj: Bottom-Element in \mathfrak{L}

An Example of Separation

An Example of Separation

- To separate [p] from [\wedge]: $(p(x, y, z)=x \wedge(y \vee z))$

An Example of Separation

- To separate [p] from [\wedge]: $(p(x, y, z)=x \wedge(y \vee z))$
Where to look for height 1 identities?

An Example of Separation

- To separate [p] from [\wedge]:

$$
(p(x, y, z)=x \wedge(y \vee z))
$$

Where to look for height 1 identities? Universal Algebra.

* Quasi-Jonssón terms ['67]:

$$
\begin{aligned}
d_{0}(x, y, z) & \approx d_{0}(x, x, x) \\
d_{n}(x, y, z) & \approx d_{n}(z, z, z) \\
d_{i}(x, y, x) & \approx d_{i}(x, x, x) \quad \text { for all } i \\
d_{i}(x, x, z) & \approx d_{i+1}(x, x, z) \quad \text { for } i \text { even } \\
d_{i}(x, z, z) & \approx d_{i+1}(x, z, z) \quad \text { for } i \text { odd }
\end{aligned}
$$

An Example of Separation

- To separate [p] from [\wedge]:

$$
(p(x, y, z)=x \wedge(y \vee z))
$$

Where to look for height 1 identities? Universal Algebra.

* Quasi-Jonssón terms ['67]:

$$
\begin{aligned}
d_{0}(x, y, z) & \approx d_{0}(x, x, x) \\
d_{n}(x, y, z) & \approx d_{n}(z, z, z) \\
d_{i}(x, y, x) \approx d_{i}(x, x, x) & \text { for all } i \\
d_{i}(x, x, z) & \approx d_{i+1}(x, x, z) \\
d_{i}(x, z, z) & \text { for } i \text { even } \\
d_{i+1}(x, z, z) & \text { for } i \text { odd }
\end{aligned}
$$

Theorem (Barto, Kozik, (2009))

"Jonssón" \Rightarrow bounded linear width.

On Complexity of Boolean CSPs

[1] Allender, Bauland, Immerman, Schnoor, Vollmer: The complexity of satisfiability problems: Refining Schaefer's theorem. [2009]

On Complexity of Boolean CSPs

[1] Allender, Bauland, Immerman, Schnoor,
Vollmer: The complexity of satisfiability problems: Refining Schaefer's theorem. [2009]

- Forbidding the pp-construction of structures:
$\star \mathbb{D}_{\text {STCON }}:=\langle\{0,1\}, 0,1, \leq\rangle$
$\star \mathbb{D}_{3 \mathrm{LIN}(2)}$: problem of solving systems of linear equations over Z_{2}

Conjecture (Larose, Tesson, (2009))
If a relational structure $\mathbb{A} p p$-constructs neither $\mathbb{D}_{3 \operatorname{LIN}(\mathrm{p})}$, for any prime p, nor $\mathbb{D}_{\text {STCON }}$ then $\operatorname{CSP}(\mathbb{A})$ is in L.

Final Picture

