Albert Vucaj joint work with M. Bodirsky and F. Starke

TU Dresden

SSAOS, Karolinka, 3 September 2019

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 681988, CSP-Infinity).

• Height 1 identity: $f(x_1, ..., x_n) \approx g(y_1, ..., y_m)$ (x_i, y_i not necessarily distinct)

• Height 1 identity: $f(x_1, ..., x_n) \approx g(y_1, ..., y_m)$ (x_i, y_i not necessarily distinct)

Example

$$f(x) \approx f(y)$$
 \checkmark $f(x,y) \approx f(y,x)$ \checkmark $f(x,y) \approx x$ \star \star \star \star

• Height 1 identity: $f(x_1, ..., x_n) \approx g(y_1, ..., y_m)$ (x_i, y_i not necessarily distinct)

Example

$$f(x) \approx f(y)$$
 \checkmark $f(x,y) \approx f(y,x)$ \checkmark $f(x,y) \approx x$ \star \star \star \star

Height 1 condition: Finite set of height 1 identities.

• Height 1 identity: $f(x_1, ..., x_n) \approx g(y_1, ..., y_m)$ (x_i, y_i not necessarily distinct)

Example

$$f(x) \approx f(y)$$
 \checkmark $f(x,y) \approx f(y,x)$ \checkmark $f(x,y) \approx x$ \star \star \star \star

- Height 1 condition: Finite set of height 1 identities.
- > F: Set of functions.
- $\succ \Sigma$: Height 1 condition.

• Height 1 identity: $f(x_1,...,x_n) \approx g(y_1,...,y_m)$ (x_i,y_i not necessarily distinct)

Example

$$f(x) \approx f(y)$$
 \checkmark $f(x,y) \approx f(y,x)$ \checkmark $f(x,y) \approx x$ \star \star \star \star \star \star

- Height 1 condition: Finite set of height 1 identities.
- > F: Set of functions.
- $\succ \Sigma$: Height 1 condition.

Definition

We say that F satisfies Σ (F $\models \Sigma$) if there is a map $\tilde{\cdot}$ assigning to each function symbol occurring in Σ a function in F, such that for all $f_{\sigma} \approx g_{\tau} \in \Sigma$ we have $\tilde{f}_{\sigma} = \tilde{g}_{\tau}$.

Let \mathbb{A} , \mathbb{B} be finite relational structures.

$$\begin{array}{ccc} \mathbb{B} & & \text{Pol}(\mathbb{B}) \models \Sigma \\ & & & \text{iff} & & \\ \mathbb{A} & & \text{Pol}(\mathbb{A}) \models \Sigma \end{array}$$

Let \mathbb{A} , \mathbb{B} be finite relational structures.

Let \mathbb{A} , \mathbb{B} be finite relational structures.

$$\begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Let \mathbb{A} , \mathbb{B} be finite relational structures.

Main definition of this Talk

$$\begin{array}{ccc} \mathbb{B} & & \mathsf{Pol}(\mathbb{B}) \vDash \Sigma \\ & & & \uparrow \\ \mathbb{A} & & \mathsf{Pol}(\mathbb{A}) \vDash \Sigma \end{array}$$

$$\mathsf{Pol}(\mathbb{B})$$
iff $\mathbb{A} \ \mathsf{pp\text{-}constructs} \ \mathbb{B}$
 $\mathsf{Pol}(\mathbb{A})$

Why...

PP-Constructability?

- $ightharpoonup \mathbb{A}$ pp-constructs \mathbb{B} iff there is a simple gadget reduction from CSP(\mathbb{B}) to CSP(\mathbb{A}). (Barto, Opršal, Pinsker '18)
- \succ This may be a ground of a finer classification of finite domain CSPs than the P/NP-complete dichotomy of Bulatov and Zhuk.

Why...

PP-Constructability?

- \triangleright A pp-constructs $\mathbb B$ iff there is a simple gadget reduction from CSP($\mathbb B$) to CSP($\mathbb A$). (Barto, Opršal, Pinsker '18)
- ➤ This may be a ground of a finer classification of finite domain CSPs than the P/NP-complete dichotomy of Bulatov and Zhuk.
 - ✓ Boolean Structures (Bodirsky, V. '19)

Why...

PP-Constructability?

- \nearrow A pp-constructs \mathbb{B} iff there is a simple gadget reduction from CSP(\mathbb{B}) to CSP(\mathbb{A}). (Barto, Opršal, Pinsker '18)
- \succ This may be a ground of a finer classification of finite domain CSPs than the P/NP-complete dichotomy of Bulatov and Zhuk.
 - ✓ Boolean Structures (Bodirsky, V. '19)
- Finite disjoint unions of directed cycles?
 - ➤ Any fixed domain CSP is, up to log-space reductions, equivalent to a CSP whose template is a directed graph.

 (Bulín, Delic, Jackson, Niven '15)
 - ➤ (Prime cyclic) Loop conditions. (Olšak; Gillibert, Jonušas, Pinsker; ...)

Loop conditions

Definition

Let σ, τ : $[m] \to [n]$ be maps. A **loop condition** is a height 1 identity of the form

$$f(x_{\sigma(1)},\ldots,x_{\sigma(m)}) \approx f(x_{\tau(1)},\ldots,x_{\tau(m)}).$$

To any loop condition Σ we can assign a directed graph \mathbb{G}_Σ in a natural way:

$$\mathbb{G}_{\Sigma}\coloneqq ([n],\{(\sigma(i),\tau(i))\mid i\in[m]\}).$$

Example

- $\Sigma_2 := f(x,y) \approx f(y,x)$. Then $\mathbb{G}_{\Sigma_2} \cong \mathbb{G}$

Cyclic loop conditions

- If \mathbb{G}_{Σ} is (isomorphic to) a disjoint union of directed cycles, then we say that Σ is a **cyclic loop condition**.
- Let $A = \{a_1, \dots, a_n\} \subset \mathbb{N}^+$. We denote by Σ_A the cyclic loop condition associated to $\mathbb{C}_{a_1} \cup \cdots \cup \mathbb{C}_{a_n}$.

(where \mathbb{C}_a denotes the directed cycle of length a).

Definition

We say that Σ_P is a **prime cyclic loop condition** if P is a set of prime numbers.

$$\begin{array}{c} \mathsf{Pol}(\mathbb{C}_{\mathcal{A}}) \vDash \Sigma \\ & \uparrow \\ \mathsf{Pol}(\mathbb{B}) \vDash \Sigma \end{array}$$

$$\mathbb{C}_6 \cup \mathbb{C}_{20} \cup \mathbb{C}_{15}$$

$$\mid \qquad \qquad \qquad \parallel$$

$$\begin{array}{c} \mathsf{Pol}(\mathbb{C}_{\mathcal{A}}) \vDash \Sigma \\ & \uparrow \\ \mathsf{Pol}(\mathbb{B}) \vDash \Sigma \end{array}$$

$$\mathbb{C}_6 \cup \mathbb{C}_{20} \cup \mathbb{C}_{15}$$

$$\mid \qquad \qquad \qquad \parallel$$

$$\begin{array}{c} \operatorname{Pol}(\mathbb{C}_A) \models \Sigma & \operatorname{Pol}(\mathbb{C}_A) \models \Sigma_{A \dot{-} c} \\ & \uparrow & \uparrow \\ \operatorname{Pol}(\mathbb{B}) \models \Sigma & \operatorname{Pol}(\mathbb{B}) \models \Sigma_{A \dot{-} c} \end{array}$$

$$\begin{array}{c} \text{Pol}(\mathbb{B}) \not \models \Sigma_{6,20,15}, \\ \Sigma_{6} \cup \mathbb{C}_{20} \cup \mathbb{C}_{15} & \text{iff} \\ \downarrow & \Sigma_{6,4,3}, \; \Sigma_{3,5,15}, \\ \mathbb{B} & \Sigma_{3,2,3} \end{array}$$

$$\begin{array}{c} \operatorname{Pol}(\mathbb{C}_A) \models \Sigma & \operatorname{Pol}(\mathbb{C}_A) \models \Sigma_{A \dot{-} c} \\ \uparrow & \text{iff} \\ \operatorname{Pol}(\mathbb{B}) \models \Sigma & \operatorname{Pol}(\mathbb{B}) \models \Sigma_{A \dot{-} c} \end{array}$$

$$\begin{array}{c} \mathbb{C}_{6} \uplus \mathbb{C}_{20} \uplus \mathbb{C}_{15} \\ \mid \\ \mathbb{B} \end{array} \qquad \begin{array}{c} \mathsf{Pol}(\mathbb{B}) \not \models \begin{array}{c} \Sigma_{3,5,15} \\ \Sigma_{3,2,3} \\ \mid \\ \Sigma_{2,20,5} \end{array} \Sigma_{3,10,15} \begin{array}{c} \Sigma_{6,4,3} \\ \Sigma_{6,20,15} \end{array}$$

$$\begin{array}{c} \operatorname{Pol}(\mathbb{C}_A) \models \Sigma & \operatorname{Pol}(\mathbb{C}_A) \models \Sigma_{A \dot{-} c} \\ \uparrow & \text{iff} \\ \operatorname{Pol}(\mathbb{B}) \models \Sigma & \operatorname{Pol}(\mathbb{B}) \models \Sigma_{A \dot{-} c} \end{array}$$

$$\begin{array}{c} \operatorname{Pol}(\mathbb{C}_A) \models \Sigma & \operatorname{Pol}(\mathbb{C}_A) \models \Sigma_{A \dot{-} c} \\ & \uparrow & \uparrow \\ \operatorname{Pol}(\mathbb{B}) \models \Sigma & \operatorname{Pol}(\mathbb{B}) \models \Sigma_{A \dot{-} c} \end{array}$$

$$\begin{array}{c} \mathsf{Pol}(\mathbb{B}) \not \models \begin{array}{c} \Sigma_{3,5} & \Sigma_{3,2} \\ \Sigma_{2,5} & \Sigma_{3,10,15} & \Sigma_{6,4,3} \\ \mathbb{B} & & \Sigma_{6,20,15} \end{array}$$

 \mathbb{C}_1

Main result

- $PL(\mathbb{A}) := \{P \mid P \text{ a finite nonempty set of primes and } Pol(\mathbb{A}) \notin \Sigma_P\}$
- Let FP be the set of all finite nonempty sets of primes.

Main result

- $PL(\mathbb{A}) := \{P \mid P \text{ a finite nonempty set of primes and } Pol(\mathbb{A}) \not\models \Sigma_P\}$
- Let FP be the set of all finite nonempty sets of primes.

Theorem

The map

$$P_{SD} \rightarrow \downarrow (FP) \cup \{FP\}$$

 $[A] \mapsto PL(A)$

is an isomorphism where the order on the image set is reverse inclusion.

• Is P_{fin} a lattice?

- Is P_{fin} a lattice?
- Is every prime cyclic loop condition a prime Mal'cev condition? (Σ is **prime** if is not implied by the conjunction of two strictly weaker conditions)

- Is P_{fin} a lattice?
- Is every prime cyclic loop condition a prime Mal'cev condition?
 (Σ is prime if is not implied by the conjunction of two strictly weaker conditions)
- Drop smoothness → all finite digraphs w.r.t. pp-contructability.

- Is P_{fin} a lattice?
- Is every prime cyclic loop condition a prime Mal'cev condition?
 (Σ is prime if is not implied by the conjunction of two strictly weaker conditions)
- Drop smoothness → all finite digraphs w.r.t. pp-contructability.

