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o Height 1 condition: Finite set of height 1 identities.

> F: Set of functions.
> ¥: Height 1 condition.

Definition

We say that F satisfies X (F £ X) if there is a map * assigning to each
function symbol occurring in ¥ a function in F, such that for all
f, ~ g, € X we have f, = g,.
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@ Finite disjoint unions of directed cycles?

> Any fixed domain CSP is, up to log-space reductions, equivalent
to a CSP whose template is a directed graph.
(Bulin, Delic, Jackson, Niven '15)

> (Prime cyclic) Loop conditions.
(Olzak; Gillibert, Jonuzas, Pinsker; ...)



Loop conditions

Definition
Let o,7:[m] — [n] be maps. A loop condition is a height 1 identity of

the form
F(Xo(1)s -+ s Xo(m)) = F(Xe(1)s -+ s Xr(m))-

To any loop condition £ we can assign a directed graph Gy in a natural
way:

Gy = ([n], {(a(i),7(i)) | i € [m]}).

(\
Lr

Q X=f(x,y,z,x) =~ f(y,z,x,z). Then Gy = Qo

F\
o o

Q X, :=f(x,y) = f(y,x). Then Gy, = \A




Cyclic loop conditions

o If Gy is (isomorphic to) a disjoint union of directed cycles, then we
say that ¥ is a cyclic loop condition.

o Let A={ay,...,a,} € N". We denote by ¥ 4 the cyclic loop
condition associated to C, U---UC,, .

(where C, denotes the directed cycle of length a).

Definition
We say that ¥ p is a prime cyclic loop condition if P is a set of prime
numbers.
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From "hl identities” to prime cyclic loop conditions

POl((CA) EY POl((CA) F ZA;C POl((C,?I) E Zp
iff iff
PoI(]Bg) EX Pol(B) F £ - Pol(B) F £p
Pol(B) ¥ X35 X3» Pol(B) #

Co U czlo WCis - "

B

Yos5 X35 Xag



Smooth Digraphs modulo PP-Constructability

G

2535

LN

z2 3 z2,5 Z3,5

PSP



Smooth Digraphs modulo PP-Constructability

G

2535

LN

z2 3 z2,5 Z3,5

eSS
22 23 25



Smooth Digraphs modulo PP-Constructability

C
C, Cs

2535

LN

z2 3 z2,5 Z3,5

o>



Smooth Digraphs modulo PP-Constructability

1
I/

2535

LN

z23 z25 Z35

|>< ><|



Smooth Digraphs modulo PP-Constructability

2535

LN

253 Y5 Y35

o)
22 23 25



Smooth Digraphs modulo PP-Constructability

I\,
XX
NN

Czp CouCs C3uCs

2535

LN

253 Y5 Y35

o)
22 23 25



Smooth Digraphs modulo PP-Constructability

I\,
XX
/NN

CouCy Czp CouCs C3uCs

N S

Cio W Cys




Smooth Digraphs modulo PP-Constructability

Cy
C, G Cs

XX

ClO

NN ON

CouCy Czp CouCs C3uCs

N X

Cio W CCe W Cy5C6 U Cyg




Smooth Digraphs modulo PP-Constructability

Cy
C, G Cs

XX

ClO

NN GN

CouCy Czp CouCs C3uCs

N XS

Cio U C1C6 W C15Co W Cyg

/ Z2,3,5
C, U Cys / | \




Smooth Digraphs modulo PP-Constructability

Cy
C, G Cs

XX

ClO

NN GN

CouCy Czp CouCs C3uCs

N XS

Cio U C1C6 W C15Co W Cyg

Cy U C5Cyp U C3Cq U Cy / | \




Smooth Digraphs modulo PP-Constructability

Cy
C, G Cs

XX

ClO

NN GN

CouCy Czp CouCs C3uCs

N XS

Cio U C1C6 W C15Co W Cyg

€ 0 CysCro 0 C3 Cg U Cs / | \

\ | / 253 2o 235

Ci5 W Cip U Cq ‘ >< >< ‘




Smooth Digraphs modulo PP-Constructability

Cy
C, G Cs

XX

ClO

NN GN

CouCy Czp CouCs C3uCs

N XS

Cio U C1C6 W C15Co W Cyg

CUCy5Cip U C3C W Cs / ‘ \
NV By T T
C15UC|10U(Cb ‘ >< >< ‘

C, uC3UCs Z2 Z3 ZS




Smooth Digraphs modulo PP-Constructability

Cy
C, G Cs

XX

CIO

NN GN

CouCy Czp CouCs C3uCs

N XS

Cio U C1C6 W C15Co W Cyg

Z2,3,5
Qu!@?sgouggsucs / | \
| o< ]
22 Z3 z5

CouC3uCsy




Main result

@ PL(A) := {P | P a finite nonempty set of primes and Pol(A) ¥ ¥p}
o Let FP be the set of all finite nonempty sets of primes.



Main result

@ PL(A) := {P | P a finite nonempty set of primes and Pol(A) ¥ ¥p}
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The map

Psp — |(FP) U {FP}
[A] ~ PL(A)

is an isomorphism where the order on the image set is reverse inclusion.
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