

Fakultät Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Algebra

Prof. Dr. A. Fehm, Dr. C. Zschalig

Algebra und Zahlentheorie (Modul ALGZTH), Sommersemester 2017

3. Übungsblatt für die Übungen vom 2.5.-5.5.2017

Normalteiler, Quotientengruppen, Homomorphismen

V17. Vorbereitungsaufgabe: Bitte bereiten Sie diese Aufgabe zur Übung vor.

Es sei $GL_n(\mathbb{K})$ die Gruppe aller invertierbaren $n \times n$ -Matrizen über dem Körper \mathbb{K} und $SL_n(\mathbb{K})$ die Gruppe aller $n \times n$ -Matrizen über \mathbb{K} , deren Determinante 1 ist. Zeigen Sie, dass $SL_n(\mathbb{K})$ eine Untergruppe von $GL_n(\mathbb{K})$ ist. Bestimmen Sie die Links- und die Rechtsnebenklassen von $SL_n(\mathbb{K})$ in $GL_n(\mathbb{K})$. Zeigen Sie, dass $SL_n(\mathbb{K})$ ein Normalteiler von $GL_n(\mathbb{K})$ ist und geben Sie eine "möglichst kanonische" Gruppe an, die isomorph zur Faktorgruppe $GL_n(\mathbb{K})/SL_n(\mathbb{K})$ ist.

- Ü18. (a) Bestimmen Sie für die Diedergruppe D_4 alle Normalteiler.
 - (b) Geben Sie zu jedem Normalteiler N von D_4 die Elemente der Faktorgruppe D_4/N und die zugehörige Verknüpfungstafel an. Geben Sie den natürlichen Homomorphismus $\pi_N: D_4 \to D_4/N$ konkret an.

Ü19. Beweisen Sie die folgenden Aussagen:

- (a) Ist U Untergruppe einer Gruppe G mit (G:U) = 2, dann ist U Normalteiler von G.
- (b) Beweisen Sie: Ist N ein endlicher zyklischer Normalteiler einer Gruppe G, dann sind alle Untergruppen von N auch Normalteiler von G.
- (c) Geben Sie ein Beispiel dafür an, dass die Bedingung "zyklisch" nicht weggelassen werden darf, d.h. finden Sie eine Untergruppe U eines Normalteilers N einer Gruppe G, so dass U kein Normalteiler von G ist.
- Ü20. Verifizieren Sie den ersten Isomorphiesatz (siehe VL 3.10) in der Gruppe (\mathbb{Z} , +) anhand der Untergruppe $n\mathbb{Z}$ und des Normalteilers $m\mathbb{Z}$ (für beliebige $m, n \in \mathbb{N}$) und schlussfolgern Sie, dass $\operatorname{ggT}(m, n) \cdot \operatorname{kgV}(m, n) = m \cdot n$ gilt.

Bitte wählen Sie 2 der folgenden 3 Hausaufgaben zur Abgabe aus.

A21. Hausaufgabe, bitte bis zum 10.5.2017, 12:00 Uhr, 12:00 Uhr im entsprechenden Briefkasten im C-Flügel unter Angabe von Name, Matrikelnr. und Übungsgruppe abgeben.

Verifizieren Sie die Aussage des ersten Isomorphiesatzes (VL 3.10): Wählen Sie dazu $G := S_3 \times \mathbb{Z}_6$, $N := \langle ((123), 0), ((123), 2) \rangle$, $H := \langle ((123), 3), ((12), 3) \rangle$.

- (a) Begründen Sie, dass H eine Untergruppe und N ein Normalteiler von G sind. Geben Sie (mit Begründung) die Ordnungen von N und H an.
- (b) Bestimmen Sie die Faktorgruppen $G_1 := H/(H \cap N)$ und $G_2 := HN/N$.
- (c) Geben Sie einen Isomorphismus zwischen G_1 und G_2 konkret an (mit Begründung).

A22. Hausaufgabe, bitte bis zum 10.5.2017, 12:00 Uhr, 12:00 Uhr im entsprechenden Briefkasten im C-Flügel unter Angabe von Name, Matrikelnr. und Übungsgruppe abgeben.

Bestimmen Sie die Automorphismengruppe der Klein'schen Vierergruppe V_4 .

Hinweis: Diese Gruppe ist isomorph zu $\mathbb{Z}_2 \times \mathbb{Z}_2$.

A23. Hausaufgabe, bitte bis zum 10.5.2017, 12:00 Uhr, 12:00 Uhr im entsprechenden Briefkasten im C-Flügel unter Angabe von Name, Matrikelnr. und Übungsgruppe abgeben.

Beweisen Sie: Charakteristische Untergruppen von Normalteilern einer Gruppe sind selbst Normalteiler.

H24*. Zeigen Sie: Die Gruppe ($\mathbb{Z}_2^n,+$) besitzt

$$k_r := \frac{\prod_{i=0}^{r-1} (2^n - 2^i)}{\prod_{i=0}^{r-1} (2^r - 2^i)}$$

Untergruppen der Ordnung 2^r $(r \le n)$.

Hinweis: Sie können ausnutzen, dass jede Untergruppe von $(\mathbb{Z}_2^n, +)$ auch ein \mathbb{Z}_2 -Vektorraum (mit der Multiplikation (mod 2) als Skalarmultiplikation) ist. Überlegen Sie zuerst, dass die Untergruppen genau den Untervektorräumen entsprechen.

- H25. (a) Geben Sie einen Isomorphismus zwischen den Gruppen $(\mathbb{Z}/6\mathbb{Z},+)$ und $((\mathbb{Z}/7\mathbb{Z})^{\times},\cdot)$ an.
 - (b) Zeigen Sie, dass die folgenden Gruppen (der Ordnung 8) paarweise nicht isomorph sind:
 - (i) die Quaternionengruppe Q_8 (siehe H14),
 - (ii) die Diedergruppe D_4 (siehe Ü18)
 - (iii) die Gruppe \mathbb{Z}_2^3
 - (iv) die Gruppe $\mathbb{Z}_4 \times \mathbb{Z}_2$,
 - (v) die Gruppe $(\mathbb{Z}_8,+)$

Hinweis: Das sind - bis auf Isomorphie - alle Gruppen der Ordnung 8.

- (c) Zu welchen dieser Gruppen ist die Einheitengruppe $(\mathbb{Z}/24\mathbb{Z})^{\times}$ (siehe V7(c)) isomorph? Warum?
- H26. Das Zentrum Z(G) einer Gruppe G (siehe VL 3.14) besteht aus allen Elementen $x \in G$ mit $\forall g \in G : gx = xg$.
 - (a) Zeigen Sie: Z(G) ist ein Normalteiler von G.
 - (b)* Bestimmen Sie $Z(D_n)$ für alle n > 2 (D_n bezeichnet die Diedergruppen).
 - (c)* Zeigen Sie, dass $Z(S_n) = \{id\}$ für alle symmetrischen Gruppen S_n mit n > 2 gilt.