

Bereich Mathematik und Naturwissenschaften Fakultät Mathematik, Institut für Algebra

Jun.-Prof. Dr. Martin Schneider, Dr. Christian Zschalig

Lineare Algebra - Grundlegende Konzepte (Modul LA10), Wintersemester 2019/20

5. Übungsblatt für die Übungen vom 11.11.-15.11.2019

Gruppen und Körper

N5.1 Hausaufgabe (Nachbereitung) Abgabe vor Übungsbeginn

Beweisen Sie mit vollständiger Induktion: Für die Anzahl d(n) der Diagonalen eines ebenen, konvexen n-Ecks gilt $d(n) = \frac{n(n-3)}{2}$.

Hinweis: Überlegen Sie zuerst geometrisch, wie Sie ein n-Eck aus einem n+1-Eck durch Streichen einer Ecke x und der Kanten von x zu seinen Nachbarecken y und z sowie Verbinden von y und z durch eine neue Kante konstruieren können und wie viele Diagonalen dabei verloren gehen.

V5.2 Hausaufgabe (Vorbereitung) Abgabe vor Übungsbeginn

Stellen Sie für $n \in \{5, 6, 7\}$ die Tafeln für Addition $x + y := (x + y \mod n)$ und Multiplikation $x \cdot y := (x \cdot y \mod n)$ in $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ auf. Begründen Sie (ohne detaillierten Beweis), dass $(\mathbb{Z}_n, +, \cdot)$ für $n \in \{5, 7\}$ jeweils die Körpereigenschaften erfüllt.

Warum trifft das für n = 6 nicht zu - welche Eigenschaft ist verletzt?

Ü
5.3 (a) Zeigen Sie (vgl. VL 2.7), dass für $n \in \mathbb{N}_+$ und ganze Zahle
n $x,y \in \mathbb{Z}$ durch die Festsetzung

$$x \equiv y \pmod{n} :\iff \exists \lambda \in \mathbb{Z} : x - y = \lambda n$$

eine Äquivalenzrelation \equiv_n auf der Menge \mathbb{Z} definiert wird.

Die Äquivalenzklassen $[x]_{\equiv_n}$ werden auch als Restklassen bezeichnet. Warum?

Was ist die Anzahl der (paarweise verschiedenen) Restklassen modulo n, d.h. die Mächtigkeit von \mathbb{Z}/\equiv_n ?

- (b) In der Menge \mathbb{Z}/\equiv_n wird durch "repräsentantenweises" Rechnen eine Addition + bzw. Multiplikation erklärt (vgl. VL 2.7). Rechtfertigen Sie diese Vorgehensweise durch den Nachweis, dass sie unabhängig von der Auswahl der Repräsentanten ist. (Was muss dabei gezeigt werden?)
- Ü5.4 $(K, +, \cdot)$ sei ein Körper mit Nullelement 0 und Einselement 1. Beweisen Sie (vgl. VL 2.5):
 - (a) $\forall x, y \in K : xy = 0 \iff x = 0 \text{ oder } y = 0.$
 - (b) $\forall x \in K : -(-x) = x$
 - (c) $(-1) \cdot (-1) = 1$
 - (d) $\forall x, y \in K : (-x) \cdot y = -(xy) = x \cdot (-y)$
 - (e) $\forall x, y \in K : (-x) \cdot (-y) = xy$
- Ü5.5 (a) Es seien $z_1 = 2 + 5i$ und $z_2 = 3 + 3i$ komplexe Zahlen (vgl. VL 2.10).
 - (i) Berechnen Sie $z_1+z_2, z_1-z_2, z_1\cdot z_2$ und $\frac{z_1}{z_2}$ und geben Sie das Ergebnis wieder in der in der Vorlesung verwendeten Schreibweise a+bi (mit $a,b\in\mathbb{R}$) an. Hinweis: Für Körper K und Elemente $x,y\in K$ schreiben wir $\frac{x}{y}:=x\cdot y^{-1}$.

- (ii) Beweisen Sie: Für alle $a+bi\in\mathbb{C}$ gilt $(a+bi)(a-bi)\in\mathbb{R}$. Hinweis: (a-bi) heißt konjugiert komplexe Zahl zu (a+bi).
- (b) Zeigen Sie mit Hilfe der Gruppentafel, dass die Menge $E_4 := \{z \in \mathbb{C} \mid z^4 = 1\} \subseteq \mathbb{C}$ zusammen mit der Multiplikation in \mathbb{C} eine Gruppe bildet. Geben Sie zu jedem Element sein Inverses an.
- H5.6 Es sei X eine endliche Menge der Mächtigkeit |X|=n. Zeigen Sie, dass die Potenzmenge $\mathcal{P}(X)$ von X (vgl. VL 1.2) mit der symmetrischen Differenz \triangle (vgl. VL 1.2) als Verknüpfung eine abelsche Gruppe bildet.
- H5.7 Prüfen Sie, ob die folgende Menge mit den angegebenen zwei Operationen ein Körper ist:

$$(\mathbb{Z}, \oplus, \odot)$$
 mit $a \oplus b := a + b - 1$, $a \odot b := a + b - ab$.

H5.8 Beweisen Sie (vgl. VL 2.7): ist X eine Menge und

$$Sym(X) := \{ f \mid f : X \to X \text{ bijektiv} \}$$

die Menge aller bijektiven Abbildungen von X nach X, dann ist $(\operatorname{Sym}(X), \circ)$ mit der Komposition (Hintereinanderausführung) \circ von Abbildungen als Verknüpfung eine Gruppe.