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Chapter 1

Introduction

In the last thirty years, the development of lattice theory was boosted by the
newly emerging Formal Concept Analysis (FCA). Caused by its application-
oriented objective, several issues gained a greater importance. In particular, the
interest in nicely readable automatically layouted diagrams grew. This work
is a contribution to this concern. We particularly investigate planar lattices,
namely their characterization and representation by diagrams. Thereby, our
considerations are driven by the existence of an additional order sorting the
elements of a planar lattice (or poset) from left to right in contrast to the
generic one which leads top-down. All structures considered will be finite.

We will describe the role of FCA as a model for handling information in Chapter
2. Lattice diagrams can be used for visualizing knowledge. We will shortly
explain what a “nice” diagram may constitute and why planarity plays such
an important role. Chapter 3 will lay the mathematical foundation of our work.
We will recall the basic concepts of order theory, the notion of a diagram and
important results about planar lattices. Furthermore we introduce FCA and
Ferrers-graphs of contexts (a basic FCA structure determining a lattice).

Afterwards, we will introduce left-relations on lattices in Chapter 4. We will
analyze its connections with conjugate orders, standard tools for describing
planarity. Furthermore, we will give possibilities to handle left-relations more
efficiently and to characterize planar contexts. In the following Chapter 5 we
investigate how to actually draw a planar lattice without edge crossings. Quite
helpful is the fact that left-relations on lattices can be topologically found in
the shape of their respective diagrams. In the penultimate Chapter 6 we char-
acterize planar lattices by a property of the Ferrers-graph of its context. We
will give an algorithm that finds all “topologically different” plane diagrams.

Finally, we will summarize the achieved results in Chapter 7. We will give
further aims seemingly interesting within the influence of this work and some
hints how to approach them.



Chapter 2

Motivation

A lattice (see Definition 3.7) is planar (see Definition 3.16) if it can be drawn
in the plane without edge crossings. In this work we want to investigate this
property in detail with the help of so called left-relations.

However, in this chapter we want to illustrate why we are concerned with planar
lattices at all. Of course, that issue is of interest just from an algebraic point
of view; planarity itself and its connection to the dimension (see Definitions
3.5, 3.6) of a lattice are fruitful research areas (see Theorem 3.20).

In fact, our work was motivated rather from an application-oriented view. By
the use of Formal Concept Analysis (see Section 3.5) we realize that lattice
diagrams can impart information. In order to be accepted by a human user,
these diagrams must look “nice” and easily readable. Although it is a hard
task to mathematize human esthetic sensations, we may assume that in most
cases reducing the number of edge crossings improves the diagram’s quality. In
particular, a lattice should be laid out without edge crossings at all, if possible.

We want to explain and reason these statements more precisely in this chapter.
In Section 2.1 we will highlight the importance of diagrams for handling pieces
of information. In particular, we will give a flavor of the field of Formal Concept
Analysis including its philosophical foundation and possible applications for
structuring data.

In Section 2.2 we will investigate the problems that occur by automatically
drawing diagrams of discrete structures. Thereby, we refer to graphs rather
than lattices since the quality of their drawings has been analyzed more specif-
ically. We will explain the idea of esthetic criteria as a possibility to mathe-
matize human esthetic conceptions and the desire of easy readability.

Finally we will illustrate in Section 2.3 why we concentrated on the esthetic
criterion of minimizing the number of edge crossings and, in particular, on
the recognition and graphical design of planar lattices as those structures that
allow diagrams without edge crossings at all.
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2.1 Why Do We Need Nice Diagrams?

The rapid development and increased use of computers and the worldwide
spread of the internet facilitates the sharing of enormous amounts of informa-
tion. However, data can quickly become too complex to organize (retrieve,
store, classify, manipulate, . . . ) it efficiently. A new research area, namely
information science is concerned with that issue.

Data is often presented in tables. Unfortunately, this is quite an unintuitive
way of making the inherent information accessible to a human user. It seems
to be useful to process the raw data into a form that fits us better. An ap-
propriate method should apply our understanding of the principles of human
thinking. A simple and well-accepted philosophical model is that of thinking
in concepts. These are considered to be the smallest units of human thoughts.
They are related by judgements and conclusions. The field of formal concept
analysis (FCA), introduced by R. Wille and B. Ganter in 1982, is founded on
the mathematization of the interrelation between data tables (called formal
contexts) and respective concepts (called formal concepts).

In that model, our knowledge (or parts of it) is based on a set of objects, a
set of attributes and an incidence relation stating which objects possess which
attributes. This structure is called a formal context. A formal concept consists
of an extension, i.e. a set of objects and an intension, i.e. a set of attributes.
Thereby, all objects possess all attributes (and do not have further attributes in
common) and, vice versa, all attributes apply to all objects (and no other object
possesses all of them). Concepts can be ordered into the concept hierarchy;
on the one end one finds the more special concepts consisting of few objects
and many common attributes, on the other the more general concepts occur,
consisting of many objects sharing only few attributes.

Of course, this is a simplification of the rather complex human thinking pro-
cesses. The addition of the word “formal” refers to that fact: a mathematical
field can not at all be a model for such a complex interaction. However, this
theory affords manifold possibilities to process and represent information in
a meaningful and helpful manner. Mathematically, formal concept analysis
is a section of applied lattice theory. The concept hierarchies turn out to be
complete lattices (see Definition 3.7) that are called concept lattices.

By drawing diagrams of concept lattices, we enable the user to discover visually
the information that is hidden in the appropriate formal context. This aspect
seems to be another advantage of the use of diagrams in general: seeing infor-
mation (if one realizes the structure of the diagram logically) is always better
than reading it. Additionally, it is possible to explore the “neighborhood” of
an interesting concept, a feature that is hardly provided by usual data base
platforms.
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There already exist several applications using FCA for representing knowledge:
The programs MailSleuth [EDB04] and its free clone Hiermail, that are
both derived from CEM [CS00], provide email clients that allow to orga-
nize ones emails conceptually. ImageSleuth [DVE06] and Camelis [Fer07]
are attempts to organize image data bases with the help of FCA. Search-

Sleuth [DE07] and FooCA [Kös06] are plug-ins for internet search engines
and organize the results of a respective query in the same manner. More gen-
erally, D-sift [DWE05] and ToscanaJ [BHS02] allow to process arbitrary
data bases. There exist FCA-based tools for managing data bases of many
more areas like scientific articles (Bibsonomy [JHSS07]) or media in a library.
Eventually, even the complete file system of a computer could be organized
this way; instead of putting documents into folders, one could apply attributes
to them and then search via these attributes.

We want to pick a very specific application named Surf Machine [DE05] that
indicates suitable surfing spots in western Australia due to dominant wind and
wave directions. See Figure 2.1 for an illustration.

Figure 2.1: Surf Machine - an example of an FCA based and diagram driven
information system.

After entering the probable weather conditions according to the forecast in the
upper part of the window, the program provides a diagram with surfing spots
that suit better the lower one descends. Ideally, the elements, i.e. surf spots,
contained in the bottom node supply good conditions for all chosen inputs. If
such an element does not exist (which is indicated by the 0 below that node)
one can decide to drop one (or several) of the desired properties by running
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up one or several diagram edges. In our particular case the decision was made
to ignore the attribute “southerly winds” by moving to the upper right. By
clicking on the respective node, the 9 included surf spots are shown on the
right.

Although Surf Machine seems to be a toy example only, it points out some
of the many features offered by the FCA framework. It helps, for example,
to search for good results, decide what is the best result, investigate what
conditions lack good surfing spots or identify which spots have the same char-
acteristics.

2.2 What Is a Nice Diagram?

Recently, newly developed FCA-based information systems (e.g., Search-

Sleuth, Camelis) tend not to use diagrams for presenting data anymore.
In our opinion, this is due to two facts. Firstly, diagrams are becoming too big
to be understood by a human user. Secondly, it is quite complicated to create
an algorithm designing their layout automatically. Although there already exist
some appropriate applications (for instance the widely used Conexp [Yev], the
diagram browser Cernato used in ToscanaJ, [BHS02] or the online applica-
tion JaLaBa [Fre]), none of them is completely satisfactory. The first problem
can be solved to a certain degree by employing nested line diagrams [GW99].
However, our concern is to tackle the second problem, i.e. to find strategies to
draw diagrams automatically with better quality.

Obviously, this leads to the question what distinguishes a nice diagram? Since
it is used by a human user, it should be accepted by him. This means that, it
should correspond to his esthetic sensations and furthermore be easily readable.
Apparently, we need criteria that can be measured in a diagram to decide how
much these two desires are satisfied.

In the graph drawing community (see e.g., [DETT99]) so called esthetic criteria
were introduced for that purpose. They can be understood as optimization
tasks whose fulfillment increases the diagrams quality. Examples include

1. minimize the number of edge crossings,

2. maximize the least angle between incident edges,

3. minimize the number of different slopes,

4. display symmetries,

5. place the nodes onto an orthogonal grid with minimum size (w.r.t. the
edge length of the grid).
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Figure 2.2: Three diagrams of the cube.

Moreover, there exist so called drawing conventions [CT94] describing the gen-
eral shape of a diagram. For us, the most important examples include layered
drawings and additive drawings (see Definitions 3.12 and 3.13). They can also
be considered as esthetic criteria or; at least their usage emphasizes several
criteria over others.
While laying out a diagram, one often has to prefer some criteria over others
depending on the desired properties of the result.

In Figure 2.2, three visualizations of a cube, seen as a simple graph, are de-
picted. The left diagram complies with our imagination of a cube being pro-
jected into the plane. The one in the middle gets by without edge crossings,
while the one on the right emphasizes inherent symmetries, namely the node
transitivity1.
In addition to the esthetic criteria introduced for general graphs, further con-
ditions were developed in the FCA community to improve the quality of lat-
tice diagrams in particular. Examples include the principles of a functional
layout [CDE06], the maximization of the conflict distance [Gan04] or the con-
vention of additive diagrams [Sko92,GW99]. Of course, design aspects beyond
mathematics must be regarded as well, the look and feel plays an important
role in acceptance of lattice diagrams [EDB04].

2.3 Why Planarity?

After collecting all these constraints one encounters another question: Which
esthetic criteria are important? Until now we just introduced them without
giving evidence for their necessity. Of course, such a verification can be done
only empirically, since it is obviously not possible to mathematically measure
the quality of a diagram in terms of utility for human users.

As far as we know, only two empirical studies [Pur97,PAC00] were undertaken
for graph diagrams (and none for lattices). In the first, the test persons had to

1That is, for every pair of nodes v, w, there exists an automorphism ϕ mapping v onto w.
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perform tasks on the given diagrams, while in the second they had to choose
which diagrams they preferred. Of the tested criteria, minimizing the number
of edge crossings turned out to play the most important role (the other in-
cluded criteria were minimize number of bends, place nodes on orthogonal grid,
maximize least angle between incident edges, display symmetries).

When finding strategies to minimize the number of edge crossings, it is an
obvious prerequisite to be able to distinguish between planar and non-planar
lattices and to draw the latter without edge crossings at all. This was ultimately
the driving force for working on this topic at all. It turned out to be so fruitful
that we concentrated nearly exclusively on planarity and left the problem of
analytically minimizing the number of edge crossings and more generally the
automatic layout of lattices for later research.



Chapter 3

Preliminaries

In this chapter we will recall the theory and refer to some results that form the
background of our work.

At the very beginning in Section 3.1 we will give an elementary introduction
into some aspects of order theory. In particular, we will define lattices as
ordered sets with additional properties. Moreover, some lesser known but
nevertheless basic notations will be recalled.
Section 3.2 will address diagrams of lattices. We will define this concept first,
since a careful distinction between lattices and diagrams (although both no-
tions are used synonymously in many publications) is necessary in Chapter 5.
Afterwards we will describe some special classes of diagrams that are common
for drawing lattices.

Section 3.3 will subsume some important results aiming at the characterization
of planar lattices. In particular we will highlight the concepts of conjugate
orders as the left relations on lattices in Chapter 4 are closely related to it.

In Section 3.4 we will note some remarks about the geometry of planar lattices
[KR75]. These will be used in particular in Chapter 5 when we actually draw
planar lattices.
As mentioned in Chapter 2 this work is motivated by the applications arising
in formal concept analysis. Therefore we will recapitulate some basic asser-
tions of this field, in particular its connection to lattice theory, in Section 3.5.
Additionally, the interrelation of contexts and respective concept lattices will
be needed in Section 4.4. There we will describe the planarity of a lattice by
its standard context.

Finally, Section 3.6 will be concerned with Ferrers relations. We will introduce
the Ferrers graphs which will be the key point for the characterization of the
set of all plane diagrams in Chapter 6.

We omitted to recall some basics about graph theory that we use in Chapter 6.
We refer to a standard monograph (e.g., [Die96]) for the interested reader.
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3.1 Basic Definitions

Order theory, and its branch lattice theory, are based on the definition of an
ordered set.

Definition 3.1 [Bir67] Let P be a set and R ⊆ P × P a binary relation1.
Let ∆P denote the identity relation on P . If R satisfies the three conditions

1. R is reflexive, i.e. ∆P ⊆R,

2. R is antisymmetric, i.e. R ∩ R−1 ⊆ ∆P ,

3. R is transitive, i.e. R ◦ R ⊆ R,

then we call R order relation or shortly order on P and the pair P := (P, R)
ordered set or shortly poset.
If the relation R fulfills condition 3 and, instead of 1 and 2, the condition

1’. R is asymmetric, i.e. R ∩ R−1 = ∅.

then R is called strict order on P .
♦

An important subclass of ordered sets are linear orders. Usually, order relations
are denoted with the symbol ≤, which is well known for denoting the standard
linear order on numbers.

Definition 3.2 [Bir67] Let P = (P, R) be an ordered set. If the relation R
satisfies the condition

4. R is connex, i.e. R ∪ R−1 = P × P ,

then R is called linear order and the pair (P, R) is called chain. If R is a strict
order fulfilling R ∪R−1 = (P × P ) \ ∆P then R is called strict linear order. ♦

Two elements p, q ∈ P which are in relation R, i.e. satisfy either p R q or
q R p, are called comparable. Otherwise they are incomparable. The pairs of
incomparable elements will play a fundamental role in the course of this work,
therefore we define formally:

Definition 3.3 [Grä98] Let P = (P, R) be an ordered set. The relation

‖ := (P × P ) \ (R ∪ R−1)

is called incomparability relation on P .
♦

1We assume that the reader is familiar with the notion of a relation.
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For drawing diagrams of ordered sets, we additionally need the notation of the
neighborhood relation. It contains, as the name suggests, only those pairs of
comparable elements p and q which do not have another element “in-between”
them, i.e. no element r different from p and q fulfilling p R r R q. In a diagram
one usually encounters edges between neighbored elements only. This is due
to better readability.

Definition 3.4 Let P = (P, R) be an ordered set and R̃ := R \ =P .

1. [BLS99] With (P, R ∪R−1) we denote the comparability graph of P .

2. [DM41,Ore62,Pla76] The relation ≺ := R̃ \ (R̃ ◦ R̃) is called neighbor-
hood relation or cover relation or transitive reduction of P . If a ≺ b
holds then we call b upper cover of a and a lower cover of b. The pair
(P,≺) is called graph2 of P . ♦

The purpose of introducing graphs of ordered sets is to draw better diagrams.
An example is depicted in Figure 3.1. Obviously, the left diagram is harder
to read. Although we omitted all loops, it still contains redundant edges. A
human user will instinctively complete the diagram on the right to its transitive
closure, i.e. the relation R itself.

≤ s t u v w x
s
t
u
v
w
x

s

t
x

u

v

w

≺ s t u v w x
s
t
u
v
w
x

s

t
x

u

v

w

Figure 3.1: Comparison of an ordered set (left) and its graph (right). In the
left diagram all loops, i.e. all edges of the form (p, p), are removed already.

In the next section we will see that the concept of planarity is fundamentally
connected to that of the order dimension. In particular, in Section 5.3 we will
use realizers of a planar lattice to construct a plane diagram of it.

Definition 3.5 [DM41] Let P = (P, R) be an ordered set. Let I be an index
set and {Ri | i ∈ I} be a family of linear orders on P whose intersection equals
R, i.e. R =

⋂

i∈I Ri. Then {Ri}i∈I is called realizer3 of P .
The order dimension (or shortly dimension) of P is the smallest cardinality |I|,
s.t. {Ri | i ∈ I} is a realizer of P .

♦

2Ore used the notion basis graph and Platt covering graph instead. By a graph of an
ordered set P Ore denoted any directed acyclic graph whose transitive closure yields P .

3The existence of a realizer for arbitrary posets was evidenced in [DM41].
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See Figure 3.2 for an example of an ordered set together with a realizer. We
have seen that the order dimension is defined via the intersection of linear
orders. There exists another concept of dimension in order theory called product
dimension. Its underlying idea is an embedding into a product of chains. For
a visual comparison between both constructions we refer to Figure 3.2.

Definition 3.6 [Ore62] Let P = (P,≤) be an ordered set. The product di-
mension pdim(P ) of P is the smallest cardinality n, s.t. there exists an order
embedding4 of P in a product5 of n chains.

♦

(P, R)

s

q

v

t

p

u

r
R1 R2

v
s
t
q
u
r
p

v
u
t
r
s
q
p p

q

s

r

t

u

v

C1
�

C2

6

Figure 3.2: An ordered set (P, R) (left) together with a realizer {R1, R2} (mid-
dle) and an embedding into the product of two chains C1 and C2 of length
4. The arrows indicate the direction of the greater elements w.r.t each chain.
Order dimension and product dimension both equal 2. All structures are given
by means of their diagrams.

An upper bound of a subset X ⊆ P of an ordered set P = (P,≤) is an element
y satisfying x ≤ y for all elements x ∈ X. Dually a lower bound is an element
z with z ≤ x for all x ∈ X. We call y =

∨
X least upper bound if it is lesser or

equal to every upper bound y′ of X. Dually z =
∧

X is a greatest lower bound
of X if it is greater or equal to every lower bound z′ of X. The order theoretic
definition of a lattice is based on the existence of those bounds.

Definition 3.7 [Bir67] Let V = (V,≤) be an ordered set. If, for every two
elements v and w, the least upper bound x ∨ w (called join) and the greatest
lower bound x∧w (called meet) exist then V is called lattice. If the least upper
bound and greatest lower bound exist for every subset X of V then V is called
complete lattice. ♦

4An order embedding is a mapping ϕ : P → Q between two ordered sets (P, R1) and
(Q, R2), s.t. p1R1p2 ⇐⇒ ϕ(p1)R2ϕ(p2) holds for all p1, p2 ∈ P

5We recall the finite case only: The product of a set {(Pi, Ri) | i ∈ {1, . . . , n}} of ordered
sets is the ordered set (P1 × . . . × Pn, R) with (p1, . . . , pn)R(q1, . . . , qn) : ⇐⇒ piRiqi for all
i ∈ {1, . . . , n}.
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The following facts are well-known and easy to prove:

1. Every finite lattice is a complete lattice.

2. Every chain is a lattice.

3. Every complete lattice contains a top element 1 and a bottom element 0.

Next we want to highlight some special elements in lattices. They gain impor-
tance in particular in Formal Concept Analysis.

Definition 3.8 [Grä98] Let V = (V,≤) be a finite lattice.

1. An element m ∈ V fulfilling

m = v ∧ w =⇒ m = v or m = w

for all elements v, w ∈ V is called
∧

-irreducible6.

2. An element j ∈ V fulfilling

j = v ∨ w =⇒ j = v or j = w

for all elements v, w ∈ V is called
∨

-irreducible.

3. An element is called doubly-irreducible if it is both
∨

and
∧

-irreducible.

The set of
∧

-irreducibles is denoted by M(V) and the set of
∨

-irreducibles by
J(V).

♦

Every element of a finite lattice can be represented as an infimum of
∧

-irre-
ducibles. A set fulfilling this property is called infimum-dense. The dual holds
for the join operation. The sets of

∧
-irreducibles and of

∨
-irreducibles can be

recognized easily in a diagram, as the following lemma states.

Remark 3.9 [GW99] Let V be a finite lattice. An element m ∈ V is a
∧

-
irreducible if and only if it has exactly one upper cover. Dually, an element
j ∈ V is a

∨
-irreducible if and only if it has exactly one lower cover.

We will denote by v∗ and v∗ the set of upper and lower covers of an element v,
with m∗ the unique upper cover of a

∧
-irreducible m and with j∗ the unique

lower cover of an
∨

-irreducible j. The set M(v) := {m ∈ M(V) | v ≤ m}
contains all

∧
-irreducibles greater or equal to a lattice element v.

6We chose here this denotation in contrast to the more common ∧-irreducible.
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3.2 Diagrams of Ordered Structures

In many cases it is not necessary to distinguish between a lattice, or an ordered
set, and a diagram representing it. Therefore, it is common to consider both
concepts synonymously. However, for our purpose we explicitly need an un-
ambiguous distinction between them since we actually want to draw diagrams
of given lattices. In our everyday experience, a diagram of an ordered struc-
ture consists of little circles (sometimes also rectangles or other polygons) and
arcs connecting adjacent elements. It is common to represent the order by an
increasing y- or x-coordinate in order to avoid the arrow symbols on edges.
More formally, the diagram of an ordered set P is a graph diagram7 of the
graph of P meeting the upward-drawing-constraint:

Definition 3.10 [Qua73,KR75] Let P = (P,≤) be an ordered set with neigh-
borhood relation ≺. A diagram (or representation [KR75]) pos(P ) of P is a
mapping8

pos : P ∪ ≺ → R2 ∪ P(R2)

meeting the following conditions for all v, w, z ∈ P :

1. Elements v ∈ P are mapped injectively to points in the Euclidean plane:

pos |P : v 7→ pos(v) = (x(v), y(v)) ∈ R2 is an injection.

2. The upward-drawing-constraint or Hasse-constraint is satisfied:

v < w =⇒ y(v) < y(w).

3. Adjacent nodes v ≺ w are connected by upward arcs:

pos |≺ : (v, w) 7→ {(xvw(y), y) | y ∈ [y(v), y(w)]} ⊆ R2,

where xvw : [y(v), y(w)] → R is a continuous function satisfying both
xvw(y(v)) = x(v) and xvw(y(w)) = x(w).

4. The diagram is conflict free, i.e. no node is situated on a non-incident
line:

pos(v) ∈ pos((w, z)) =⇒ v = w or v = z.

The elements of pos(P ) := {pos(v) | v ∈ P} are called (diagram) points or
nodes, the elements of pos(≺) := {pos(v, w) | v, w ∈ P, v ≺ w} are called
diagram edges.

♦

7This is, a diagram in the sense of graph theory.
8With P(R2) we denote the set of subsets of R2.
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Commonly, line diagrams are employed, if possible. Then the edges are just
straight lines. There evolved many names for this structure, we will stick to
the term used in [GW99] since in our opinion it is the most intuitive synonym.

Definition 3.11 [KR75] A line diagram (also called embedding [KR75], Hasse
diagram [BFR71] or simply diagram [Bir67]) of an ordered set P is a diagram
(as previously defined), where

pos((v, w)) = {t · pos(v) + (1 − t) · pos(w) | t ∈ [0, 1]}.

holds for all elements v ≺ w. This is, all diagram edges are straight line
segments.

♦

There exist some more specific conventions to draw diagrams, as mentioned
already in Section 2.2. Here we want to introduce the most important ones.
Layer diagrams are characterized by a layer assignment function which arranges
the nodes of lattice elements onto horizontal lines called layers.

Definition 3.12 [STT81,DETT99] Let P = (P,≤) be an ordered set. A map
p : P → R is called layer assignment function if v < w =⇒ p(v) < p(w) holds
for all pairs of elements v, w ∈ P . A diagram pos(P ) is called layer diagram
w.r.t. p if pos : v 7→ (x(v), p(v)) holds for all v ∈ P , i.e. if the y-coordinate of
every element equals its layer. ♦

Of course, every diagram possesses a layer assignment function p determined
by p(v) = y(v) for all elements of P . However, the purpose of that drawing
convention is to place many nodes onto each layer followed by a crossing num-
ber minimization by ordering the nodes in each layer [DETT99]. A common
assignment function is the longest path layering [ES90], where each element of
P is mapped onto the length of the longest path to any maximal element of P .
Lattice drawing algorithms applying the layer assignment convention include
JaLaBA [Fre] and ConExp [Yev].

Additive diagrams evolved in the FCA-community in order to draw diagrams
of concept lattices. In particular distributive (or “nearly distributive”) lattices
look like drawn on an n-dimensional grid [Sko92].

Definition 3.13 [GW99] Let P = (P,≤) be an ordered set. A set represen-
tation rep is an order embedding of P into the powerset P(X) of a set X.
An additive diagram is a line diagram of P determined by a set representation
rep and a grid projection vec : X 7→ R2 assigning a vector with positive y-
component to each element of X, s.t. the equation

pos(p) = n +
∑

x∈rep(p)

vec(x)
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holds for all elements p of P . Thereby, n is an arbitrary vector allowing to
shift the whole diagram in the plane.

♦

Again, this definition seems somehow meaningless since every line diagram of
a lattice V = (V,≤) can be interpreted as an additive diagram. Just choose
X = V and

rep(v) = {w ∈ V | w ≥ v} and vec(v) = pos(v) −
∑

x∈rep(v)\{v}

vec(x).

The aim of employing additive diagrams is to better display symmetries of
the lattice. This is done by choosing a smaller set X. Usually one defines
X = M(V) or X = J(V), which leads to attribute or object additivity. In
particular distributive lattices (or “nearly distributive” ones) are drawn quite
nicely then. Therefore this technique is used widely in the FCA-community in
algorithms like ToscanaJ [BHS02] or ConExp [Yev]9.

In the following we will formally define the attribute additive drawing con-
vention. It does not actually result in an additive diagram in the sense of
Definition 3.13 since the mapping rep : v 7→ M(v) is not an order embedding,
but an anti-order embedding. However, if we assign vectors with negative sec-
ond component to the elements of M(V) we still gain a diagram satisfying the
Hasse constraint.

Definition 3.14 [GW99,CDE06] Let V = (V,≤) be a lattice. A line diagram
pos(V) is called attribute additive if there is a map vec : M 7→ R2, such that
the equation

pos(v) =
∑

m∈M(v)

vec(m)

holds for all elements v ∈ V. ♦

We have to mention that the term attribute evolved, together with the whole
definition, in FCA. There, the role of the

∧
-irreducibles is taken by the ir-

reducible attributes of a context. So the last definition is a restriction to the
original one in [GW99] since all reducible attributes are mapped by vec to the
zero vector. However, we think that our (also provided in [CDE06]) sloppy in-
terpretation is very useful since it aims at the layout of grid structures [Sko92].
These obviously help to increase the readability of the underlying lattice and
are therefore desired by us. An example for such a drawing can be found in
Figure 3.3.
Of course, it is feasible to develop diagram types mixing the constraints of
the layer and the additive convention. The hybrid diagrams introduced by

9In fact, ConExp provides several drawing conventions
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m3

m1 m2

vec(m2)

vec(m1)

vec(m3)

m2 m1

m3

Figure 3.3: A lattice (left, given by a diagram of it) together with a grid
projection vec in the middle. The emerging diagram is depicted on the right.

R. Cole [Col00, CDE06] are one example. Only the x-coordinates of lattice
elements are calculated via the attribute additivity, the y-coordinates however
are determined by layer assignment (in fact the papers present only longest
path layering). Surf Machine [DE05] uses this drawing convention.

Another attempt is oriented rather towards the aim of layering attribute ad-
ditive diagrams. An easy solution is to supply a fixed y-coordinate to the grid
projection function of all

∧
-irreducible elements. This convention is quite com-

mon for manual drawings of many lattices. In this case the layer assignment
function p is, for a fixed number c ∈ R, given by

p(v) = c · |M(v)|.

Definition 3.15 Let pos(V) be an attribute additive diagram of the lattice V.
If the grid projection function vec inducing pos(V) satisfies the condition

∃c ∈ R ∀ m ∈ M : vec(m) = (x(m), c)

then pos(V) is a layered attribute additive diagram of V.
♦

The diagram depicted on the right picture of Figure 3.3 is even layered attribute
additive. The top element is situated on the top layer. The elements m1 and
m2 (fulfilling |M(m1)| = |M(m2)| = 1) are on the second layer, the elements
m3 and m1 ∧m2 (fulfilling |M(m3)| = |M(m1 ∧m2)| = 2) are on the third and
the bottom element on the fourth.

Contrary to the well-known previous Definitions 3.12 and 3.13, the layered
attribute additivity is not theoretically observed yet although practically used
widely. Our interest in this work is to draw plane diagrams of lattices. Hence,
we will come back to this convention in Subsection 5.3.
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3.3 Planar Lattices

In this section we recall some important characterizations of planar lattices.
As already mentioned, our interest is focused particularly on the connection
with conjugate orders and the order dimension since this is of fundamental
importance to our further work.
At first we recapitulate the well-known definition of planarity. In contrast to
the same notion on graphs, we demand all diagram edges to be directed upward
(see condition 2 of Definition 3.10).

Definition 3.16 [Bir67] A lattice V is upward planar or shortly planar if it
possesses a plane diagram, i.e. a diagram pos(V) without an edge crossing.

♦

The notion of an edge crossing is quite intuitive. We will further investigate this
concept in section 3.4. Every planar graph possesses a plane diagram without
edge bends due to the Theorem of Fary [Far48]. An equivalent statement for
posets has been achieved by Kelly [Kel73]: Every (upward) planar ordered
set has a plane (line) diagram. This result was even extended in [Kel87] in
the following way: A poset P is planar if and only if there exists a diagram10

pos(P ) without edge crossings, where the diagram lines pos(a, b) between two
elements a ≺ b are arbitrary arcs that are stretched between the y-coordinates
of a and b. We will further investigate this issue in Chapter 5 and answer
the questions whether an arbitrary planar lattice possesses a plane attribute
additive and a plane layer diagram respectively.

A conjugate order on an ordered set (P,≤) is an additional order acting “from
left to right” (using the common principle to sort comparable elements “bottom-
up”).

Definition 3.17 [DM41] Let P = (P,≤) be an ordered set and Lc ⊆ P ×P .

1. Lc is a conjugate relation if Lc ∪ Lc
−1 = ‖.

2. Lc is a conjugate order if additionally Lc is a strict order. ♦

A conjugate order is an additional order on a lattice. In Chapter 4 we will
construct and describe them with the help of left-relations.
An interesting property of an ordered set P = (P,≤) possessing a conjugate
order is the following: Every two elements p, q ∈ P are in exactly one of the
five relations <, >, Lc, L−1

c and =. Hence, we may write

<P

.
∪ >P

.
∪ Lc

.
∪ L−1

c

.
∪ =P = P × P.

10Although this is not a diagram in the sense of Definition 3.10, we keep that name for
convenience
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Conjugate orders define linear extensions of an ordered set and thus give a link
to its dimension. Vice versa, realizers also determine conjugate orders:

Lemma 3.18 Let P = (P,≤) be a partial order.

[DM41] Every realizer {P1, P2} of P determines two conjugate orders P1\ ≤
and P2\ ≤ satisfying (P1\ ≤)−1 = P2\ ≤.

[Gol80]For every conjugate order L1, the relation L2 = L−1
1 is a conjugate

order, too. The pair {L1∪ ≤, L2∪ ≤} is a realizer of V.

Finally, as a preparation of Theorem 3.20, we introduce interval-inclusion-
lattices. See Figure 3.4 for an example.

Definition 3.19 [GY99] A lattice V = (I,⊆) is an interval-inclusion-lattice
(IIL) if I ⊆ I(R) is a set of intervals over R that forms together with the set
inclusion relation ⊆ a lattice.

♦

The following theorem is a collection of results provided by several authors.
Dushnik and Miller [DM41] first showed the equivalence of the conditions 2, 3
and 5. Indeed they proved that more generally for arbitrary ordered sets. The
equivalence of 1 and 2 was stated in [Bir67] (p.32, ex. 7c). The “⇒” part was
proved by Kelly and Rival in [KR75] (see Proposition 3.32) the construction
for showing the “⇐” part can be found for instance in [KT82]. However, we
will recall it in Theorem 5.6. The equality of 3 and 4 was (more generally
for ordered sets) given by Ore in [Ore62]. Finally, the equality between 2 and
6 is immediate and was first mentioned in [GH62]. We should remark that
the well known theorem of Baker, Fishburn and Roberts [BFR71], stating the
equivalence of 1 and 3 is a subsumption of the above-mentioned results.

Theorem 3.20 [BFR71,Bir67,DM41,KR75,Ore62,GH62] Let V = (V,≤)
be a finite lattice. The following conditions are equivalent:

1. V is planar.

2. There exists a conjugate order Lc on V.

3. The order dimension dim(V) of V is at most two11.

4. The product dimension pdim(V) of V is at most two.

5. There exists a representation of V by an IIL.

6. The graph (P, ‖) is a comparability graph.

11Contrary, a planar poset may have an arbitrary finite order dimension, see [Kel81]).
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Sketch of the proof: We want to give the main ideas leading from the existence
of a conjugate order Lc on V to the validity of the other conditions.
Together with Lc, also L−1

c is a conjugate order. Both Lc ∪ ≤ and L−1
c ∪ ≤ are

linear extensions of ≤ (see Lemma 3.18) whose intersection equals ≤. Therefore
the order dimension is at most two. We can provide two order embeddings l
and r of Lc ∪ ≤ and L−1

c ∪ ≤ into the linear ordered sets R1 := (R+, <) and
R2 := (R+, <) respectively. A line diagram defined by

pos : V 7→ R2 with pos(v) := (l(v), r(v))

is plane (see the proof of Theorem 5.6 for details). Additionally it provides an
embedding into the product of the two chains R1 and R2. If we on the other
hand define a mapping

ϕ : V 7→ I(R) with ϕ(v) = (−r(v), l(v))

into the set of intervals over R then ϕ is an isomorphism into an IIL.

See Figure 3.4 for a visualization of the maps pos and
ϕ of the lattice V given on the right. We can find
a conjugate order L. Both relations L<:=L ∪ < and
R<:=L−1 ∪ < are linear orders on V (depicted on the
upper left). The embeddings l and r into the real num-
bers together with an appropriate order can be seen on
the upper right. The mapping pos supplying a plane
line diagram pos(V) is depicted in the lower left.

s

l

0

m

1

t

n

Such a diagram, where a directed path between u and v occurs if and only if
x(u) ≤ x(v) and y(u) ≤ y(v) holds, is called dominance drawing [BCB+92,
CT94]. We will further observe this kind of diagram in Section 5.3. Finally
a mapping ϕ into a set of intervals over R is given on the lower right of the
figure.

Besides this fruitful bundle of results several other characterizations concerning
the planarity of lattices were discovered. Although we do not need all these
achievements in our further work we will mention them in order to have a
broader view on the topic.

In Section 3.1 we recalled the term of doubly irreducible elements. If an ordered
set can be reduced to the two-elemental chain by a consecutive deletion of
doubly irreducible elements, it is called dismantlable. See Figure 3.5 for an
example. Firstly introduced by Rival in [Riv74], we refer to the following
definition:

Definition 3.21 [KR75] A finite ordered set P = ({p1, . . . , pn},≤) is dis-
mantlable, if for all i ∈ {1, . . . , n} the element pi is doubly irreducible in the
subposet ({p1, . . . , pi},≤).

♦
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L< 0 s l t m n 1
0 < < < < < <
s < L < L <
l L L L <
t < < <

m L <
n <
1

R< 0 t n s m l 1
0 < < < < < <
t < R < R <
n R R R <
s < < <

m R <
n <
1

v 0 s l t m n 1

l(v) 0 1 2 3 4 5 6

v 0 t n s m l 1

r(v) 0 1 2 3 4 5 6
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t
0
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Figure 3.4: The construction of two realizers L< and R< of a lattice V out of
a conjugate order L supplies a plane diagram pos(V) and an isomorphism ϕ
into an interval inclusion lattice.

It is easy to see that a dismantlable finite bounded ordered set is a lattice
[KR75]. It is surprising, however, that every plane diagram of a planar ordered
set possesses a doubly-irreducible element on its boundary12. This result was
first proved in [BFR71] and formulated tighter in [KR75]. It gives rise to several
statements about planar lattices. The first immediate consequence is:

Theorem 3.22 [KR75] A planar finite bounded ordered set is dismantlable.

For special classes of lattices, a more precise characterization is possible. E.g.
a distributive lattice is planar if and only if it is dismantlable, see [Qua73].

With the help of Theorem 3.22 it is possible to transform the issue of the
planarity of a lattice to that of graphs13.

12This term is to be understood in the natural (topological) way, see [KR75] for a formal
definition.

13Planar graphs are well investigated, see [HT74] and [LEC67] for algorithms constructing
plane diagrams in linear time.
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Figure 3.5: The process of dismantling a lattice. The doubly irreducible ele-
ments that are going to be deleted are shaded.

Theorem 3.23 [Pla76] A finite lattice V = (V,≤) is planar if and only if
the undirected graph derived from its graph (V,≺) by ignoring the orientation
of the edges and adding an edge between bottom and top element is planar.

The next theorem appears first as an exercise (p.32 Ex. 7a) in [Bir67]. Proofs
can be found in [Qua73,Pla76].

Theorem 3.24 [Bir67] A planar finite bounded ordered set is a lattice.

In graph theory the famous theorem of Kuratowski characterizes planar graphs
by a minimal list of forbidden substructures. A similar classification could be
achieved also for lattices. Unfortunately, here the set L consisting of seven
families contains infinitely many subposets. We will state this result of Kelly
and Rival [KR75] here. However, for the list L we refer to the original paper.
29.3747pt400.0pt

Theorem 3.25 [KR75] A finite lattice is planar if and only if it does not
contain any lattice in L as a subposet. Moreover, L is the minimum such list,
i.e. any set of lattices F describing forbidden substructures of planar lattices
contains L.

The very last result highlighted in this section allows an estimation of the
number of elements in a planar lattice. It is based on the trivial observation
that no planar lattice contains the three-dimensional Boolean algebra B3 as a
subposet. Several extensions of this observation are known: an approach given
in [KR74] excludes a whole family of lattices (containing B3) with the help of
dismantlability. In [Rep07] an approach by means of n-distributivity14 shows
that in every lattice of dimension n every element can be represented as the
infimum of at most n

∧
-irreducibles.

14This is, a generalization of the well known notion of distributivity. A lattice (V,≤) is
n-distributive if x ∨ (

∧n

i=0
yi) =

∧n

j=0
(x ∨

∧n

i6=j,i=0
yi) holds for all x, y0, . . . , yn ∈ V.
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Lemma 3.26 In a planar lattice V every element w can be represented as the
meet of at most two

∧
-irreducibles m1 and m2 and as the join of at most two

∨
-irreducibles j1 and j2.

Proof: Let w =
∧

M̃ for a set M̃ ⊆ M(w) with |M̃ | ≥ 3. If the width15 of
(M̃,≤) does not exceed two then w can be represented as an infimum of at
most two elements, i.e. the minimal elements of M̃ .
Otherwise there exist pairwise incomparable

∧
-irre-

ducibles m1, m2, m3 ∈ M̃ . If the meets mi ∧ mj are
pairwise incomparable for all i 6= j ∈ {1, 2, 3} then
the elements 1V, m1, m2, m3, m1 ∧ m2, m1 ∧ m3,
m2∧m3 and w form a subposet of V isomorphic to B3

which is contained in the list L of forbidden subposets
of a planar lattice (see Theorem 3.25). Hence, w.l.o.g.
m1 ∧ m2 ∧ m3 = m1 ∧ m2, i.e. w =

∧
M̃ \ {m3}.

1

w

m1 m2 m3

m12
m13 m23

By iteratively applying this argument one finds a two-elemental subset of M̃
whose infimum equals w. The second claim can be shown dually.

�

The size of a lattice V is exponential by means of the cardinality n of the
set of

∧
-irreducibles M(V). Every infimum of a subset of M(V) is a lattice

element. In a boolean lattice Bn all these infima are distinct, hence it possesses
2n elements.
Planar lattices have polynomially many elements only: Due to Lemma 3.26
every infimum of a three-elemental subset of M(V) is equal to the infimum of
a smaller subset. Additionally it is possible to construct lattices where indeed
all the one- and two-elemental subsets have indeed different infima.

Proposition 3.27 [Zsc05]

1. A finite planar lattice V contains at most
(

k+1
2

)
+ 1 elements, k being the

lesser of the cardinalities of M(V) and J(V).

2. For each n ∈ N there exists a planar lattice with |M(V)| = n possessing
(

n+1
2

)
+ 1 elements. The dual (replace M(V) by J(V)) holds as well.

Proof:

1. W.l.o.g. let k = |M(V)|. By Lemma 3.26, all non-
∧

-irreducibles except
the top element can be described as the meet of exactly two elements of
M(V). This yields

|V| ≤

(
k

2

)

+ k + 1 =

(
k + 1

2

)

+ 1.

15This is, the maximal cardinality of a subset of pairwise incomparable elements of an
ordered set [Bir67].
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2. Consider the IIL (see Definition 3.19) In := (In,⊆)
consisting of the set of intervals (see picture on the
right for an example of I3)

In := {i ∩ j | i, j ∈ {[1, n], [2, n + 1], . . .

. . . , [n, 2n − 1]}} ∪ {[0, 2n − 1]}.

1 2 3 4 5

(This lattice is isomorphic to the dual of the interordinal lattice [GW99]
B(In)d, see Figure 4.3.) We easily observe |In| =

(
n+1

2

)
+ 1 and M(In) =

{[1, n], [2, n+1], . . . , [n, 2n−1]}. It is easy to see that In is an IIL, thereby
the infimum and supremum of two intervals is equal to their intersection
and union respectively. Due to Theorem 3.20 In is a planar lattice. The
dual statement can be derived from the dual lattice of In.

�

3.4 Plane Diagrams

In the last section we investigated planarity on a lattice theoretical level, al-
though some proofs relied on the respective diagrams. Now we are going to
have a closer look on some properties of those diagrams. Our focus will be
moved to a rather geometrical and topological view.
At the beginning we will recall the definition of edge crossings since plane
diagrams are determined by their absence.

Definition 3.28 [GJ83,Grä98] Let pos(G) be a diagram of the graph G =
(V, E).

1. Let e and f be non-incident16 edges of G. Then the diagram edges pos(e)
and pos(f) cross in pos(G) if pos(e) ∩ pos(f) 6= ∅.

2. The number of edge crossings in pos(G) is called crossing number [GJ83]
(or complexity in [Grä98]) cr(pos(G)) of pos(G).

3. The diagram pos(G) is called optimal [Grä98] if the crossing number is
minimal, i.e. if no diagram of G with a lesser crossing number exists. ♦

In graph diagrams it is difficult to describe diagram edges and, in particular, to
determine pairs of crossing edges, since they are mapped to arbitrary Jordan-
arcs. In contrast, the same task is surprisingly easy for diagrams of ordered
sets due to the inherent upward-drawing-constraint. As stated in condition
2 of Definition 3.10, the image of an edge can be considered as a continuous
function, the so called corresponding function:

16I.e. e and f have no vertex in common.
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Definition 3.29 [KR75] Let V = (V,≤) be a lattice and ≺ its neighborhood
relation.

1. A chain C in V is a sequence z0 ≺ z1 ≺ . . . ≺ zn of lattice elements zi.
In case of both z0 = 0V and zn = 1V we call C maximal chain.

2. In a diagram pos(V) we define the function xC : [y(0V), y(1V)] 7→ R
corresponding to C by xC(y) = xzizi+1

(y) if y ∈ [y(zi), y(zi+1)] holds for
all 0 ≤ i ≤ n − 1. Additionally we define pos(C) = {(xC(y), y) | y ∈
[y(0V), y(1V)]}. ♦

This means that pos(C) is just the union of the sets pos(zizi+1) as defined
in Definition 3.10. The function xC is a concatenation of the corresponding
functions of is edges and therefore continuous itself. Analyzing crossings is
very simple in terms of the corresponding functions of the involved edges, as
stated in the following lemma.

Lemma 3.30 [KR75] Let pos(P ) be a diagram of an ordered set P . Let
e1 = (v1, w1) and e2 = (v2, w2) be non-incident edges of the graph of P and xe1

and xe2 their corresponding functions. Then e1 and e2 cross if and only if the
following condition holds:

(xe1(ymax) − xe2(ymax)) · (xe1(ymin) − xe2(ymin)) < 0.

Thereby ymax := min{y(w1), y(w2)}, the y-coordinate of the lower of the sinks
w1 and w2 and dually ymin := max{y(v1), y(v2)}, the y-coordinate of the higher
of the sources v1 and v2 have to satisfy ymin < ymax.

Proof: This is an immediate consequence of the intermediate value theorem.
�

The picture on the right gives an example of the char-
acterization of crossing edges due to Lemma 3.30.
One clearly notices ymax = y(w2) and ymin = y(v1)
and further

xe1(y(w2)) < xe2(y(w2)) and

xe1(y(v1)) > xe2(y(v2)).

6

-
x

y

v1

w1

v2

w2
ymax

ymin

A conjugate order on a lattice can be considered as a relation ordering the
elements from left to right. This assertion implies that we refer to a visual,
graphical background. Therefore we expect to be able to find a relation that
determines whether elements are left or right of each other in a diagram. Now
we provide a formal definition satisfying this aim. For a graphical depiction of
this left-relation see Figure 3.6.
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Definition 3.31 [KR75] Let V = (V,≤) be a lattice and pos(V) a plane
diagram of it. Let λ∗ ⊆ V × V be a relation defined by

v λ∗ w : ⇐⇒ ∃v∗ ∈ V : v, w ≺ v∗ and

xvv∗(ymax) < xwv∗(ymax),

where ymax := max{y(z) | z ∈ V, z ≺ v∗}. Two diagrams are called similar if
their respective λ∗ relations are the same.
The “to the left”-relation λ ⊆ V × V induced by pos(V) is defined by

v λ w : ⇐⇒ v ‖ w and

∃v′ ≥ v, w′ ≥ w : v′, w′ ≺ (v ∨ w) with v′ λ∗ w′.

If v λ w holds, we say v is left of w. Dually we define ̺ := λ−1 and say w is
right of v.

♦

ymax

v∗

v1

v2
v3

v4

v ∨ w

v′ w′

v w

Figure 3.6: On the left one clearly notices v1λ
∗v2λ

∗v3λ
∗v4. All the elements

are lower neighbors of v∗. On the right we conclude vλw from v′λ∗w′, both of
the latter elements being lower neighbors of v ∨ w.

It is shown in [KR75] that v λ w is equivalent to the existence of a maximal
chain C ∋ w, where x(v) < xC(y(v)) holds. This helps to prove the following
proposition, which actually is the part “1 =⇒ 2” of Theorem 3.20.

Proposition 3.32 [KR75] Let pos(V) be a plane diagram of the lattice V.
Then the “to the left” relation λ induced by pos(V) is a conjugate order.

Sketch of the proof: From v λ w and w λ v we can conclude that there are two
maximal chains C ∋ v and D ∋ w such that pos(C) and pos(D) intersect
“between” (in terms of the y-coordinate) pos(v) and pos(w). As pos(V) is
plane, the intersection point represents a lattice element z fulfilling v < z < w
in contradiction to v and w being incomparable. By applying similar arguments
we can show λ to be transitive. Hence it is a strict order. Finally, it is easy to
see that every two incomparable elements are either left or right of each other
according to Definition 3.31, therefore λ is a conjugate relation.
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While plane lattice diagrams are quite well researched, the task of minimizing
the number of edge crossings in the non-planar case remains considerably more
difficult. The problem of finding an optimal graph diagram is NP-hard [GJ83].
Freese states in [Fre04] that this result can be modified for lattice diagrams in
a straight-forward way. Additionally he proves that even by fixing the ordering
of the atoms17 the problem remains to be NP-complete.
Despite these rather discouraging results we will try to give some hints that
allow us to treat “nearly planar” lattices, i.e. those with a small number of
edge crossings, in Chapter 7.

3.5 Formal Concept Analysis

The original intention of formal concept analysis (FCA) was to supply a mathe-
matical formalization of “concept” and “concept hierarchy”. A comprehensive
monograph on FCA is the book of Ganter and Wille [GW99], providing the
basic notions and disclosing connections to classical lattice theory.

The investigated basic structures recall of tables or data bases. They consist
of objects and attributes and (in the simplest case) a relation declaring the
incidence between both sets and are denoted formal contexts.

Definition 3.33 [GW99] A formal context K = (G, M, I) consists of two
sets G and M and a relation I ⊆ G×M . The elements of G are called objects
and the elements of M attributes. If gIm holds we say the object g possesses
the attribute m.

♦

An example of a formal context, given by a cross table, is depicted in Figure
3.7. The objects, namely bodies of water, are arranged line by line and the
attributes in columns. The crosses indicate the attributes of each type of water
body. Note that we will omit the term “formal” in the following for convenience
reasons and use both context and cross table synonymously.
In order to be able to describe concepts we first need a notion of common
attributes of an object set and vice versa. This is done by the derivation
operators.

Definition 3.34 [GW99] Let K = (G, M, I) be a context. The derivation
operators18 are defined by

A′ := {m ∈ M | gIm ∀ g ∈ A} and B′ := {g ∈ G | gIm ∀ m ∈ B}

for all subsets A ⊆ G and B ⊆ M respectively.
♦

17An atom of a lattice is an upper cover of the bottom element.
18Although two mappings, the derivation operators are commonly denoted by the same

symbol for convenience reasons.
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Definition 3.35 [GW99] Let K = (G, M, I) be a context. The pair (A, B)
is a concept if A ⊆ G and B ⊆ M satisfy A′ = B and B′ = A. Then A is the
extent and B the intent of the concept. The set of concepts of K is denoted by
B(K).

♦

The set of concepts of a context K can be ordered canonically by a relation ≤
satisfying

(A, B) ≤ (C, D) : ⇐⇒ A ⊆ C( ⇐⇒ B ⊇ D).

See the diagram in Figure 3.7 for a depiction of the concept hierarchy of the
context water bodies. Each node represents a concept (A, B), where A consists
of all objects labeled below (A, B) and dually B of all attributes above (A, B).
This method is called reduced labeling in [GW99].

n
at

u
ra

l

la
rg

e

le
n
ti

c

lo
ti

c

stream × ×
dam × ×
river × × ×
lake × × ×

river lake

stream dam

natural large

lotic lentic

Figure 3.7: A context (left) about water bodies given by a cross table and its
corresponding concept lattice (right) provided by a diagram.

It is easy to show that B(K) together with the relation ≤ forms a complete
lattice. This claim is the first part of the following main theorem on concept
lattices.

Theorem 3.36 [GW99] Let K be a context and B(K) := (B(K),≤). Then
B(K) is a complete lattice. The infimum and supremum are determined by

∧

t∈T

(At, Bt) =

(
⋂

t∈T

At,

(
⋂

t∈T

At

)′)

∨

t∈T

(At, Bt) =

((
⋂

t∈T

Bt

)′

,
⋂

t∈T

Bt

)

A lattice V = (V,≤) is isomorphic to B(K) if there exist mappings γ : G 7→ V
and µ : M 7→ V , s.t. J(V) ⊆ γ(G) and M(V) ⊆ µ(M) and the condition
gIm ⇐⇒ γg ≤ µm holds for all g ∈ G and m ∈ M .
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We conclude from the second part of Theorem 3.36 that V ∼= B(V, V,≤) as
well as V ∼= B(J(V), M(V),≤). The context (J(V), M(V),≤) associated to
the latter concept lattice will be called standard context of V [GW99]. It is
the smallest possible context representation of a lattice. See Figure 3.8 for
an example of a lattice and its standard context. We will use this particular
contexts widely in Section 4.4.

m n o

p

q
g h i j

K m n o p q
g

h

i
j

Figure 3.8: A lattice V and its standard context. The sets of irreducibles
J(V) = {g, h, i, j} and M(V) = {m, n, o, p, q} are marked.

3.6 Ferrers-relations

Ferrers-relations were introduced independently by Riguet [Rig51] and Guttman
[Gut44] in an attempt to treat qualitative data. More complex relations can
be represented as the intersection of Ferrers-relations (see below) leading to
the Ferrers-dimension. Since a formal context is nothing else than a relation
between two sets, we can apply the theory easily to FCA. The connection
between the Ferrers- and the order dimension, given by Cogis [Cog82], finally
shifts our attention to relations possessing a Ferrers-dimension of at most two.

Definition 3.37 [Cog82,GW99] A Ferrers-relation F is a relation F ⊆ A×B
with

a1Fb1 ∧ a2Fb2 =⇒ a1Fb2 ∨ a2Fb1.

The Ferrers-dimension fdim(K) of a context K = (G, M, I) is the smallest
number of Ferrers-Relations Ft ⊆ G × M, t ∈ T , whose intersection is equal
to I, i.e. I =

⋂

t∈T Ft. ♦

In a cross table representing a context K we notice
that I is a Ferrers-relation if and only if the configu-
ration depicted on the right does not occur.

m1 m2

g1 ×
g2 ×
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The complement F := (A × B) \ F of a Ferrers-relation is again a Ferrers-
relation. This brings us to the following observation, which is applied exten-
sively in Section 4.4 since it allows to fill the empty cells of the cross table of
a context.

Remark 3.38 [GW99] The Ferrers-dimension of a context K = (G, M, I) is
the smallest number of Ferrers-relations covering the empty cells of its cross
table, i.e. I := (G × M) \ I =

⋃

t∈T Ft.

However, the relations Ft (t ∈ T ) are not necessarily disjoint [Reu89,Zsc06b].
It is easy to realize that in a context K = (G, M, I), I is a Ferrers-relation if
and only if B(K) is a chain (see [GW99] for a proof). As the order dimension
is defined as the intersection of a minimal number of chains, the following
theorem seems intuitively reasonable.

Theorem 3.39 19 [GW99] Let K be a context. Then fdim(K) = dim(B(K)).

We know that a lattice is planar if and only if its order dimension is at most
2 (see Theorem 3.20). Hence the result already gives a useful characterization
of contexts possessing planar concept lattices. Although the calculation of the
Ferrers-dimension in general is NP-complete [GW99], it is easily treatable in
the case we are interested in. For that purpose we introduce the notion of a
Ferrers-graph. Its nodes are the empty cells of a context and its edges indicate
which vertices can not belong to the same Ferrers-relation F . See Figure 3.9
for an example.

Definition 3.40 [DDF84,Reu89] Let R ⊆ A×B be a relation. We define the
Ferrers-graph Γ̃(R) as an undirected simple graph with vertex set V and edge
set E as follows:

V := R E := {{(a1, b2), (a2, b1)} | (a1, b1), (a2, b2) ∈ R}.

The bare Ferrers-graph Γ(R) is obtained from Γ̃(R) by deleting all isolated
vertices. By the Ferrers-graph Γ̃ of a lattice V we denote the Ferrers-graph of
its standard context K = (J, M,≤).

♦

Let χ(Γ(I)) be the chromatic number of Γ(I). There is a conjecture claiming
that

fdim(K) = r ⇐⇒ χ(Γ(I)) = r

While false in general, Doignon et al. could supply evidence for this conjecture
in the special case of r = 2.

19Originally this assertion was given more generally for posets by Cogis in [Cog82].
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K m1 m2 m3 m4

g1 × × • •
g2 • × × •
g3 • • × ×

(g1, m3)

(g1, m4)

(g2, m4)

(g2, m1)

(g3, m1)

(g3, m2)

Figure 3.9: A context K given by a cross table (left) and its corresponding
Ferrers-graph Γ(I) (right).

Theorem 3.41 [DDF84] A relation R has the Ferrers-dimension of at most
two if and only if its Ferrers-graph is bipartite.

While the ”⇐” part is quite hard to prove, the ”⇒” part is obvious, as we will
see now:

Lemma 3.42 [pri]

1. For a context K = (G, M, I) the following implication holds:

fdim(K) = 2 =⇒ Γ(I) is bipartite.

2. The Ferrers-graph Γ̃ of the standard context K of a planar lattice V is
bipartite.

Proof:

1. Since fdim(K) = 2 there exist two Ferrers-relations F1 and F2 with
F1 ∪ F2 = I = V (Γ(I)). Let (g1, m1) and (g2, m2) be elements of F1. By
Definition 3.37 we notice g1  I m2 or g2  I m1, i.e. {(g1, m1), (g2, m2)} /∈
E(Γ(I)). Analogously we conclude that there exist no edges between
elements of F2. Hence Γ(I) is bipartite, e.g. with the vertex classes F1

and F2 \ F1.

2. If V is planar then its order dimension is at most two (Theorem 3.20).
Hence, its Ferrers-dimension is at most two (Theorem 3.39). The claim
follows with the first assertion of this lemma.

�

In Chapter 6 we will give a constructive proof for the ”⇐” part of this theorem.
Additionally our framework will allow us to specify all representations of a
relation R as the intersection of two Ferrers-relations, i.e. all plane diagrams
of a lattice up to similarity.



Chapter 4

Left-relations on Lattices

In the last section we introduced conjugate orders as a way to characterize
planar lattices. Understanding an ordered set with that additional order is
surprisingly intuitive. The standard order can be considered as an above-below-
relationship, while the conjugate order supplies an additional left-right-sorting
of elements. From everyday experience it is obvious that these two relations
are orders and, moreover, that (according to Definition 3.17) two elements are
situated in exactly one of them.

There already exist relations in lattice theory called “to the left of” [KR75].
However, these are used not for lattices itself but rather for their representing
diagrams. Here we want to introduce left-relations in a more lattice-theoretical
approach. Of course we could just employ conjugate orders for that purpose
since they do the job.

However, our approach has two advantages. On one hand we construct left-
relations out of a relation on a smaller set, namely the set of

∧
-irreducibles.

This allows us to understand conjugate orders in a better way (see Propositions
4.14 and 4.18) and to introduce and investigate left-relations on contexts (see
Definition 6.1 and Lemmas 6.4 and 6.5). Moreover, by understanding a left-
relation as a unique modified extension of a linear order on the set of

∧
-irre-

ducible elements, we are even able to characterize planar contexts (see Section
4.4). This is, we give a criterion concerning the shape of the standard context
(or its representing cross table) of a lattice assuring that lattice to be planar.

On the other hand we are given a possibility to also concern non-planar lattices.
Indeed, in that case the left-relation is not an order, contradicting the common
sense. However, by “measuring” how much the property of being an order is
violated, one may give assertions beyond planarity. Unfortunately we do not
have the room to extensively discuss this fairly interesting topic in this work
and will only give some hints in Chapter 7.
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4.1 Definition and Basic Properties

The idea of left-relations was extracted from the convention of attribute addi-
tive diagrams (Definition 3.14). As we already mentioned, such a drawing is
determined completely by the vectors assigned to the attributes (or

∧
-irredu-

cibles respectively). This gives rise to the assumption that just the relationship
of the representing diagram nodes in the Euclidian plane will cause the diagram
to be plane or not. In fact, we only need a relation indicating for two nodes v
and w with common upper neighbor whether v is left of w or otherwise w is
left of v. As we already emphasized, we will shift this geometric consideration
to a lattice theoretical one. Thus, we begin by defining a sorting relation.

Definition 4.1 [Zsc05] Let V be a finite lattice and M be the set of its
∧

-
irreducible elements. A strict order S ⊆ M ×M is called sorting relation if the
condition

m∗ = n∗ ⇐⇒ m S n or n S m

holds for all elements m, n ∈ M (by m∗ we denote the unique upper neighbor
of an

∧
-irreducible m).

♦

We notice that S is a union of linear orders, each acting on the set of all
∧

-
irreducibles sharing a common upper neighbor. Based on it we can uniquely
derive a left-relation on a lattice in an iterative way from top to bottom, as we
will construct now.

For that issue we need the denotation of the set

M(v, w) := {(m, n) ⊆ M × M |

v ≤ m, w ≤ n, v ‖ n, w ‖ m}. (4.1)

of all pairs of
∧

-irreducibles (m, n), where m and n are
“above” v and w respectively and m and w and n and v
respectively are incomparable (see picture on the right).

v w

m n

Definition 4.2 [Zsc05] Let V be a finite lattice and S be a sorting relation
on V. A binary relation L ⊆ V × V defined by

v L w : ⇐⇒

{
v S w, v, w ∈ M, v∗ = w∗

∃(m, n) ∈ M(v, w) : m L n, else
(4.2)

is called left-relation (induced by S) and the relation R :=L−1 is called right-
relation on the lattice V.

♦
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In Figure 4.1 we see an example of how a left-relation is constructed due to
its definition. Notice that we are interested not in the particular diagram but
in the underlying lattice structure. The given lattice has three

∧
-irreducibles

m1, m2 and m3, the top and the bottom element (which are not taken into
consideration, since they are comparable to all other lattice elements) and the
element v1. In the left picture we see a given sorting relation, namely m1 S m2.
The

∧
-irreducible m3 is the only one possessing the upper neighbor m1. It is

therefore not in relation S to any other element. We conclude m1 L m2.
In the second picture we consider m2 and m3 and find m3 L m2 since we
have M(m3, m2) = {(m1, m2), (m3, m2)}. In the right picture we finally find
(m3, m2) ∈ M(m3, v1) and consequently m3 L v1. So we assigned the left-
relation properly; all other pairs of lattice elements are comparable.

m1 m2

m1 S m2 =⇒ m1 L m2

m3

m2

m1 L m2 =⇒ m3 L m2

v1m3

m3 L m2 =⇒ m3 L v1

Figure 4.1: An illustration of the construction of a left-relation out of a sorting
relation in a small lattice. The bigger dots symbolize the two elements just in
consideration. They are caused to be in left-relation by the shaded nodes.

Definition 4.2 somewhat seems to be formulated clumsily. One can ask why L
is defined in an iterative way rather than directly out of the sorting relation S.
This could be done for instance by

v L w : ⇐⇒

{
v S w, v, w ∈ M, v∗ = w∗

∃(m, n) ∈ M(v, w) : m S n, else
(4.3)

However this simpler approach fails sometimes to
meet our desire to have every pair of incomparable
lattice elements v and w in the left-relation, i.e. ei-
ther v L w or w L v shall hold. Consider the lat-
tice diagram depicted on the right. We encounter
M(v, w) = {(m3, m4)} but only m1 and m2 are in
sorting relation (for instance by m1 L m2). Hence,
Property (4.3) would not provide us with an informa-
tion whether v is left of w or vice versa.

m1 m2

m3 m4

v w
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When we designed the left-relation, we had certain ideas in mind about its
properties. In particular a left-relation may act exactly on pairs of incompara-
ble elements, i.e. it is supposed to be a conjugate relation (see Definition 3.17).
We gave an idea that a “simpler” definition may not meet that requirement,
but we did not show that the construction according to Definition 4.2 does.
Before doing so, we will give some characteristics of the set M(v, w) which
follow directly from its definition (see Equation (4.1)).

Remark 4.3 [Zsc05] Let (V,≤) be a finite lattice and M the set of its
∧

-irre-
ducible elements. The following properties hold for all v, w ∈ V and m, n ∈ M :

1. (m, n) ∈ M(v, w) =⇒ m ‖ n,

2. M(v, w) = ∅ ⇐⇒ v ≤ w or w ≤ v,

3. M(m, n) = {(m, n)} ⇐⇒ m∗ = n∗,

4. (m, n) ∈ M(v, w) =⇒ (m, n) ≥ (v, w) (: ⇐⇒ m ≥ v and n ≥ w).

5. (m, n) ∈ M(v, w) ⇐⇒ (n, m) ∈ M(w, v).

Lemma 4.4 [Zsc05] Let L be a left-relation on a lattice V, then L is a con-
jugate relation.

Proof: Comparable pairs of elements v and w are obviously not in L since they
are not in sorting relation and the set M(v, w) is empty (see Remark 4.3, 2.).
Now let m and n be incomparable

∧
-irreducible elements. Assume that neither

m L n nor n L m holds and that m, n is a maximal pair1 with that property.
According to Definition 4.2, the pair (m, n) is no element of the underlying
sorting relation. Due to Remark 4.3, 3. we know that there exists a pair
(m̂, n̂) meeting (m, n) ≤ (m̂, n̂) ∈ M(m, n). Since (m, n) is maximal we know
that (m̃, ñ) ∈L ∪ R and hence (m, n) ∈L ∪ R contradicting our assumption.
Finally let v and w be arbitrary incomparable lattice elements. Then there
exists a pair (m, n) ∈ M(v, w). In the last paragraph we have shown that m
and n are in left-relation, hence v and w are too.

�

We want to remark another two obvious facts. Firstly, if the lattice V is not
a linear order then there exists a non-empty sorting relation S which induces
a left-relation L. Then S−1 is a sorting relation different from S inducing
L−1 = R.
Secondly, two different left-relations L and L̃ are induced by different sort-
ing relations S and S̃: Since both left-relations are conjugate relations, the

1I.e. for all pairs (m̃, ñ) ≥ (m, n) with m̃ 6= m or ñ 6= n we find m̃ L ñ or ñ L m̃.



4.2 Left-relations and Conjugate Orders 41

assertion L 6= L̃ implies the existence of a maximal pair (v, w) of lattice ele-
ments meeting v L w and v 6L̃ w. The pair is maximal, therefore we conclude
M(v, w) = {(v, w)} and hence v S w and v 6 S̃ w. We recapitulate:

Remark 4.5 Let V be a lattice. The following assertions hold:

1. Every right-relation on V is a left-relation on V.

2. Every sorting relation S on V uniquely induces a left-relation L.

In Figure 4.2 we investigate another example of a left-relation. We consider
the lattice depicted by a diagram on the left. There exist two pairs of

∧
-ir-

reducibles with common upper neighbor, namely (a, b) and (c, d). We assume
a S b and c S d for the sorting relation. In a first step we calculate the left-
relation on pairs of incomparable

∧
-irreducibles. This yields a L b, c L d, a L c

and a L d. Finally we determine the left-relation on all other incomparable
pairs and obtain the table shown on the right. We notice that L is indeed a
conjugate relation; hence L ∪ < is connex. However, L is no order since we
find c L x L c.

a b

c d
v

w x

S a b c d
a
b
c
d

L a b c d
a
b
c
d

L,< w x v a c d b
w L < < < L <
x < < L < <
v < L L <
a L L L
c L L <
d <
b

Figure 4.2: A lattice (given on the left) with a sorting relation S, its induced
left-relation L restricted to

∧
-irreducibles and a combination of L and the

lesser-than-relation on the right.

As a last preparation for the following section, where we consider left-relations
that are additionally strict orders, we introduce a notion for those structures:

Definition 4.6 A left-relation L is called left-order if it is a strict order.
♦

4.2 Left-relations and Conjugate Orders

In the first part of this chapter we have explained that our attempt to develop
left-relations is directed by the idea to gain a useful description of conjugate
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relations. In this section we want to clarify the strong correlation between
these two concepts. We will finally conclude that every conjugate order can
be represented by a left-order and that conversely all left-orders are conjugate
orders.
Our first lemma claims that the construction principle of left-relations is in-
herent in conjugate orders, too.

Lemma 4.7 [Zsc05] Let V be a finite lattice and Lc be a conjugate order on
V. The following implication holds for all lattice elements v, w and

∧
-irredu-

cibles m and n:

m Lc n and (m, n) ∈ M(v, w) =⇒ v Lc w

Proof:
Since M(v, w) 6= ∅, we know (see Remark 4.3, 2.)
v ‖ w. With Definition 3.17 we conclude either v Lc w
or w Lc v. Let us assume w Lc v. Since (m, n) is an
element of M(v, w) we notice that m and w are in-
comparable. Therefore either m Lc w or w Lc m holds.
In the first case we find m Lc w Lc v (see picture) and in the latter w Lc m Lc n.
Since Lc is a transitive relation we conclude m Lc v and w Lc n respectively.
This contradicts Lc to be a conjugate relation since we premised v ≤ m and
w ≤ n respectively. We conclude v Lc w.

m

n

w v
L

L

�

This was already the key step towards our goal. A conjugate order Lc obviously
includes a sorting relation S. Since Lc can be generated in the same way as the
appropriate left-relation L induced by S, both are equal. This is the subject
of the next lemma.

Lemma 4.8 [Zsc05] A conjugate order Lc on a finite lattice V is a left-
relation on V.

Proof: Let Lc be a conjugate order on V. For every two incomparable
∧

-irre-
ducibles m, n ∈ M either m Lc n or n Lc m holds. Hence there exists a sorting
relation S ⊆ Lc .
Let L be the left-relation generated by S. We assume L 6= Lc . In this case
we find a maximal pair of lattice elements (v, w) with v L w and w Lc v. On
one hand we find (by applying Definition 4.2) a pair (m, n) ∈ M(v, w) with
m L n. On the other hand we know (by applying Lemma 4.7) that n Lc m.
This contradicts the assumption of the maximality of (v, w) since we know
(m, n) > (v, w) (see Remark 4.3 4).

�

The achieved results can be summarized to the following theorem.
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Theorem 4.9 [Zsc05] Let L be a relation on a finite lattice V. Then the
following are equivalent:

1. L is a conjugate order.

2. L is a left-order.

Proof: “1. ⇒ 2.” follows from Lemma 4.8.
“2. ⇒ 1.” follows from Lemma 4.4 and Definition 3.17. �

Theorem 4.9 simplifies the handling of conjugate orders. In general, a lattice

V = (V,≤) may have up to 2
k2

−k
2 (with k := |V − 2|) asymmetric conjugate

relations as candidates for conjugate orders, but at most |M(V)|! left-relations
as candidates for left-orders.

Consider the lattice M5 (see picture on the right)
as an example. It possesses 5! = 120 left-relations,
namely all permutations of the coatoms2 a, b, c, d
and e. On the other hand, if we consider the rela-
tion table of that lattice, we notice that a conjugate
relation is a subset of the incomparability relation
(consisting of the (7− 2)2 − (7− 2) = 20 empty fields
in the table). The union of a conjugate order and
its complement must cover these empty fields. Ad-
ditionally, the meet with its complement equals the
empty set. Hence, there exist 210 = 1024 candidates
for conjugate orders.

0

1

a b c d e

0 a b c d e 1
0
a >
b >
c >
d >
e >
1 > > > > > >

Of course, the number of left-relations is not polynomial in terms of the num-
ber of lattice elements. Hence, calculating left-orders naively by checking all
possible left-relations to be strict orders will fail soon in time complexity.

In Figure 4.3 we can realize the advantages and disadvantages of the attempt
to calculate conjugate orders of a lattice out of its left-relations. The upper
frame shows the interordinal lattice [GW99] B(I4). There exist just the two
sorting relations S1 = {(a, d)} and S2 = {(d, a)}. It is easy to show that both
of them result in a left-order (notice that L−1

1 = L2). The picture below shows
that things become complicated only by flipping the diagram upside down and
considering the dual lattice. Here we find that the four

∧
-irreducibles are all

coatoms. Therefore there exist 4! = 24 sorting relations. Testing all of whom
for inducing a left-order is quite tedious.

2Coatoms are the lower covers of the top element of a lattice.
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Figure 4.3: The interordinal lattice (upper picture) possesses just two sorting
relations, both supplying a left-order. In the dual interordinal lattice (lower
picture) however, we find 24 sorting relations. Only two of them induce a
left-order.

4.3 Planarity Conditions

In the last section we have shown left-orders and conjugate orders to be equiv-
alent. When we are given a sorting relation S on a lattice V, we construct the
induced left-relation L. If L turns out to be a strict order then V is planar.

The particular structure of left-relations allows us to characterize planarity
even without considering it on the whole lattice. In fact we just need to ob-
serve L on all pairs of incomparable

∧
-irreducible elements. This may improve

the testing process. The main contribution however is to ease proofs, in par-
ticular in Section 4.4 where we will be searching for conditions of standard
contexts making its appropriate lattice planar. Indeed the process of calcu-
lating all conjugate orders of a lattice can not be significantly simplified with
those techniques since we still have to consider all sorting relations.

Before we can give those results, we need some preparations. First we will
show that an asymmetric left-relation can be “proceeded” up and down.
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Lemma 4.10 [Zsc06a] Let V = (V,≤) be a finite lattice and L an asymmetric
left-relation on V. Let the lattice elements v1, v2, v3 ∈ V meet the requirements
v1 ‖ v3 ‖ v2 and v1 ≤ v2. Then

v1 L v3 ⇐⇒ v2 L v3.

Proof: There exists a
∧

-irreducible m2 satisfying both
m2 ≥ v2 and m2 6≥ v3 since v2 and v3 are incompara-
ble. Analogously we find a

∧
-irreducible m3 such that

the conditions m3 ≥ v3 and m3 6≥ v1 hold. We notice
(m2, m3) ∈ M(v1, v3) ∩M(v2, v3). Since L is asymmet-
ric, we conclude v1 L v3 ⇐⇒ m2 L m3 ⇐⇒ v2 L v3,
which is the claim.

�

v1

v2

v3

m2
m3

Lemma 4.10 is a useful tool being employed several times. As a first conse-
quence we give the following assertion.

Corollary 4.11 [Zsc06a] Let V = (V,≤) be a finite lattice and L an asym-
metric left-relation on V. Let v1, v2, v3 be lattice elements such that v1 L v2 L v3

holds. Then v1 and v3 are incomparable.

Proof: We assume v1 and v3 to be comparable. By applying Lemma 4.10 we
notice v1 L v2 =⇒ v3 L v2. This contradicts the fact that L is asymmetric.

�

Our next result is quite surprising. When we want to show a left-relation to
be an order, we have to evidence its asymmetry and transitivity. Here we can
prove that the first property already implies the second.

Lemma 4.12 [Zsc06a] Let V = (V,≤) be a finite lattice and L an asymmetric
left-relation on V. Then L is transitive.

Proof: Let v1, v2 and v3 be arbitrary lattice elements fulfilling v1 L v2 L v3.
With Corollary 4.11 we know v1 ‖ v3. We want to show v1 L v3.

1. Let v12 := (v1 ∨ v2) ‖ v3. Since we pre-
sumed v2 L v3, we conclude with Lemma
4.10 v12 L v3 and v1 L v3. By an analog
argumentation we find

v23 := (v2 ∨ v3) ‖ v1 =⇒ v1 L v3.

v1 v2

v12

v3

2. Let otherwise v123 := (v1 ∨ v2 ∨ v3) = v12 = v23. If we find
∧

-irredu-
cibles m1 ≥ v1, m2 ≥ v2 and m3 ≥ v3 then we conclude with Lemma



46 Chapter 4: Left-relations on Lattices

4.10 m1 S m2 S m3. Due to the asymmetry of S we find m1 S m3 and
therefore v1 L v3. On the other hand there exists an element v4 fulfilling
v4 ‖ v123 and either v4 > v1 or v4 > v2 or v4 > v3.

In case of v4 > v1 we notice v2 ‖ v4 ‖ v3. With
Lemma 4.10 follows

v1 L v2 =⇒ v4 L v2 =⇒ v4 L v123

=⇒ v4 L v3 =⇒ v1 L v3.
v1 v2 v3

v123
v4

An analog argumentation can be applied if there exists an element v4

satisfying v4 ‖ v123 and either v4 > v2 or v4 > v3.
�

After this preliminary work we will present the two main results of this
section, the so called planarity conditions. Both describe constraints of a
left-relation which are both necessary and sufficient for the planarity of the
underlying lattice. The first can be considered as a way to indicate which
∧

-irreducibles are “in-between” others.

Definition 4.13 [Zsc06a] A conjugate relation R on a lattice V fulfills the
first planarity condition (FPC) if

m1 R n R m2 =⇒ n > (m1 ∧ m2)

holds for all
∧

-irreducibles m1, m2, n ∈ M .
♦

See Figure 4.4 for an intuitive understanding of the necessity of the FPC.

0V

m1 ∧ m2

m1 m2

n

0V

m1 ∧ m2

m2

m1 n

Figure 4.4: When considering a lattice diagram, the necessity of the FPC for
its planarity is intuitively clear. If m1 L n L m2 or m2 L n L m1 holds, so
does n > (m1 ∧ m2). Otherwise every image of a chain from n to the bottom
element of the lattice intersects with appropriate images of chains from either
m1 or m2 to m1 ∧m2. Left-relations on diagrams will be discussed in Chapter
5.
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Proposition 4.14 [Zsc06a] Let L be a left-relation on a lattice V, then the
following equivalence holds:

L satisfies the FPC ⇐⇒ L is a conjugate order.

Proof:
“⇒”: We assume L not to be asymmetric. Then we find
two lattice elements v, w being maximal with the prop-
erty v L w L v. By Definition 4.2 there exist two pairs
(m1, n1), (m2, n2) ∈ M(v, w) with m1 L n1 and n2 L m2.
Let w.l.o.g. m1 6= m2. Moreover we know m1 ‖ n2, i.e. ei-
ther m1 L n2 or n2 L m1 holds. The first case (see picture)
leads to m1 L n2 L m2. By the presumed FPC we conclude
n2 > (m1 ∧ m2) ≥ v1 which contradicts v1 ‖ n2. The latter
implies n2 L m1 L n1, i.e. m1 > v2, again a contradiction.

m1

m2

n2

m1 ∧ m2

v

w

Therefore L is asymmetric. With Lemma 4.12 we know that L is a strict
order, i.e. a conjugate order and hence (see Theorem 3.20) V is planar.

“⇐”: A planar lattice V possesses an asymmetric left-relation L. Let m1, m2

and n be arbitrary pairwise incomparable
∧

-irreducibles satisfying m1 L n L
m2. Consider v := (m1 ∧ m2). We notice that neither v L n (this implies with
Lemma 4.10 m2 L n) nor n L v (this implies n L m1) nor v ≥ n (this implies
m1 > n) holds (see Figure 4.4). Therefore v < n.

�

As hinted already, the formulation of the FPC allows to specify which lattice
elements may be situated “in-between” others in a plane lattice diagram. One
may have the idea of introducing a ternary relation T ⊆ M × M × M by

(m1, m2, m3) ∈ T : ⇐⇒ m2 > (m1 ∧ m3) and m1 ‖ m2 ‖ m3.

Such an element of T is read “m2 is permitted to be situated between m1

and m3”. Due to Proposition 4.14, a left-relation L is a strict order if for all
m1, m2, m3 ∈ M the implication m1 L m2 L m3 =⇒ (m1, m2, m3) ∈ T holds.
It seems to be possible to construct a left-order L, if it exists at all, out of
T by consecutively attaching the elements of T (considered as three-elemental
chains) until one gets the sequence of a linear extension of L. However, we
could not yet succeed in creating an algorithm performing that task.

While the FPC describes planar lattices in terms of in-betweenness of
∧

-irre-
ducibles in a respective left-relation, the Second Planarity Condition provides
a characterization by clustering them. In Figure 4.5 we give an intuitive ex-
planation. Beforehand, we need to introduce some notations.

For two sets Ã ⊆ A and B̃ ⊆ B and a relation R⊆ A × B we write Ã R B̃
if Ã × B̃ ⊆R, i.e. if each element of Ã is in relation to each element of B̃.
Moreover, we recall R<:=R ∪ < and R>:=R ∪ > respectively.
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v
w

v∨wm1

m2

m3

m4 m5

m6

M(v) \ M(w)
︷ ︸︸ ︷

M(w)
︷ ︸︸ ︷

v
w

v∨w
m1

m2

m3

m4
m5

m6

M(v) \ M(w)
︷ ︸︸ ︷

M(w)
︷ ︸︸ ︷

Figure 4.5: The SPC holds, if for each two incomparable lattice elements v and
w the

∧
-irreducibles above w are either right or greater or left or greater than

the ones which are above v but not above w.

Definition 4.15 [Zsc06a] A conjugate relation R on a lattice V fulfills the
second planarity condition (SPC) if the two below-stated requirements are sat-
isfied:

1. R is asymmetric on M × M .

2. For all lattice elements v ‖ w ∈ V holds

(M(v) \ M(w)) R< M(w) or M(w) R> (M(v) \ M(w)).
♦

Lemma 4.16 [Zsc06a] Let L be a left-relation on a lattice V. Then the
following equivalence holds:

L satisfies the SPC ⇐⇒ L is a conjugate order.

Proof:
“⇒”: We prove that the SPC implies the FPC: Let m1, m2 and n be elements
of M satisfying m1 L n L m2. Furthermore let v := m1∧m2. Obviously v 6≥ n.
If we assume n ‖ v, we note m1, m2 ∈ (M(v) \ M(n)). Since n ∈ M(n) we
conclude

m1 L n =⇒ (M(v) \ M(n)) L< M(n) =⇒ m2 L n,

contradicting the asymmetry of L. Therefore v < n.

“⇐”: Since L is a conjugate order it is a strict order on M × M . Let v and
w be arbitrary lattice elements. Let m ∈ M(v) \ M(w) and n ∈ M(w) be
incomparable

∧
-irreducibles . In case of m L n we conclude with Lemma 4.10

m L n =⇒ m L w =⇒ v L w

=⇒ M(v) \ M(w) L {w} =⇒ M(v) \ M(w) L< M(w).

The other case n L m can be handled in an analog way.
�
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Due to Lemma 4.16, it is possible to decompose the set of
∧

-irreducibles
above two incomparable lattice elements v ‖ w into three parts w.r.t. a left-
order: we have either

M(v) \ M(w) L< M(v ∨ w) L> M(w) \ M(v) or vice versa

M(w) \ M(v) L< M(v ∨ w) L> M(v) \ M(w).

By verifying the SPC on every pair of incomparable lattice elements, one gets a
bundle of clusters of

∧
-irreducible elements. A left-relation L is a left-order, if

in a linear extension of L the elements of each cluster are sorted consecutively.
However, we failed to design an appropriate algorithm to create left-orders out
of the clusters provided by the SPC as well.

The SPC can be formulated in a more efficient way. Instead of clustering
the

∧
-irreducibles above all lattice elements it is enough to consider the

∨
-

irreducibles. This is sufficient to characterize planarity.

Definition 4.17 [Zsc06a] A conjugate relation R on a lattice V fulfills the
reduced second planarity condition (rSPC) if the subsequent requirements are
satisfied:

1. R is asymmetric on M × M .

2. For all
∨

-irreducibles g1 ‖ g2 ∈ V holds

(M(g1) \ M(g2)) R< M(g2) or M(g2) R> (M(g1) \ M(g2)).
♦

Proposition 4.18 [Zsc06a] Let L be a left-relation on a lattice V, then the
following equivalence holds:

L satisfies the rSPC ⇐⇒ L is a conjugate order.

Proof:
“⇒”: Similarly to the last proof we show that the rSPC implies the FPC. Let
m1, m2 and n be

∧
-irreducibles fulfilling m1 L n L m2. Define v := m1 ∧ m2.

Clearly v 6≥ n since n ‖ m1.
Let us assume v ‖ n. Then we find

∨
-irreducibles

g and h satisfying g ≤ v, h ≤ n and n ‖ g ‖ h (see
picture). With the rSPC we find

n L m1 =⇒ (M(h) \ M(g)) L< M(g) =⇒ n L m2

contradicting L to be asymmetric. Therefore v < n.

m1m2

n

v

gh

“⇐”: If L is a conjugate order, it fulfills the SPC (see Lemma 4.16) and
hence the rSPC, too.

�
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Although the FPC and rSPC give helpful characterizations of the planarity
of a lattice by conditions referring to their

∧
-irreducible elements, we were not

able to use them algorithmically to find plane diagrams efficiently. We will
come back to this issue in Chapter 6.

Nevertheless, at least the FPC will be of extensive use in our subsequent
considerations. Deciding whether a lattice is planar only from the interrelation
of the set M of

∧
-irreducibles saves a lot of work. In particular, we will use

the FPC in the next section to observe whether there exists a linear order on
M that induces a left-order on the corresponding lattice. We will describe
this linear order by an enumeration (to be understood as an indexing) of the
elements of m. Such a linear order usually appears in a context or, more
precisely, a cross table. This naturally leads to the question whether we can
characterize the planarity of a lattice by its standard context.

4.4 Planar Contexts

The concept of a planar context may be misleading. Of course, by this notation
we do not mean a context that can be drawn in the plane, but the standard
context of a planar lattice. We chose that name for formulating this topic in a
concise way.

In this section we want to clarify how to recognize “at a glance” from a
standard context K = (J(V), M(V),≤) whether the appropriate lattice V is
planar. Thereby, we rely on the so-called consecutive-one property introduced
by Fulkerson and Gross in [FG65]. A relaxed version of that property (which
we will call third planarity condition) necessarily and sufficiently allows the
desired statement.

The consecutive-one property is investigated particularly in graph theory. A
matrix M ∈ {0, 1}m×n (e.g. an adjacency matrix) satisfies this property if its
columns can be permuted, s.t. in each row all entries containing the number 1
are sorted consecutively. We apply this intuition to our purpose:

Definition 4.19 [FG65,BL76] A context K = (G, M, I) fulfills the consecutive-
one property if there exists an enumeration of the attributes, i.e. a bijective
mapping ε : M → [1, . . . , |M |], s.t. the condition

gImi ∧ gImk =⇒ gImj

holds for all objects g ∈ G and for all attributes mi, mj, mk ∈ M satisfying
1 ≤ ε(mi) < ε(mj) < ε(mk) ≤ |M |.

♦
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If a context K = (G, M, I) fulfills the consecutive-one property then we can
decompose the Cartesian product G × M into three factors F1, F2 and I by

F1 := {(g, m) | ∀n ∈ M : ε(n) ≤ ε(m) ⇒ g  I n},

F2 := G × M \ (F1 ∪ I).

In a cross table, the sets F1, I and F2 can be easily
encountered by sorting the attributes according to ε
(see picture on the right). The set F1 consists of
all empty cells left of any cross and F2 of the empty
cells right of any cross. As the picture suggests, both
F1 and F2 are Ferrers-relations. That implies that
K = (G, M, I) is planar, as we will show next.

F1

F2

I

Lemma 4.20 Let K = (J(V), M(V),≤) be the standard context of a lattice
V. If K fulfills the consecutive-one property then V is planar.

Proof: Let F1 and F2 be defined as above. Let (j1, m1), (j2, m2) ∈ F1 with
ε(m1) ≤ ε(m2) then also (j2, m1) ∈ F1. Hence F1 is a Ferrers-relation.

Let (j1, m1), (j2, m2) ∈ F2 with ε(m1) ≤ ε(m2).
There exists a

∧
-irreducible m satisfying ε(m) < ε(m1)

and j1Im, otherwise we had (j1, m1) ∈ F1. Since
K fulfills the consecutive-one property we conclude
(j1, m2) ∈ F2.

K m m1 m2

j1

j2

With Remark 3.38 we notice fdim(K) = 2 and with Theorem 3.39 and
Theorem 3.20 we conclude that V is planar.

�

In [DSRW89, DS05], a modification of the consecutive-one property is in-
troduced that characterizes adjacency matrices of bipartite graphs having a
Ferrers-Dimension of at most two:

Theorem 4.21 [DSRW89] A bipartite graph G has a Ferrers-dimension of at
most two if the rows and columns of the biadjacency matrix B (i.e. the cross
table) can be permuted independently so that in the rearranged matrix no 0 has
a 1 both below it and to its right.

Since it is shown in [DS05] that this property is equivalent to the Ferrers-
graph Γ(B) being bipartite we may notice (with Theorem 3.41) that one can
characterize planar lattices by this property, too.

However, we will give another characterization that relies more on properties
of the corresponding lattice V , in particular the comparability of certain

∧
-

irreducible elements. By our construction we may even find a left-order of
V.
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The consecutive-one property itself of a context K is not necessary for the
planarity of the respective lattice V. We will show that in a small example.
Consider the lattice given in Figure 4.6. Although it is obviously planar, we can
not find an enumeration of the

∧
-irreducibles m1, m2, m3, m4, s.t. the property

is satisfied. This is due to the fact that for each enumeration ε, we find one
∧

-irreducible mi, i ∈ {2, 3, 4}, s.t. |ε(m1) − ε(mi)| > 1, resulting in a “hole”
between m1 and mi in the row according to ji.

m1

m2 m3 m4

j1

j2 j3 j4

K m1 m2 m3 m4

j1

j2

j3

j4

Figure 4.6: A planar lattice V and its standard context K, which does not
fulfill the consecutive-one property.

However, we observe that in this particular example the
∧

-irreducible m1 is
greater than any of the others. Indeed in general we can relax the consecutive-
one property by allowing certain “holes”. More precisely, any cross j ≤ n on
the right of a hole j � m must refer to a

∧
-irreducible n that is greater than

m.
This will allow us to characterize planar contexts in a satisfactory way. Be-

sides that an appropriate enumeration already determines a left-order (provid-
ing a possibility to actually draw a plane diagram of the lattice according to
Section 5.3) as we will point out in the following.

Definition 4.22 [Zsc06a] Let K = (J, M,≤) be the standard context of a
lattice V. Let ε be an enumeration of the attributes satisfying

j ≤ mi, j 6≤ mj , j ≤ mk =⇒ mj ≤ mk (4.4)

for all
∨

-irreducibles j ∈ J and all
∧

-irreducibles mi, mj, mk ∈ M fulfilling
1 ≤ ε(mi) < ε(mj) < ε(mk) ≤ |M |. Then we call ε planar enumeration.

The context K fulfills the third planarity property (TPC) if it possesses a
planar enumeration ε.

♦

Before giving evidence to the fact that the TPC indeed characterizes pla-
narity, we have to clarify how a planar enumeration determines a left-order.
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For this purpose we define the relations

Sε := {(m, n) | m∗ = n∗ and ε(m) < ε(n)}, (4.5)

Lε := {(m, n) | m ‖ n and ε(m) < ε(n)}. (4.6)

An example of a standard context K of a lattice V possessing a planar enu-
meration ε is depicted in Figure 4.7. The elements of M(V) = {n1, . . . , n5}
and J(V) = {j1, . . . , j5} are labeled in the lattice diagram. The enumeration
is given by ε(ni) = i, i.e. by the sorting of the

∧
-irreducibles in the cross table.

In the rows corresponding to the
∨

-irreducibles j1, j2, j4 and j5 we have con-
secutive crosses. In the remaining row we find one “hole” (marked). However,
n3 < n4 holds for the involved

∧
-irreducible elements assuring ε to be a planar

enumeration indeed. We notice Sε= {(n2, n4)} and Lε is given by the table in
Figure 4.7.

n2

n1

n4

n5

n3
j3

j1 j2

j4 j5

K n1 n2 n3 n4 n5

j1

j2

j3

j4

j5

Lε n1 n2 n3 n4 n5

n1

n2

n3

n4

n5

Figure 4.7: The lattice V given by the diagram on the left possesses a standard
context K fulfilling the TPC. The relation Lε given in the right table determines
a left-order L on V.

Indeed, the relation Sε provides a sorting relation on V and Lε its left-
relation (restricted to M × M) that can be shown to be a left-order with the
help of the FPC.

Lemma 4.23 Let K = (J, M,≤) be the standard context of a lattice V pos-
sessing a planar enumeration ε. Then the following holds:

1. Sε is a sorting relation.

2. Let L be the left-relation induced by Sε, then Sε ⊆ Lε = L ∩ (M × M).

3. L is a left-order.
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Proof:

1. One can easily check that Sε is both asymmetric and transitive, i.e. a
strict order. Additionally, for any two distinct

∧
-irreducibles m, n ∈ M

sharing the same upper cover m∗ we note either ε(m) < ε(n) or ε(n) <
ε(m), i.e. m Sε n or n Sε m. According to Definition 4.1 Sε is a sorting
relation.

2. We first note m∗ = n∗ =⇒ m ‖ n, i.e. Sε ⊆ Lε.

Now let m1, m2, m3 ∈ M with ε(m1)<ε(m2)<ε(m3) and m1 < m3 ≯ m2.
We find

∀j ∈ J : j ≤ m1
m1<m3=⇒ j ≤ m3

Def. of ε
=⇒ j ≤ m2,

i.e. m1 < m2. In the same manner one can show that the implication
m1 > m3 ≯ m2 =⇒ m3 < m2 holds for all such

∧
-irreducibles .

Let m, n be
∧

-irreducibles satisfying m Lε n and
(m̃, ñ) ∈ M(m, n) be arbitrarily chosen (see picture
on the right). We note ε(m) < ε(n). The inequal-
ity ε(ñ) < ε(m) < ε(n) implies n < m (see last
paragraph) which contradicts n ‖ m. We conclude
ε(m) < ε(ñ). Analogously, ε(m) < ε(ñ) < ε(m̃)
implies m < ñ contradicting m ‖ ñ. That is,
ε(m̃) < ε(ñ) and hence m̃ Lε ñ.

m n

m̃ ñ

Now let (m, n) ∈ L△Lε be maximal3. Recall that m ‖ n. Let w.l.o.g.
(m, n) ∈ L and (n, m) ∈ Lε. According to Definition 4.2 there exists
a pair (m̃, ñ) ∈ M(m, n) satisfying m̃ L ñ. However, due to the last
paragraph we conclude ñ Lε m̃ contradicting the maximality of (m, n).
Hence L△Lε= ∅, i.e. Lε = L ∩ (M × M).

3. Let m1, m2, m3 ∈ M satisfying m1 L m2 L m3. With the result of the
last claim we conclude m1 Lε m2 Lε m3. By applying Definition 4.22 we
notice m2 > (m1∧m3). This means that L fulfills the FPC (see Definition
4.13 and Lemma 4.4) and therefore is a left-order (see Proposition 4.14
and Theorem 4.9).

�

Lemma 4.23 gives a possibility to construct a left-order out of a planar
enumeration. We still have to show that the TPC is also necessary for planarity
of the respective lattice. The following result has been partially published
in [Zsc06a]. However, in this version we explicitly emphasize the role of ε for
a respective left-order.

3With △ we denote the usual symmetric difference.
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Theorem 4.24 Let K be the standard context of a lattice V. Then the follow-
ing holds:

1. V is planar if and only if K fulfills the TPC.

2. Moreover, every planar enumeration ε of K uniquely defines a left-order
L on V.

Proof:

1. ⇐: Follows from Lemma 4.23.

⇒: Let V = (V,≤) be planar. Then we find a left-order L on V. The
relation L̃ := (L ∪ ≤) ∩ (M × M) is a linear order on M (see Lemma
3.18). Let ε : M → {1, . . . , |M |} be an order isomorphism between
(M, L̃) and {1, . . . , |M |},≤N} (where ≤N denotes the standard order on
N). Obviously ε exists since both structures are |M |-elemental linear
ordered sets. By construction, ε is an enumeration of the attributes.
Let j ∈ J and mi, mj , mk ∈ M be arbitrary with mi L̃ mj L̃ mk, i.e.
1 ≤ ε(mi) < ε(mj) < ε(mk) ≤ |M |. Then we conclude as follows:

j ≤ mi, j 6≤ mj , j ≤ mk =⇒ mj 6≥ (mi ∧ mk)
FPC
=⇒ mi 6L mj or mj 6L mk

Def. L̃
=⇒ mi < mj or mj < mk

mi 6≤mj

=⇒ mj < mk.

Therefore ε is a planar enumeration.

2. Every enumeration ε on K defines uniquely a sorting relation Sε (see (4.5)
and Lemma 4.23). Furthermore, Sε uniquely defines a left-relation L (see
Definition 4.2) that is a left-order (see Lemma 4.23).

�

Finally we want to visualize the connections
between the different concepts diagrammatically
(see picture on the right). The operators r1, r2

and r3 are restrictions given by

r1 : L 7→ L ∩ (M × M),

r2 : Lε 7→ Lε ∩ Ms,

r3 : L 7→ L ∩ Ms,

ε

Sε

Lε

L
Def. 4.2

r3

(4.5)

(4.6)

r1

r2
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where Ms := {(m, n) | m∗ = n∗} denotes the set of pairs of
∧

-irreducibles
sharing the same upper neighbor.

Note that a left-order L on a lattice V does not determine a unique planar
enumeration ε. In particular, L does not order comparable elements. An n-
elemental chain Cn for instance possesses exactly one left-order L = ∅ but
(n − 1)! planar enumerations since any bijective mapping ε of the n − 1

∧
-ir-

reducibles into the set {1, . . . , n − 1} fulfills condition (4.4).

Unfortunately the TPC does not supply an efficient way of finding one or all
plane diagrams of a lattice nor stating that it is not planar. Although there
exists a linear-time algorithm in terms of the order relation ≤V of the lattice
(i.e. time complexity is O(| ≤V |) ≤ O(|J(V)| · |M(V)|)) to find a consecutive-
one arrangement of a context if it exists [BL76], for the more general TPC we
do not know about such an algorithm.

However, for a small example one can often find a planar enumeration by
hand. See Figure 4.8 for a flavor of how it can be detected.

To get a starting configuration, it is always a good idea to put the greater
∧

-irreducibles to the right and the smaller to the left in a respective cross table.
By pushing the coatoms n1 and n2 to the right, n3 and n4 into the middle and
the remaining

∧
-irreducibles n5, n6 and n7 to the left, we have nearly found

ε (left table). The two problematic holes in the last row (since n1 and n3 are
not lesser than n2) can be closed if one shifts n4 and n7 right of n1 and n3

(table in the middle). The remaining obstacles (marked) can be removed by
exchanging the columns corresponding to n6 and n3. The holes in the emerging
cross table (on the right) do not break condition 4.4 since we have n6 < n1, n2

and n7 < n4 < n2. The resulting planar enumeration ε supplies the sorting
relation Sε = {(n1, n2)} and consequently a left-order L by applying Definition
4.2.

K n5 n6 n7 n3 n4 n1 n2

j1

j2

j3

j4

j5

K n5 n6 n3 n1 n7 n4 n2

j1

j2

j3

j4

j5

K n5 n3 n6 n1 n7 n4 n2

j1

j2

j3

j4

j5

Figure 4.8: Constructing a planar enumeration of a context K.

Determining a planar enumeration out of a planar lattice V is much simpler
however, if one knows a left-order L on V (for instance, it can be read from
a diagram, see Figure 5.5). By restricting L on pairs of

∧
-irreducibles and

enriching it to a linear extension, a planar enumeration is found. See Figure
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4.9 for an example. On the left, the lattice according to the context of Figure
4.8 is given by a plane diagram. The

∧
-irreducibles and

∨
-irreducibles are

labeled. We gain a linear extension by adding the strict order relation < of the
lattice itself. Sorting the

∧
-irreducibles according to this linear order supplies

a planar enumeration η. Indeed, in this case η and ε are equal.

j1

j2 j3 j4
j5

n1 n2

n3 n4

n5

n6
n7

L̃ n5 n3 n6 n1 n7 n4 n2

n5 < L < L L L

n3 L < L L L

n6 < L L <
n1 L L L

n7 < <
n4 <
n2

η(x) 1 2 3 4 5 6 7

Figure 4.9: Constructing a planar enumeration out of a left-order on a lattice
V. The relation L̃ := (L ∪ ≤) ∩ (M × M) was used already in the proof of
Theorem 4.24.



Chapter 5

Left-relations on Diagrams

In the last chapter we introduced left-relations on lattices. This is remarkable
since the notion of “left” suggests a visual aspect of the relation which is,
however, associated with a rather abstract construction. Additionally, we based
some “intuitive” explanations on diagrams where the concepts left and right
are somehow evident but not formally defined.

In this chapter we want to close these gaps. Similarly to the previous one,
we introduce sorting relations and left-relations that are defined on (or rather
induced by) diagrams however. Thereby we again base our method on ideas
given in the work of Kelly and Rival [KR75].

While the definition of the sorting relation remains effectively the same,
left-relations are introduced in a different way. An inductive approach as in
Definition 4.2 would appear clumsy; in a given diagram one expects to be able
to “see” directly which elements are left or right of others.

However, at least in case of planarity, there exists a strong coherence between
both concepts. It will be explained in Section 5.2. In fact every left-order
determines a plane diagram and, vice versa, a plane diagram represents a
conjugate order.

This enables us to actually create plane diagrams of planar lattices in Section
5.3. We will even specify the construction principle of the left-right-numbering
to draw attribute additive plane diagrams out of a left order and we will argue
why this algorithm may fail for layer diagrams.
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5.1 Definition

In Definition 4.1 the set of
∧

-irreducibles being lower neighbors of a certain
lattice element are ordered from left to right. This is actually motivated by a
view on a respective drawing, where such an order can easily be recognized,
namely by the angle of the line connecting a node with the upper neighbor.
An example is given in Figure 5.1.

Definition 5.1 [Zsc05] Let pos(V) be diagram of the lattice V. For each
∧

-irreducible n ∈ M , let ϕ(pos(n n∗) denote the angle between a horizontal
line through n∗ and the line pos(n n∗). The binary relation σ ⊆ M ×M defined
by

m σ n : ⇐⇒ m∗ = n∗ and ϕ(pos(m m∗)) < ϕ(pos(n n∗)).

is called sorting relation induced by pos(V).
♦

p1 p2 p3

p4 p5

p6

ϕ(pos(m1m
∗
1)

ϕ(pos(m2m
∗
2)

ϕ(pos(m3m
∗
3))

σ m1 m2 m3 m4 m5 m6

m1

m2

m3

m4

m5

m6

Figure 5.1: A diagram of a lattice with its sorting relation. The symbols
pi := pos(mi) (i = {1, . . . , 6}) label the nodes of the

∧
-irreducibles mi. The

gray points represent the set of upper neighbors of
∧

-irreducible elements.

In the following we will, as already done beforehand, identify lattice elements
v and their diagram nodes pos(v) for conveniency.

Obviously every sorting relation σ on a diagram is a sorting relation on the
underlying lattice since the angles of the respective diagram lines can be ordered
strictly. Note that two distinct lines pos(v1w) and pos(v2w) do not have the
same angle since this contradicts condition 4 of Definition 3.10. Conversely it
is easy to realize a sorting relation S in a diagram.

The last definition reminds us ofthe structure of the left-relation given by
Kelly and Rival (see Definition 3.31). There are two differences. We consider
also non-plane diagrams but restrict the sorting relation (which can be seen as
λ∗ in their approach) to

∧
-irreducible elements.



60 Chapter 5: Left-relations on Diagrams

v

w

C1

v

w

C2

Figure 5.2: In the left picture we observe v ̺ w since v is in the area right of
the maximal chain C1 (marked). In analogy, we find v λ w (see right picture).

Now we are going to to introduce left-relations on diagrams (see Figure 5.2).
In contrast to the last chapter, they are not induced by a sorting relation
(although they contain exactly one) since even fixing the vectors of the

∧
-ir-

reducibles restricts us only little in the layout of the remaining of the drawing.

Definition 5.2 [KR75,Zsc05] Let V be a finite lattice and pos(V) a diagram
of it. For a maximal chain C,

Fl(C) := {(x, y) ∈ R2 | y ∈ [y(0V), y(1V)], x < xC(y)}

is the area left of pos(C) and dually Fr(C) the area right of pos(C). We define
the left- and the right-relation λ and ̺ induced by pos(V) by

v λ w : ⇐⇒ (∃C ∋ w : pos(v) ∈ Fl(C)) ∧ (v ‖ w),

v ̺ w : ⇐⇒ (∃C ∋ w : pos(v) ∈ Fr(C)) ∧ (v ‖ w)

for all elements v, w ∈ V.
♦

In the following remark we compile some basic properties of the relations λ
and ̺ and their defining sets Fl(C) and Fr(C).

Remark 5.3 Let V be a lattice with a diagram pos(V). Let λ and ̺ be the
left- and right-relation on pos(V). Let C be a maximal chain in pos(V). Then
the following hold:

1. Fl(C)
.
∪ pos(C)

.
∪ Fr(C) = F (pos(V)) := R × [y(0V), y(1V)].

2. λ ∪ ̺ = ‖.

3. λ ∪ λ−1 ⊆ ‖.

4. If pos(V) is a plane line diagram then σ is the restriction of the left-
relation λ to pairs of

∧
-irreducibles with common upper neighbor, i.e.

m∗ = n∗ and m λ n ⇐⇒ m σ n.
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5. There exist diagrams sharing the same sorting relation σ but possessing
different left-relations.

Proof:

1. This is due to the fact that the corresponding function x(C) is indeed a
function, i.e. its domain is [y(0V), y(1V)] and x(y) is a unique point.

2. Let v and w be arbitrary incomparable elements of V. There exists a
maximal chain C = 0V . . . w . . . 1V. Clearly pos(v) ∈ F (pos(V))\pos(C),
the assertion follows with 1. and Definition 5.2.

3. Except for some degenerated diagrams left and right
side of the inequality are equal. See the picture on the
right for an example. There exists exactly one maximal
chain containing v and w is in the area right of this
chain, i.e. v ̺ w. In the same way we conclude w ̺ v.

v

w

4. Let m and n be
∧

-irreducibles with common upper neighbor m∗. Let
xmm∗ and xC be the corresponding functions of the line pos(mm∗) and
the image of a maximal chain C containing n. Since these lines do
not intersect, we conclude with the intermediate value theorem either
xC(y) < xmm∗(y) or xC(y) > xmm∗(y) for all y ∈ [y(m), y(m∗)]. Hence
m σ n ⇐⇒ m λ n.

5. An example for this fact is given in Figure 5.3.
�

c

a

d

b e
a b c d e

a λ λ λ

b λ

c λ λ λ

d

e

a

d

b
c

e
a b c d e

a λ λ λ

b λ

c λ λ

d λ

e

Figure 5.3: Two diagrams of the same lattice with their left-relations. Both
include the sorting relation a σ b σ e However, their left-relations are not equal,
as depicted in the respective tables.
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5.2 Coherence to Left-relations on Lattices

As already mentioned, the introduced concepts resemble appropriate approaches
to add a left-right perspective to the standard up-down one in diagrams given
by Kelly and Rival [KR75] in Definition 3.31. Now we want to merge both
frameworks of left-relations. This will finally enable us to compare left-relations
on lattices and on diagrams.

We start with a lemma that confirms the containedness relations between σ,
λ and λ∗ one may expect already.

Lemma 5.4 Let pos(V) be a plane diagram of the lattice V. Let σ be its
sorting relation, λ its left-relation and λ∗ the relation according to Definition
3.31. Then σ ⊆ λ∗ ⊆ λ.

Proof: σ ⊆ λ∗ is an immediate consequence of the Definitions 3.31 and 5.1.
λ∗ ⊆ λ: We repeat the proof originally pub-

lished in [KR75]: Let v λ∗ w and

C = 0 ≺ w1 ≺ . . . ≺ wr ≺ w ≺ w∗

be a chain. Since pos(V) is a diagram, we know
by Definition 3.31 that x1 := xvw∗(y(w)) < x(w).
By iteratively applying Lemma 3.30 we conclude
xvw∗(y(wk)) < x(wk) for all k with y(wk) > y(v).
This implies x(v) < xC(y(v))) =: x2, i.e. v λ w
(see picture on the right).

w2

w1

0V

x(v) x(w)

y(v)

y(w)

x1 x2

v

w∗

w

�

Now we are able to bring together the ideas developed in Definitions 3.31, 5.1
and 5.2, at least for plane diagrams pos(V) of lattices V. The first assertion
of Corollary 5.5 claims that in that case the relation “to the left of” and
the left-relation are equal. Consequently one can define similarity in terms of
appropriate left-relations and discover them to be left-orders.

While these three conclusions were more or less known (see [KR75]), the re-
maining two involve the much smaller sorting relation σ into our investigation.
Both σ and λ uniquely determine each other in an analog way as sorting and
left-relations do in the lattice case.

Remarkably is the last statement. It characterizes similarity of diagrams just
by the equality of the underlying sorting relations instead of the larger relation
λ∗. This means that the example depicted in Figure 5.3 can not occur. Two
plane diagrams possessing the same sorting relation have the same left-relation,
too.
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Corollary 5.5 Let V be a planar lattice. Then the following holds:

1. [KR75] The left-relation λ of a plane diagram pos(V) is equal to its “to
the left” relation (see Definition 3.31).

2. Two (plane) diagrams are similar if and only if their respective left-
relations λ are equal.

3. The left-relation λ of a plane diagram pos(V) is a left-order on V.

4. In a plane diagram pos(V), the left-relation λ and the sorting relation σ
uniquely determine each other. Moreover, λ can be calculated from σ via
the construction given in Definition 4.2.

5. Two (plane) diagrams are similar if and only if their respective sorting
relations σ are equal.

Proof:

2. By definition, two plane diagrams pos1(V) and pos2(V) are similar if
their respective relations λ∗

1 and λ∗
2 correspond to each other. Hence the

relations “to the left of” are equal. With statement 1 we conclude that
also the left-relations are equal.

On the other hand, if two diagrams possess equal left-relations λ1 = λ2

then λ∗
1 = λ∗

1 holds for the respective relations according to Lemma 5.4.
Hence the diagrams are similar.

3. This follows from Corollary 5.5 1., Proposition 3.32 and Theorem 4.9.

4. Let pos(V) be a plane diagram of V with sorting relation σ and left-
relation λ. Due to 3. λ is a left-order, i.e. uniquely determined (see
Remark 4.5 2.) by a sorting relation S = λ ∩ {(m, n) | m∗ = n∗}.
Clearly, σ = S since σ ⊆ λ ∩ {(m, n) | m∗ = n∗}.

5. Two similar diagrams have the same relation λ∗ and hence (see Lemma
5.4) the same sorting relation.

Conversely, two diagrams possessing the same sorting relation σ1 = σ2

also possess the same left-relation λ1 = λ2 (see 4.), i.e. are similar (see
2.). �

The following theorem connects left-relations on lattices and those on dia-
grams: Every left-relation on a plane diagram pos(V) is a left-order on V, and
vice versa every left-order L on V can be realized in a plane diagram. Conse-
quently we can characterize all plane diagrams (up to similarity) by a lattice
theoretic condition without taking care of topological properties. Keep in mind
that parts of the following result are to be found in Theorem 3.20 already.
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Theorem 5.6 [Zsc05] Let V be a finite lattice. The following statements are
equivalent.

1. There exists a plane diagram pos(V) with the left-relation L.

2. L is a left-order on V.

Proof:
“1. ⇒ 2.”: That is the assertion of Corollary 5.5 3.
“2. ⇒ 1.”: We define two relations L< := L∪ < and R< := R ∪ <. It is easy
to show (see Theorem 3.20) that they are linear orders. Let the maps l and r
be embeddings of (V, L<) and (V, R<) respectively into (R, <).

Let pos be a map assigning to each v ∈ V the point (l(v), r(v)) and to each
pair of neighboring elements a straight line segment connecting them. By the
definitions of l and r we realize that pos meets the conditions 1, 2 and 3 of
Definition 3.10. We show now that no line segments cross which makes the
image of pos a plane line diagram of V.

We assume that the diagram edges correspond-
ing to the elements v1 ≺ v3 and v2 ≺ v4 cross.
Let (xi, yi) be the coordinates of the node vi

and (x5, y5) be the coordinates of the intersection.
Since l and r are order homomorphisms we ob-
serve x1, x2 < x5 < x3, x4 and y1, y2 < y5 < y3, y4.
We conclude v2 < v3 and v1 < v4 and therefore
v1 ‖ v2 and v3 ‖ v4. That means that v3 and v4 do
not have an infimum in contradiction to V being
a lattice.

6

-
x

y

pos(v1)

pos(v2)

pos(v3)
pos(v4)

pos(v5)

Let λ be the induced left-relation by pos(V).
We finally show that λ = L holds. Let m S n
hold for some m, n ∈ M . Due to the definitions
of r and l the inequalities x(m) < x(n) < x(m∗)
and y(n) < y(m) < y(m∗) hold. For the angles
ϕm := ϕ(pos(m m∗)) and ϕn := ϕ(pos(n n∗)) we
get

tan ϕm =
y(m) − y(m∗)

x(m) − x(m∗)
, tan ϕn =

y(n) − y(m∗)

x(n) − x(m∗)
.

6

-
x

y

ϕn

ϕm

pos(n)

pos(m)

pos(m∗)

Since the inequalities

y(n) − y(m∗) < y(m) − y(m∗) < 0 and x(m) − x(m∗) < x(n) − x(m∗) < 0

hold, we conclude tan ϕm < tan ϕn. Both angles are in the interval (0, π/2). In
this domain the function arctan is monotonous, so we conclude ϕm < ϕn, i.e.
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m σ n. This means that the sorting relations of the lattice and its diagram are
the same.

Due to Corollary 5.5, 4., we can conclude σ = S =⇒ λ = L since λ is the
left-relation of a plane diagram.

�

Corollary 5.7 Let V be a lattice. Then the number of non-similar plane dia-
grams is equal to the number of left-orders on V.

Proof: This follows immediately from Theorem 5.6 and Corollary 5.5 2.
�

It is an interesting question whether the result of Theorem 5.6 could be
extended: instead of left-orders and plane diagrams we want to investigate
interconnections between left-relations on diagrams and lattices. We already
know that some left-relations on diagrams can not be derived as left-relations
of lattices. This is a consequence of Remark 5.3 3. The other direction remains
unsolved:

Conjecture: For every left-relation L on V there exists a diagram pos(V)
possessing the left-relation L.

We want to recapitulate the coherences between sorting and left-relations
visually in Figure 5.4. Two symbols ./. marking an arrow refer to different
settings for the planar and the general case. A left relation L is uniquely
defined by its sorting relation S (see Remark 4.5), vice versa S can be found
by restricting L to pairs of

∧
-irreducibles sharing the same upper cover. The

restricting process works as well for the diagram relations λ and σ (Remark
5.3 4.).

σ λ

S L

Def. 4.2/n.a.

restr.

Def. 4.2

restr.

pos
= (l, r)/?

=/n.a.

Figure 5.4: Connections between left- and sorting relations on lattices and
diagrams.

However, Definition 4.2 can be used to build λ out of σ only in case of plane
diagrams (see Corollary 5.5 4.). In general, λ is not uniquely determined by σ
(see Remark 5.3 5. and Figure 5.2).
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Let us now consider the arrows on the left: every sorting relation σ can
indeed be understood as a sorting relation S according to Definition 4.1 since
it is a collection of linear orders on sets of

∧
-irreducibles with common upper

neighbor. Dually, any sorting relation S can be realized in a diagram; just
draw all

∧
-irreducibles according to their order from left to right (keeping in

mind the upward drawing constraint Definition 3.10, 2.) and add the remaining
diagram nodes and lines.

Eventually, things on the right side are most complicated: a left-relation λ
of a plane diagram is a left-order (see Corollary 5.5, 3.). In general however,
λ does not define a left-relation L (see Remark 5.3, 3.). From a left-order
L one can construct a diagram possessing the left-relation L by the mapping
pos : v 7→ (l(v), r(v)) according to the proof of Theorem 5.6. In general it is
unclear whether an arbitrary left-relation L can be found in a diagram (see the
conjecture in the last paragraph).

Finally let us explain in an example, how to read the left-relation λ of a
plane diagram. This can be done in the non-plane case too, however, we are
interested in the emerging left-order L = λ. In general it may be easier (and
more useful) to obtain the larger linear order L<=L ∪ < and then to remove
pairs of comparable elements. Consider Figure 5.5 for an example.

2

3 6

9

1

5

8

4

7 L< 1 2 3 4 5 6 7 8 9

R< 1 4 7 5 8 2 6 3 9

L 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

Figure 5.5: A plane diagram of a lattice together with the linear orders L< and
R< and the left-order L.

The order L< roughly runs from the lower left to the upper right. The lowest
element is the bottom element 1 of the lattice. Next come elements 2 and 3 on
the left edge. Imagine to delete the first three elements of the diagram (seen
as a graph diagram). Then 4 is the smallest element and comes next in the
hierarchy therefore. We continue with the smaller 5 and 6 until the elements
7, 8 and 9 on the upper right edge complete the linear order (see table in the
middle). In an analog way one can calculate R<. Deleting comparable pairs
finally gives the left-order L=R−1 depicted by a relation table on the right.
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5.3 How to Draw Plane Diagrams

In the last section we gave in the proof of Theorem 5.6 a method to draw
plane diagrams of planar lattices V if we know a left-order L on V (for some
examples, see e.g. [Tro92]) . We will call it, following the notation in [CT94],
left-right-numbering. It is done in three steps:

1. Extend L to two linear orders (realizers due to Definition 3.5)

L<:=L ∪ < and R<:= R∪ < .

2. Provide two embeddings (which we will call diagram realizers)

l : (V, L<) →֒ (R, <) and r : (V, R<) →֒ (R, <).

3. Apply the point pos(v) := (l(v), r(v)) to each lattice element v and con-
nect adjacent nodes.

In a diagram arising from this construction, the
top element of the lattice is mapped to the upper
right corner and the bottom element to the lower
left. Let v ∈ V then the elements left, right,
above and below v can easily be encountered in
the drawing. The lines

xv := pos(v) + {(r, 0)T | r ∈ R} and

yv := pos(v) + {(0, r)T | r ∈ R}

1V

0V

v

FL

F>

F<

FR

divide the plane R2 into the four areas F>, FR, FL and F< (see picture).
Due to the properties of the mappings l and r, we notice

pos(w) ∈ F> ⇐⇒ w > v, pos(w) ∈ F< ⇐⇒ w < v, (5.1)

pos(w) ∈ FR ⇐⇒ w R v, pos(w) ∈ FL ⇐⇒ w L v.

Diagrams of posets fulfilling property (5.1) are called dominance drawings
[BCB+92, CT94]. Every poset of order dimension n can be embedded as a
dominance drawing into an n-dimensional grid [EEH+97], this is a consequence
of the equivalence of order and product dimension (see Definition 3.6 and The-
orem 3.20). For an example of a dominance drawing have a look at Figure
3.4

When we layout a diagram we want to implement additional constraints,
for instance attribute additivity or the layer diagram convention. In this sec-
tion, we want to investigate whether we can apply the left-right-numbering-
algorithm to this particular methods and specify the maps l and r precisely, if
possible.
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5.3.1 Attribute Additive Diagrams

In the following we will give a recursive definition of two mappings l and r, s.t.
pos(v) := (l(v), r(v)) induces a plane attribute additive diagram of a planar
lattice V with left-order L. We set

• for the top element 1V of the lattice

l(1V) = r(1V) = 0, (5.2)

• for each
∧

-irreducible m we choose positive reals dl(m) and dr(m) and
set

l(m) = l(v) − dl(m) : ⇐⇒ m ≺L<
v (5.3)

r(m) = r(v) − dr(m) : ⇐⇒ m ≺R<
v, (5.4)

where ≺L<
and ≺R<

are the neighbor relations of L< and R<, and

vecl(m) = l(m) − l(m∗), vecr(m) = r(m) − r(m∗) (5.5)

• For any other lattice element v

l(v) :=
∑

m∈M(v)

vecl(m), r(v) :=
∑

m∈M(v)

vecr(m). (5.6)

In Figure 5.6 we give an example for this construction. In order to see that
this choice will meet our expectations, we effectively have to evidence that the
attribute additive part of the construction (i.e. Equation 5.6 does not destruct
the diagram realizer property of l and r respectively. We want to mention that
unlike in [Zsc05] the diagram order increases to the upper right (instead of
upper left) in order to gain a dominance drawing.

Theorem 5.8 [Zsc05] Every finite planar lattice possesses a plane attribute
additive diagram.

Furthermore, if L is a left-order on a finite lattice V then there exists a plane
attribute additive diagram pos(V) with pos(v) := (l(v), r(v)) (as defined in the
Equations 5.2-5.6) possessing the left-relation L.

Proof: We have to evidence the following claims:

1. The mapping pos determines a point to each lattice element v: Let v 6= 1V

be a lattice element, s.t. l(w) is determined for all v ≤L<
w. If v is a

∧
-irreducible , then we find l(v) = l(ṽ) − 1 (Equation (5.3)), where ṽ is

the upper neighbor of v w.r.t. L<. Otherwise v is not a
∧

-irreducible
element, then l(m) is assigned to all m ∈ M(v) since v L< m holds for all
m ∈ M(v). Therefore we can calculate l(v) according to Equation 5.6.
A similar argumentation can be applied for the mapping r.
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2. The resulting diagram is attribute additive. This can be easily noticed
in Equation 5.6 of the definition of l and r.

3. The maps l and r are diagram realizers. Since L< and R< are linear
orders, we have to show only

v ≺L<
ṽ =⇒ l(v) < l(ṽ) and v ≺R<

ṽ =⇒ r(v) < r(ṽ). (5.7)

Let v ∈ M . Then 5.7 follows directly from Equations (5.3) and (5.4). Let
otherwise v ∈ V be a non-

∧
-irreducible element with the upper neighbor

(w.r.t. L<) ṽ. So either v L ṽ or v < ṽ holds.

Assume v L ṽ. Since v has at least two upper
neighbors w1 L w2 we know

v ≺L<
ṽ <L<

w1 <L<
w2.

Since L is transitive we conclude ṽ < w1 (otherwise
ṽ L w1 would imply v L w1) and ṽ < w2 respec-
tively. Therefore w1 and w2 are incomparable min-
imal upper bounds of the set {v, ṽ} contradicting
V to be a lattice.

w1 w2

v
ṽ

Therefore the inequality v < ṽ holds. This implies M(v) ⊇ M(ṽ) and
hence

l(v) =
∑

m∈M(v)

vecl(m) <
∑

m∈M(ṽ)

vecl(m) = l(ṽ)

since vecl(m) < 0 holds for all
∧

-irreducibles m. Analogously we find
r(v) < r(ṽ).

Hence the mapping pos induces (by connecting all neighbored pairs of lattice
element by straight lines) an attribute additive plane diagram of V.

�

Theorem 5.8 allows to construct diagrams pos(V) with the left-relation L
from arbitrary left-orders L on V. This gives rise to the following:

Corollary 5.9 Every plane diagram is similar to a plane attribute additive
diagram.

Proof: A plane diagram pos1(V) is determined up to similarity by its left-
relation λ. Since λ is a left-order, we can construct a plane attribute additive
diagram pos2(V) possessing the same left-relation λ. Therefore pos1(V) and
pos2(V) are similar.

�
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Finally we want to describe the construction of
the mappings l and r and the emerging diagram
on an example. Consider the interordinal lattice
B(I4) depicted on the right. Note that we used a
diagram for the visualization but are interested in
the underlying lattice only. We recognize six

∧
-

irreducible elements labeled a, b, c, d, e and f and
further five elements 0, 1, x, y and z. The left-
relation L of this lattice induced by the sorting
relation S = {(a, b)} is a left-order.

e

c

a b

d

f

0

1

v

xw

In Figure 5.6 the respective relations L< and R< are depicted as well as the
mappings l and r, calculated due to the definition from “right to left” (we chose
dl(m) = dr(m) = 1 for all m ∈ M) and the mappings vecl and vecr.

L< 0 e w c x v a f d b 1

l −12 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

vecl −2 −3 −4 −1 −1 −1

R< 0 f x d w v b e c a 1

r −12 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

vecr −2 −3 −4 −1 −1 −1

�

?r

l
0

-2

-4

-6

-8

-10

-2-4-6-8-10

Figure 5.6: Constructing a plane attribute additive diagram of the interordinal
lattice B(I4) via the construction given by the Equations (5.2)-(5.6).

5.3.2 Layer Diagrams

Unfortunately a similar construction as for attribute additive diagrams is not
applicable in general for layer diagrams. That means that there exist lattices
V with a given layer assignment function p : V → R, s.t. no diagram realizers
exist. We will show this in the following. For p, we chose the longest path
layering method [ES90] which is the most common approach.

Let L be a left-order on a planar lattice V. Let l and r be diagram realizers
w.r.t. L and pos(V) a diagram satisfying pos(v) = (l(v), r(v)) for all lattice
elements v. W.l.o.g. let l(1) = r(1) = 0. Obviously the layers can not be
modeled as horizontal lines, otherwise two elements v and w represented on
the same layer would satisfy l(v) = l(w) contradicting l to be a diagram realizer.
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Hence the layers are parallel lines α · x + β · y = c. Moreover, if two elements
v L w are situated on the same layer, i.e. if

α · r(v) + β · l(v) = p(v) = p(w) = α · r(w) + β · l(w)

then we notice v L< w and w R< v, i.e. l(v) < l(w) and r(w) < r(v). We
conclude α · β > 0 and if we assume c < 0 then we find α > 0 and β > 0 since
l(v) ≤ 0 and r(v) ≤ 0 holds for all lattice elements v ∈ V.

We consider the interordinal lattice B(I4) investigated in the last section
together with the longest path layer assignment function p given by

v 1 a b c v d e w x f 0
p(v) 0 −1 −1 −2 −2 −2 −3 −3 −3 −3 −4

and the left-order induced by the sorting relation S = {(a, b)}. Now we con-
clude as follows:

α · r(a) < 0 =⇒ β · l(a) > −1 =⇒ β · l(f) > −1 =⇒ α · r(f) < −2

β · l(b) < 0 =⇒ α · r(b) > −1 =⇒ α · r(e) > −1 =⇒ β · l(e) < −2,

i.e. α · r(0) + β · l(0) < −4 = p(0) since
we know r(0) > r(f) and l(0) < l(e) ac-
cording to the left-order L (see picture
on the right, the layers are the diago-
nal lines). This means that the bottom
element of the lattice can not be posi-
tioned on its desired layer. An analog
argumentation can be applied for the
second left-order induced by the sorting
relation S = {(b, a)}. We summarize to
the following:

�

?

l -1-2

r

-1

-2

l(a)l(e)

r(b)

r(f)

b

a

e

f
0V

1V

Proposition 5.10 There exist planar lattices V with a longest path layer as-
signment function p : V → R, s.t. no pair of diagram realizers r and l creating
a layer diagram pos(V) = (r(v), l(v)) according to p exist.

Nevertheless we assume that there exists a plane layer diagram for every
planar lattice with a layer assignment function p.



72 Chapter 5: Left-relations on Diagrams

5.3.3 Layered Attribute Additive Diagrams

Finally, we want to analyze the case of layered attribute additive diagrams (see
Definition 3.15). Unfortunately, also this drawing convention will not always
allow to find a diagram realizer, as we will evidence in the following.

Consider the 4-elemental dual B(I4)
d of the

interordinal scale B(I4) we observed already
in the last two sections. It contains the

∧
-

irreducibles m1, . . . , m4 and further elements
1, v12, v13, v14, v23, v24 und v34 (see picture on the
right). There exist two left-orders that are in-
duced by S with m1 S m2 S m3 S m4 and S−1.
We consider the left-order generated by S (the
other one may by observed analog). For the rela-
tions L< and R< we find:

1

m1
m2 m3

m4

v12
v23 v34

v13 v24

v14

L< v14 v13 v12 m1 v24 v23 m2 v34 m3 m4 1
R< v14 v24 v34 m4 v13 v23 m3 v12 m2 m1 1

Hence, we yield for the diagram realizer l and r:

l(m1) < l(v24) = l(m2) + l(m3) + l(m4)

r(m4) < r(v13) = r(m1) + r(m2) + r(m3)

Remind that the equality sign holds in both expressions since we must preserve
the attribute additivity convention.

Moreover, let the layers be lines of the form c = α·x+β·y, which is reasonable
due to our considerations in Section 5.3.2. Therefore, α, β > 0, c < 0 and
α · l(mi) + β · r(mi) = c for all i ∈ {1, 2, 3, 4}. We conclude as follows:

α · l(m4) + β · r(m4) = c

α · l(m4) + β · (r(m1) + r(m2) + r(m3)) > c

α · l(m1) + β · r(m1) = c

α · (l(m2) + l(m3) + l(m4)) + β · r(m1) > c

α · (l(m2) + l(m3) + 2l(m4)) + β · (2r(m1) + r(m2) + r(m3)) > 2c

α · l(m4) + β · r(m1) > 0

which is a contradiction since α · l(m4) < 0 and β · r(m1) < 0.

We may subsume, that attribute additive diagrams may be drawn with the
left-right-numbering-method. However, it is not possible to additionally put
the

∧
-irreducibles on layers, as this is commonly done when drawing lattices

(at least, if laid out manually).



Chapter 6

Left-relations on Contexts

In Chapter 4 we introduced left-relations on lattices. We noticed that we do not
necessarily need the whole relation for deciding the planarity of the considered
structure. In particular, the FPC allows such a characterization if we know L
only on the set M × M .

Now we want to observe whether it is similarly fruitful to restrict L to the
set J × M , where J and M are as usual the sets of

∨
-irreducibles and

∧
-ir-

reducibles respectively. This idea is obviously inspired by the FCA-viewpoint
on lattice theory. The standard context of a lattice itself consists of the sets J
and M and the incidence relation, also a subset of J ×M . Hence, we can just
insert L and R into the empty cells of a respective cross table.

This may recall of the Ferrers-graphs introduced in Section 3.6. Intuitively,
a (bare) Ferrers-graph is also defined on the set of empty cells (j, m) of a cross
table meeting j ‖ m. The notation with two symbols L and R determines two
vertex classes. Indeed, a left-order on a lattice already generates a bipartite
Ferrers-graph on its standard context, as we have seen in Lemma 3.42.

We will in the following go the other way round. Based on a bipartite Ferrers-
graph, whose vertex classes we are going to consider as a restricted left-relation,
we want to construct the whole left-relation and show that it is a left-order
indeed.

In fact, in the last chapters we did not yet give an efficient possibility to find
a left-order on a lattice or to decide whether it exists at all. The most naive
ways would be to test all conjugate relations of a lattice to be conjugate orders
or all sorting relations to be left-orders. Although that may be satisfactory for
small lattices, in general one may have up to |M |! sorting relations, i.e. the
process may become very time consuming.

However, since it is “easy” by means of time complexity to test whether a
graph is bipartite, we can now specify a method (see Section 6.3) to check
a given lattice for being planar and to provide a plane diagram, if possible,
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in polynomial time. We may even give the number of all plane diagrams up
to similarity (see Section 6.3.2), although writing them all down can not be
polynomial anymore.

6.1 Definition and First Properties

We decided to use the language of lattice theory here as well. Many results can
be directly transferred to FCA-notions. In particular, we could have based our
considerations on contexts in general instead of standard contexts of lattices,
which are according to Theorem 3.36, the appropriate reduced contexts. These
are the smallest representatives (in terms of the size of G and M) of their
accompanying lattices. However, since we are interested not in contexts itself
but rather in some properties (relying on planarity) of the appropriate lattices
we decided to restrict to consider the reduced ones as canonical forms.

Definition 6.1 [Zsc08] Let V be a lattice and K = (J, M,≤) its standard
context.

1. The relation ‖K = (J × M) ∩ ‖ is called incomparability relation on K.

2. A relation L ⊆ ‖K is called left-relation on K. We denote R := ‖K \ L.

That definition may be surprising since it is not as intuitive as Definitions 4.2
and 5.2. There we developed the concept of “left of” out of a geometric view.
Of course, one can understand it as a relation stating which

∨
-irreducibles are

left or right of which
∧

-irreducibles but this does not fit into a diagrammatic
understanding of the lattice. However, in the following we will reinterpret
vertex classes of bipartite Ferrers-graphs as left-relations of contexts. Instead
of stating that “(j, m) is in vertex class F1” we read “j is left of m”. We will
evidence that these particular relations can be transformed to left-orders, so
the notation becomes reasonable.

In order to find such a left-order L̂, we first construct its “core” L̃ out of L.
After some modifications L̃ will play a role similar to a sorting relation (see
Definition 4.1) for determining L̂.

Definition 6.2 [Zsc07a] Let V be a lattice and K = (J, M,≤) its standard
context. Let L and R be disjoint subsets of I. The relation

L̃ := {(m, n) ∈ M × M | m ‖ n and (∃j ∈ J : m ≥ j L n or n ≥ j R m)}.

is called induced relation by L.
♦
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See the picture on the right for an intuitive
access to this notion. On the left you consider
the case j ≤ m (j is below m), j L n (j is left
of n). Visually m is then left of n too. On the
right, similarly j R m (j is right of m or m is left
of j) and j ≤ n suggest that m is again left of n.
Of course, in this general setting both m L̃ n and
n L̃ m may occur.

m n
j L

j

m
n

m n
j R

j

n
m

Now let K = (J, M,≤) be the standard context of a lattice V possessing the
bipartite Ferrers-Graph Γ̃. Let the vertex classes of a bipartition be denoted
by L̃ and R̃. Then L̃ \ {(j, m) | j > m} is a left-relation on K, but not L̃

itself. Fortunately the set {(j, m) | j > m} does not affect the bipartiteness of
Γ̃ since it refers exactly to the isolated vertices of Γ̃:

Proposition 6.3 [Zsc07a] Let K = (J, M,≤) be the standard context of a
lattice V and Γ̃ its Ferrers-graph. A vertex (j, m) of Γ̃ is isolated if and only
if j > m.

Proof:
⇐ : Let j > m. Furthermore let h ∈ J and n ∈ M , s.t. h ≤ m and g ≤ n
holds. We notice h ≤ m < j ≤ n, i.e. h ≤ n. Therefore (h, n) is no vertex of
Γ̃, i.e. there is no edge between (j, m) and (h, n).

⇒ : Since (j, m) ∈ V (Γ) we know j 6≤ m.

1. If there is no
∨

-irreducible h ∈ J satisfying h ≤ m then we conclude
m = 0V and hence j > m.

2. If there is no
∧

-irreducible n ∈ M satisfying j ≤ n then we conclude
j = 1V and hence j > m.

3. Otherwise the sets j′ and m′ are
non-empty. All objects h ∈ m′

and all attributes n ∈ j′ meet
the condition h ≤ n since there
is no edge between (j, m) and
(h, n) in Γ̃. Hence, we conclude
j′′ ⊇ m′ ⊎ {j}, i.e. m < j.

j′′






m′

j′
m ︷ ︸︸ ︷

j × . . . ×






×
...
×

× . . . ×
...

...
× . . . ×

�

According to Proposition 6.3, the bipartition classes L and R of a bipartite
bare Ferrers-graph Γ are exactly left-relations on K. The left-relation L and
its partner R have some additional properties. First, we easily observe that
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Definition 6.2 becomes slightly simplified. For incomparable
∧

-irreducibles m
and n the following equivalence holds:

∃j ∈ J : m ≥ j L n ⇐⇒ ∃h ∈ J : n ≥ h R m. (6.1)

The next lemma states that L̃ contains “nearly” a sorting relation S. This
sorting relation will be extended to a left-order in Lemma 6.5.

Lemma 6.4 [Zsc07a] Let K = (J, M,≤) be the standard context of a lattice
V and Γ its bipartite bare Ferrers-graph with vertex classes L and R. Let L̃ be
the relation induced by L. Then L̃ satisfies the following conditions:

1. L̃ is asymmetric,

2. L̃ is connex on pairs of incomparable
∧

-irreducible elements1,

3. For any three
∧

-irreducibles fulfilling m1 L̃ m2 L̃ m3 either m1 L̃ m3 or
m3 L̃ m1 holds.

Proof:

1. Let m and n be
∧

-irreducibles fulfilling
m L̃ n and n L̃ m. In a respective cross
table one of the three cases depicted on
the right occurs. The left and the right
one contradict the fact that L and R

respectively are vertex classes of Γ.

m n
× L

L ×

m n
× L

× R

m n
× R

R ×

Let us consider the case in the middle. There exists a
∨

-irreducible j ∈ J
with j ‖ m and j ≤ n (by definition of L̃ we know m ‖ n). Both j L m
and j R m contradict the bipartition property. Hence, L̃ is asymmetric.

2. Connexity is obvious: For two incomparable
∧

-irreducibles m ‖ n we
find a

∨
-irreducible j meeting j ≤ m and j ‖ n, i.e. (j, n) ∈ L ∪ R.

3. Let m1 ≤ m3. Then there exist
∨

-irreducibles
j1 and j2 satisfying m1 ≥ j1 L m2 and m2 ≥
j2 L m3. This contradicts Γ to be bipartite since
m1 ≤ m3 implies j1 ≤ m3, i.e. (j1, m2)E(j2, m3).
The case m1 ≥ m3 yields the same contradiction
if we consider the relation R instead.

m1 m2 m3

j1 L

j2 L

We conclude m1 ‖ m3. The claim follows with assertions 1. and 2.
�

1By this formulation, we mean L̃ ∪ L̃
−1

=‖.
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Unfortunately, we could not prove L̃ to be transitive as well. If we just
assume that condition then indeed L̃ can be extended to a left-order, as the
following lemma suggests.

Lemma 6.5 Let K = (J, M,≤) be the standard context of a lattice V and Γ
be its bipartite bare Ferrers-graph possessing the vertex classes L and R. Let
L̃ be the relation induced by L. Then the following implication holds:

L̃ is transitive =⇒ V is planar.

Proof: By Lemma 6.4 we know that L̃ is asymmetric and connex on incompa-
rable pairs of

∧
-irreducibles . Since L̃ is also transitive we conclude that L̃ is a

strict order on sets of
∧

-irreducibles possessing the same upper cover. Hence,
there exists a sorting relation S ⊆ L̃ (see Definition 4.1). Let L be the (unique)
left-relation induced by S.

1. We show L̃ ⊆ L. Let m1 L̃ n1. According to Definition 4.2, we have
to show that there exists a pair of

∧
-irreducibles (m2, n2) ∈ M(m1, n1)

with m2 L̃ n2 since then L̃ can be constructed out of S.

Since m1 L̃ n1 there exists a
∨

-irreducible j
fulfilling j ≤ m1 and j L n1. From m1 ≤ m2

we conclude j ≤ m2. Consider a
∨

-irreducible
h satisfying h ≤ n1 and h ‖ m2 (which exists
because n1 ‖ m2). Then h ≤ n2 and since Γ is
bipartite we conclude h R m2, i.e. m2 L̃ n2.

m1 n1 m2 n2

j L

h R

2. We show that L is a strict order. We know with Lemma 6.4 and 1. that
L̃ = L ∩ (M × M). By applying the FPC we need to prove only

m1 L̃ m2 L̃ m3 =⇒ m2 > (m1 ∧ m3)

Let m1 L̃ m2 L̃ m3. According to Condition 6.1 there exist
∨

-irreducibles
j1 and j2 fulfilling j1 ≤ m2, j2 ≤ m2, j1 L m1 and j2 R m3.

Let j3 ∈ J meet j3 ≤ m1 ∧ m3. (If j3 does not
exist, then m1∧m3 is the bottom element of V and
m2 trivially greater.) Now j3 > m2 contradicts our
assertion m1 ‖ m2 and both j3 L m2 and j3 R m2

contradict L and R to be bipartition classes of Γ.
We conclude j3 ≤ m2, i.e. m2 > m1 ∧ m3.

m1 m2 m3

j1 L

j2 R

j3

By the use of L we constructed a left-order L on V. With Theorem 4.9 and
Theorem 3.20 we conclude that V is planar.

�
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With the previous Lemmas 6.4 and 6.5 we realize that we are “nearly fin-
ished”: From the vertex classes L and R of the bipartite bare Ferrers-graph
Γ we constructed via the induced relation L̃ a left-order L assuring that the
underlying lattice V is planar. See Figure 6.1 for an example. We are given
a context K together with its Ferrers-graph Γ. It is easy to find the unique
bipartition of that graph. From the respective vertex classes L and R one can
calculate the induced relation L̃. In the first row one reads n3 L̃ n2, n4 and
from the second n1 L̃ n2, n4. Indeed, by extending L̃ one gets a left-order that
provides a plane diagram possessing the left-relation λ ⊇ L̃.

K n1 n2 n3 n4

j1 •
j2

j3 • •
j4

K n1 n2 n3 n4

j1 R

j2 L L

j3 R R

j4 L

n3 L̃ n2

n3 L̃ n4

n1 L̃ n2

n1 L̃ n4

n1

n3

n4

n2

j4

j2

j1

j3

Figure 6.1: A reduced context K together with its bipartite Ferrers-graph (left),
an appropriate bipartition (left middle), its induced relation (right middle) and
a plane diagram drawn according to that induced relation (right).

The only assumption we had to take was the transitivity of L̃. Unfortunately
it is not possible to prove this assertion as straightforward as the others. Let
us consider the example in Figure 6.2. On the left you can see the standard
context K of the lattice M3. We notice that its Ferrers-graph (depicted in the
middle) is bipartite and consists of three components. For the given choice of
the bipartition classes, the induced relation L̃ is not transitive. However, we
can “flip” for instance the component in the middle to make L̃ transitive. This
will be our strategy in the following sections:

If L̃ is not transitive, Γ consists of at least three components which can be
“turned around smartly”. This will keep Γ bipartite and the induced relation
becomes transitive.

K m1 m2 m3

j1 L R

j2 R L

j3 L R
(j2,m1)

(j1,m3)

(j3,m2)

(j1,m2)

(j3,m1)

(j2,m3)

m1 L̃ m2

m3 L̃ m1

m2 L̃ m3

Figure 6.2: A construction of a the bipartition classes L and R of the Ferrers-
graph Γ of the given context K. The induced relation L̃ is not transitive.
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6.2 The Components of Ferrers-graphs

We got a flavor of the general behavior of a bipartite Ferrers-graph Γ and its
interrelation to a left-order on the underlying lattice V in the last section.
However, the example in Figure 6.2 suggests to further investigate the com-
ponents of Γ in order to reach our aim, namely to generate left-orders of the
underlying lattice out of Γ, if it is bipartite.

To gain a better visual understanding, we want to highlight how a component
of the Ferrers-graph Γ looks like:
An edge sequence of Γ, as seen in a
cross table of a context K, corresponds
to a pair of fences, i.e. alternate up and
down leading edge sequences in a dia-
gram of the respective lattice V. Ver-
tices situated one upon the other are
nodes of Γ and thus incomparable.

K a b c d
g •
h •
i •
k •

a b c d

g h i k

Normally we will refer to a component of Γ by an index, for instance Γ◦.
Sometimes it will be helpful to describe a component by two

∧
-irreducibles “it

lives on”.

Definition 6.6 [Zsc07a] Let K = (J, M,≤) be a context and Γ its bare
Ferrers-graph. Let m, n ∈ M be incomparable. The (m, n)-component of Γ
denoted by Γm,n is that component of Γ containing all edges between m and n,
i.e. all edges of the form {(j, m), (h, n)} (for arbitrary elements j, h ∈ J).

♦

Such components can easily be spotted in a cross table: Γm,n is that compo-
nent that contains all edges between the columns assigned to m and n respec-
tively.

One might argue whether Definition 6.6 is well defined
since edges of the form {(j, m), (h, n)} may occur in sev-
eral components of Γ. Fortunately this is not the case,
as a simple observation shows: Let (j1, m)E(h1, n) and
(j2, m)E(h2, n) be edges of Γ then we note by Definition
3.40 h1 ≤ m and j2 ≤ n, i.e. both edges are connected in
Γ via the edge {(h1, n)(j2, m)} (see picture on the right).
Hence, Γ possesses at most

(
|M |
2

)
components.

m n

j1 •
h1 •
j2 •
h2 •

A component consists of pairs of
∨

-irreducibles and
∧

-irreducibles. The
∧

-irreducible elements are in general not arbitrarily scattered in the underly-
ing lattice. In fact it is quite fruitful to consider the interval where they are
contained in.



80 Chapter 6: Left-relations on Contexts

Definition 6.7 [Zsc08] Let V be a lattice with Ferrers-graph Γ. Let Γ◦ be a
component of Γ. By

M(Γ◦) := {m ∈ M | ∃j ∈ J : (j, m) ∈ V (Γ◦)}

we denote the set of all
∧

-irreducibles which belong to a vertex of Γ◦. Dually we
define the set J(Γ◦). The interval I(Γ◦) = [v, v] of a component Γ◦ is defined
by

v :=
∧

M(Γ◦) and v :=
∨

M(Γ◦).
♦

First we show that indeed both M(Γ◦) and J(Γ◦) are contained within the
interval of Γ◦, if Γ◦ consists of at least two elements.

Lemma 6.8 Let V be a lattice with bare Ferrers-graph Γ. Let Γ◦ be a compo-
nent possessing the interval [v, v] = I(Γ◦). Then

M(Γ◦) ⊆ (v, v) and J(Γ◦) ⊆ (v, v)

Proof:

1. Let m ∈ M(Γ◦). Since Γ◦ consists of at least two vertices, we find
elements n ∈ M(Γ◦) and j, h ∈ J(Γ◦), s.t. ((j, m), (h, n)) is an edge in
Γ◦. By Definition 3.40 we note m ‖ n and therefore v ≤ m ∧ n < m <
m ∨ n ≤ v.

2. Let j ∈ J(Γ◦). Since Γ◦ consists of at least two vertices, we find elements
m, n ∈ M(Γ◦) and h ∈ J(Γ◦), s.t. ((j, m), (h, n)) is an edge in Γ◦. By
Definition 3.40 we note j ≤ n and j ‖ m and find with the first statement
of this Lemma j ≤ n < v and v < m, i.e. j 6≤ v.

We finally have to prove j ∦ v. It is a basic result of lattice theory that
j =

∧
{ñ ∈ M | m ≥ j}. Hence we have to show that ñ ≥ j =⇒ ñ ≥ v

for all ñ ∈ M .

Let ñ be an arbitrary
∧

-irreducible satisfying j ≤
ñ. Since ñ 6≤ m (that would imply j ≤ m) we
have either ñ > m > v or ñ ‖ m. The latter case
implies the existence of a

∨
-irreducible h̃ satisfying

ñ ‖ h̃ ≤ m. Hence {(h̃, ñ), (j, m)} is an edge of Γ◦.
Therefore ñ ∈ M(Γ◦) and hence ñ > v. I(Γ◦)

j

ñ m

v

h̃

�

In the remaining of this section we will tackle the following questions:
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1. How does the induced relation look like on a component Γ◦? In particular,
we will give evidence to the fact that the induced relation L̃, if restricted
to one component (see Definition 6.13), is transitive, i.e. a strict order.
That assures one assumption of our agenda, namely that by flipping over
components of Γ one can indeed remove the “non-transitive” part of the
induced relation.

2. Under which conditions are two components Γm1,n1 and Γm2,n2 equal?
This is equivalent to the existence of an edge sequence

(j1, m1)E(h1, n1)E . . . E(h2, n2)E(j2, m2) or

(j1, m1)E(h1, n1)E . . . E(j2, m2)E(h2, n2)

in the bare Ferrers-graph Γ of the respective context K = (J, M,≤)
(where m1, n1, m2, n2 ∈ M and j1, h1, j2, h2 ∈ J).

3. Under which conditions is the
∧

-irreducible m an element of M(Γm1,m2)?
This is equivalent to the existence of an edge sequence

(j, m)E . . . E(j1, m1)E(j2, m2)

in the bare Ferrers-graph Γ of the respective context K = (J, M,≤)
(where m, m1, m2 ∈ M and j, j1, j2 ∈ J).

6.2.1 Connections in Intervals

First let us have a look back to the lattice perspective. We can also introduce
the notion of a connection there. This concept, as well as the similar and
more popular one of a fence (see [KR75, DP02]) denotes a path of a diagram
of a lattice consisting of alternately upward and downward edge sequences.
Contrary to other approaches, we allow as “endpoints” only

∨
-irreducibles

and
∧

-irreducibles since they play a prominent role in the appropriate standard
context K = (J, M,≤). Additionally, we consider these structures in certain
intervals [v, v]. We will see later on, why this is reasonable.

Definition 6.9 [Zsc07a] Let K = (J, M,≤) be the the standard context of a
lattice V and [v, v] be an interval in V. A sequence

p = m0 ≥ j1 ≤ m1 ≥ j2 . . . ≥ jr ≤ mr

of
∨

-irreducibles ji, i ∈ {1, . . . , r} and
∧

-irreducibles mi, i ∈ {0, . . . , r} is
called connection of m0 and mr in [v, v] if

∀i ∈ {0, . . . , r} : mi 6≥ v and ∀i ∈ {1, . . . , r} : ji 6≤ v

If the condition ji ≤ mk =⇒ k ∈ {i, i − 1} holds for all i ∈ {1, . . . , r} as well
then p is called shortest connection.
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See Figure 6.3 for a visualization of how a connection in [v, v] looks like. A
connection of m and n in [v, v] is a set of directed edge sequences alternately
running “down” from a

∧
-irreducible to a

∨
-irreducible and “up” vice versa

(see left diagram). These edges may leave the interval [v, v] itself but may
not enter the principal filter [v) nor the principal ideal (v]. There is another
access to this definition: The context K = (J, M,≤) itself is a directed acyclic
bipartite graph consisting of the vertex classes J and M and the incidence
relation ≤. In this setting (see right diagram) a connection is a sequence of
edges running alternately down and up. Thereby the subsets [v)∩M and (v]∩J
may not be included.

m

n

1

0

v

v

[v)

(v]

[v) ∩ M

(v] ∩ J

m n

J

M

Figure 6.3: Two graphical descriptions of a connection between two
∧

-irredu-
cibles m and n in an interval [v, v].

One can easily verify that every connection p between n0 and nr contains
a shortest connection q since we can construct q in the following way: Start
with q := n0. If ni is the last element of the sequence of q, search (in p) for
the highest index t with ht ≤ ni and add ht to q. If hi is the last element of q,
search (in p) for the highest index t with hi ≤ nt and add nt to q. Stop after
adding nr.

A shortest connection between n0 and
nr is represented by a subcontext as de-
picted by a cross table on the right. The
main diagonal and the secondary diagonal
above are filled with crosses, while all the
other cells are empty. Note that the sets
of of empty cells marked with • and ◦ re-
spectively, are Ferrers-relations.

n0 n1 . . . nr

h1 × × • . . . • •
h2 ◦ × × • •
...

. . .
...

hr−1 ◦ ◦ × •
hr ◦ ◦ × ×
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It is easy to prove that every two of these empty cells are in the same
component of Γ since a vertex (hi, nj) ∈ V (Γ(I)) with i < j has the neighbors

N(hi, nj) = {(hj , ni−1), (hj, ni), (hj+1, ni−1), (hj+1, ni)} ∩ V (Γ)

In particular, if n0 L̃ nr then we conclude







hi R nj, j < i,
hiInj, j ∈ {i, i + 1},
hi L nj , j > i + 1.

In the following definition, we will specify the different kinds of connections
more precisely. There are connections leading through the interval, connections
inside the interval and finally triples of

∧
-irreducibles non-connected neither

to each other nor the outside.

Definition 6.10 [Zsc07a] Let [v, v] be an interval in the lattice V.

1. A
∧

-irreducible m ∈ [v, v] is called bound if there exists a
∧

-irreducible
n /∈ [v, v] and a connection p = m . . . n in [v, v].

2. Two
∧

-irreducibles m, n ∈ [v, v] are called connected if there exists a
connection p = m . . . n in [v, v].

3. Three pairwise incomparable
∧

-irreducibles m1, m2 and m3 are called
free triple if none is bound and no two are connected in the interval
[m1 ∧ m2 ∧ m3, m1 ∨ m2 ∨ m3].

In Figure 6.4 one can see how to imagine bounded and connected elements
w.r.t. an interval [v, v] and free triples in a diagram of a lattice: In the left
picture m is bound since there is a connection to a

∧
-irreducible n which is

not contained in [v, v]. In the middle m and n are connected. On the right the
three

∧
-irreducibles m1, m2 and m3 are a free triple since there are no edges

between the three branches containing them.

v

v

m

n

v

v

m
n

v

v

m1 m2 m3

Figure 6.4: Examples for a bound element m (left), two connected elements m
and n (middle) and a free triple m1, m2, m3 (right).
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In the following remark we collect some basic properties of the relations
bound and connected.

Remark 6.11 Let V be a lattice, m, n ∈ M(V) and I be an interval in V.
The following properties hold:

1. If m is bound in I and m, n are connected in I then n is bound in I.

2. If I ) [m ∧ n, m ∨ n] then m, n are connected in I.

3. Let I ′ ⊇ I be another interval in V. If m, n are connected in I then m, n
are connected in I ′.

4. “connected in I” is a symmetric and transitive binary relation on M(V).

The proofs are easy and straightforward and will be omitted therefore.

Finally we will introduce a notion for the set of connected
∧

-irreducibles
w.r.t. a given interval. It will be helpful later on, in particular when we distin-
guish between components of the Ferrers-graph of different types (see Subsec-
tion 6.2.4).

Definition 6.12 [Zsc07a] Let [v, v] be an interval in the lattice V. Let U [v, v]
denote the set of non-bound

∧
-irreducibles in [v, v]. Let m ∈ U [v, v]. The set

Um([v, v]) := {n ∈ M | m and n are connected}

is called the m-component of [v, v].
♦

Obviously, “connected in [v, v]” is an equivalence relation on U([v, v]). There-
fore, the set of m-components in [v, v] is a partition of U([v, v]). We may also
give a graph theoretic access of this notion: Um([v, v]) consists of the

∧
-irre-

ducibles of the components inbetween [v, v] of the undirected graph of a lattice
(V,≤) minus the vertices v and v, i.e. of (V \ {v, v},≺ ∪ ≻).

A pair of connections

p = (n1 ≥)h0 ≤ n1 ≥ h2 ≤ . . . ≤ nr

q = n0 ≥ h1 ≤ n2 ≥ . . . ≥ hr(≤ nr)

in an interval determines an edge sequence

n1

h1

n2

h2

nr−1

hr−1

nr

hr

. . .

p

q

S = (h0, n0)E(h1, n1)E(h2, n2)E . . . E(hr, nr)

if hk ‖ nk holds for all k ∈ {0, . . . , r}. This principle is very helpful for con-
structing edge sequences and will be used widely in the proofs of the following
subsection. In Subsection 6.2.3 we will further investigate the interrelations
between the two concepts.
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6.2.2 Induced Relations on Components of Γ

Our efforts to construct a left-order on a lattice out of a bipartition L
.
∪ R

of its Ferrers-graph Γ failed due to the fact that the induced relation L̃ is
not inevitably transitive. We already gave the hint that L̃ does not meet
our desires only if several, more precisely at least three, components of Γ are
involved. We will prove that in this subsection and conclude that the fraction
of L̃ determined by a component of Γ is indeed a strict order.

First, we have to further specify the language we use, in particular we want
to be able to assign the vertex classes L and R of the bipartite Ferrers-graph
to its components.

Definition 6.13 [Zsc07a] Let K = (J, M,≤) be the standard context of a
lattice V and its bare Ferrers-graph Γ be bipartite with vertex classes L and
R. Let {Γk | k = {1, . . . , n}} be the set of components of Γ. We partition the
vertex classes into Lk := L ∩ V (Γk) and Rk := R ∩ V (Γk).

Furthermore let {L̃i| j ∈ {1, . . . , n}} be binary relations on M defined by

m L̃k n : ⇐⇒ m ‖ n and (∃j ∈ J : m ≥ j Lk n or n ≥ j Rk m).

Then we call {L̃k | k ∈ {1, . . . , n}} the set of induced relations by L and Γ.
♦

Obviously,
⋃
{L̃k | k ∈ {1, . . . , n} = L̃ if L̃ is the induced relation by L.

Since Γ is bipartite, also the following property is an immediate consequence:

∃j ∈ J : m ≥ j Lk n ⇐⇒ ∃h ∈ J : n ≥ h Rk m.

The introduction of the induced relations L̃k allows us to declare more specif-
ically which component of Γ causes a

∧
-irreducible to be left or right of an-

other one. Remind that this is uniquely determined since all edges between two
columns of the respective cross table are in the same component. See Figure
6.5 for an example. The lattice similar to M3 on the left has four

∧
-irredu-

cibles n1, n2, n3 and n4 and four
∨

-irreducibles j1, j2, j3 and j4. One can easily
encounter a bipartition of its Ferrers-graph into the two classes L and R. The
empty cell (j4, n3) will not be of interest since j4 > n3, i.e. this node is isolated
due to Proposition 6.3. Another partition of the vertex set of Γ is given by its
decomposition into its components Γ1 (upper left), Γ2 (middle) and Γ3 (lower
right). Combining both partitions one gets a new partition with six classes
L1, . . . , R3 providing the induced relations given on the right.
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n1 n2

j1 j2 n3

n4

j3

j4

K n1 n2 n3 n4

j1 L L L

j2 R L L

j3 R R

j4 R R >

K n1 n2 n3 n4

j1

j2

j3

j4

m1 L̃1 m2

m1 L̃2 m3,m4

m2 L̃3 m3,m4

Figure 6.5: A lattice (left, given by a diagram) together with a bipartition of
the Ferrers-graph of its standard context and a partition into its components
(middle) and the resulting induced relations (right).

The following two lemmas are very technical. Their
essence is the following (see picture and compare
Lemma 6.14): connections between

∧
-irreducibles re-

duce the number of the respective components of Γ
and allow further assertions about the induced rela-
tion. Sloppily spoken, connected elements in the in-
terval of a Ferrers-graph do not harm the transitivity
of the induced relation of that component.

I(Γm2,m3
)

m1

m2 m3

v

v

Lemma 6.14 [Zsc07a, Zsc08] Let K = (J, M,≤) be the standard context of
a lattice V and Γ its Ferrers-graph. Let m1, m2, m3 ∈ M with m2 ‖ m3, s.t.
there is a connection between m1 and m2 in [v, v] := [m2 ∧ m3, m2 ∨ m3].

If m1, m3 and m2, m3 are not connected in [v, v] then Γm2,m3 = Γm1,m3. Oth-
erwise (at least) one of the following equalities holds: Γm2,m3 = Γm1,m2 or
Γm2,m3 = Γm1,m3.

Let furthermore Γ be bipartite, s.t. L̃ij are the induced relations of Γmi,mj

(i 6= j ∈ {1, 2, 3}). If both m1, m3 and m2, m3 are not connected in [v, v] then
m2 L̃23 m3 ⇐⇒ m1 L̃23 m3. Otherwise m2 L̃23 m3 holds if and only if
m1 L̃23 m3 or m2 L̃23 m1.

Proof: Let q = n0 ≥ h1 . . . ≥ hr ≤ nr be a shortest connection in [v, v] for
adequate chosen

∨
-irreducibles hi and

∧
-irreducibles ni between n0 := m1 and

nr := m2. Let {(j1, m2), (j2, m1)} be an edge of Γm1,m2 . We distinguish the
following cases:

1. Let j3 6≤ ni for all i ∈ {0, . . . , r} and hi 6≤ m3 for all i ∈ {1, . . . , r}. This
is, for instance, the case if m1, m3 and m2, m3 are not connected in [v, v].
Then

S1 := (j3, n0)E(h1, m3)E(j3, n1)E(h2, m3)E . . . E(hr, m3)E(j3, nr),
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is an edge sequence and hence Γm2,m3 = Γm1,m3 . If additionally Γ is
bipartite we conclude

m2 L̃23 m3 =⇒ j2 L23 m3 =⇒ j3 R23 nr =⇒

. . . =⇒ j3 R23 n0 =⇒ m1 L̃23 m3,

and, in particular, L̃13 = L̃23. See Figure 6.6 for a visualization of this
argument both on the lattice and the context side.

m1

h1

n1

hr

. . .
m2 m3

j3j2

m2 ∧ m3

m2 ∨ m3 n0 n1 . . . nr m3

h1 × × •
h2 × × •
...

. . .
...

hr × × •

j3 ◦ ◦ ◦ . . . ◦ ◦ ×
j2 × •

Figure 6.6: How to find the edge sequence S1 in a lattice (diagram) and in the
appropriate standard context. The black nodes • symbolize the respective cell
to be in vertex class L and the white ones ◦ in class R.

2. Let j3 ≤ nk for one k ∈ {0, . . . , r} and hr 6≤ nk. Then hr ≤ nr implies
k < r. Then

(j2, m3)E(j3, nr)E(j2, nk)E(hk, nr)E(hr, nk−1)E(hk−1, nr)E

. . . E(h2, nr)E(hr, n0)

is an edge sequence and hence Γm2,m3 = Γm1,m2 . Additionally, if Γ is
bipartite then m2 L̃23 m3 ⇐⇒ m2 L̃23 m1 (see Figure 6.7).

3. Let hk ≤ m3 for one k ∈ {1, . . . , r}. From hk 6≤ m2 ∧ m3 we conclude
k < r. Then

(j3, m2)E(j2, m3)E(hk, nr)E(hr, nk−1)E(hk−1, nr)E . . . E(h1, nr)E(hr, n0)

is an edge sequence and hence Γm2,m3 = Γm1,m2 . Additionally, if Γ is
bipartite then m2 L̃23 m3 ⇐⇒ m2 L̃23 m1 (see Figure 6.7).

4. Finally, let k be an index, s.t. j3, hr ≤ nk. Note k < r, since (j3, m2) ∈
V (Γ) and hence j3 ‖ m2. Since q is a shortest connection, we observe
k = r − 1. Furthermore nr−1 6≥ m2 ∨ m3 since q is a connection in [v, v],
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n0 n1 . . . nk . . . nr m3

h1 × × ◦
h2 × × ◦
...

. . .
...

hk × × ◦
...

hr • • • . . . • • ×
j3 × ◦ ×
j2 × •

n0 n1 . . . nk . . . nr m3

h1 × × ◦
h2 × × ◦
...

. . .
...

hk × × ◦ ×
...

hr • • • . . . • • ×
j3 ◦ ×
j2 × •

Figure 6.7: Visualization of the cases 2 (left) and 3 (right) of the proof.

hence nr−1 6≥ m2 (or nr−1 6≥ m3). Therefore we find a
∨

-irreducible j
satisfying j ≤ m2 (or j ≤ m3 respectively) and j 6≤ nr−1. Then

(j2, m3)E(j3, m2)E(j, nr−1)E(hr−1, nr)E(hr, nr−1)E . . . E(hr, n0)E(h1, nr)

or

(j2, m3)E(j3, m2)E(hr, m2)E(j, nr−1)E(hr−1, m3)E . . . E(h1, m3)E(j3, n0)

is an edge sequence (Remind that j3 6≤ ni holds for all i ∈ {0, . . . , r}
and hi 6≤ m3 for all i ∈ {1, . . . , r}, otherwise case 2 or 3 respectively
can be applied.) We conclude Γm2,m3 = Γm1,m2 (or Γm2,m3 = Γm1,m3

respectively). If Γ is bipartite, then we additionally find m2 L̃23 m3 ⇐⇒
m2 L̃23 m1 (or m2 L̃23 m3 ⇐⇒ m1 L̃23 m3 respectively).

�

Lemma 6.15 [Zsc07a] Let K = (J, M,≤) be the standard context of a lattice
V and Γ its bipartite Ferrers-graph. Let m1, m2, m3 ∈ M be pairwise incompa-
rable, s.t. m1, m2 or m2, m3 are connected in the interval

[v, v] := [m1 ∧ m2 ∧ m3, m1 ∨ m2 ∨ m3].

Then m1 L̃12 m2 L̃23 m3 =⇒ m1 L̃∗ m3 with L̃∗∈ {L̃12, L̃23}.

Proof: We denote v12 := m1 ∧ m2, v23 := m2 ∧ m3, v12 := m1 ∨ m2 and
v23 := m2 ∨ m3.

1. Let v12 6≤ v23. Then we find a
∨

-irreducible
j satisfying v12 ≥ j 6≤ v23. Hence m1 and
m2 are connected via p = m1 ≥ j ≤ m2 in
[v23, v

23]. We may apply Lemma 6.14 and con-
clude m1 L̃23 m3 (recall that L̃ is antisymmetric
due to Lemma 6.4).
In analogy we find v12 6≥ v23 =⇒ m1 L̃12 m3.

v

m1

v12

j
v23

v23

m2 m3
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2. Let v12 6≤ v23. Then we find a
∧

-irreducible m satisfying v23 ≤ m 6≥ v12.
Hence m2 and m3 are connected via p = m2 ≥ j2 ≤ m ≥ j3 ≤ m3 (with
appropriate j2, j3 ∈ J) in [v12, v

12] . We may again apply Lemma 6.14
and conclude m1 L̃12 m3.

In analogy we find that v12 6≥ v23 implies m1 L̃23 m3.

3. Otherwise [v, v] = [v23, v
23] = [v12, v

12]. Lemma 6.14 yields in both cases
m1 L̃23 m3.

�

We figured out with Lemma 6.15 that three
∧

-irreducibles m1, m2, m3 do not
infringe the transitivity of the induced relation L̃ if two of them are connected.
Now we investigate the case that one of them is bound. Again, this suffices L̃
to be transitive if restricted onto {m1, m2, m3}.

Lemma 6.16 [Zsc07a] Let K = (J, M,≤) be the standard context of a lattice
V and Γ its bipartite Ferrers-graph. Let m1, m2, m3 ∈ M be pairwise incompa-
rable, s.t. m1 is bound and m1, m2 and m1, m3 are not connected in the interval
[v, v] := [m1 ∧ m2 ∧ m3, m1 ∨ m2 ∨ m3]. Then Γm1,m2 = Γm1,m3 follows and in
particular m1 L̃12 m2 ⇐⇒ m1 L̃12 m3.

Proof: Let p = n0 ≥ h1 ≤ n1 ≥ . . . ≤ nr−1 ≥ hr ≤ nr be a shortest connection
between n0 := m1 and nr with nr /∈ [v, v]. Let t be the biggest index with
nt ∈ [v, v]. We show first that nt L̃ m2 ⇐⇒ nt L̃ m3.

According to Definition 6.9 we know ht+1 ≤ nt and ht+1 ≤ nt+1. Since
m1, m2 and m1, m3 are not connected we conclude ht+1 6≤ m2 and ht+1 6≤ m3.

Since m1 is incomparable to m2 and m3, we find
∨

-irreducibles j2 and j3

meeting the conditions j2 ≤ m2, j3 ≤ m3 and j2, j3 6≤ m1. Since m1, m2

and m1, m3 are not connected we notice j2, j3 6≤ nt, nt+1. Now we distinguish
following cases:

1. nt+1 6≥ v: We find a
∨

-irreducible h ≤ v not incident with nt+1 since
nt+1 /∈ Int(v). Therefore the following edge sequence is in Γ (see Figure
6.8):

(j1, nt)E(ht+1, m1)E(h, nt+1)E(ht+1, m3)E(j3, nt).

Since Γ is bipartite we conclude nt L̃ m2 ⇐⇒ nt L̃ m3.

2. nt+1 ≥ v: We note nt+1 ‖ v since we assumed nt+1 /∈ [v, v]. Hence we
find a

∧
-irreducible m̃ satisfying m̃ ‖ nt+1. Finally there exists a

∨
-ir-

reducible h with h ≤ nt+1 and h 6≤ m̃. Therefore we find the following
edge sequence in Γ(I) (see Figure 6.9):

(j2, nt)E(ht+1, m2)E(j2, nt+1)E(h, m̃)E(j3, nt+1)E(ht+1, m3)E(j3, nt).

Since Γ is bipartite we conclude nt L̃ m2 ⇐⇒ nt L̃ m3.
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nt m2 m3 nt+1

ht+1 • •
j2

j3

h
h

nt+1

ht+1

v

v

nt m2 m3

j2 j3

Figure 6.8: An illustration for the proof (case 1.). The filled dots • symbolize
L and the circles ◦ symbolize R.

nt m2 m3 nt+1 m̃

ht+1 • •
j2

j3

h •

m̃

nt+1

h

v

v

nt m2 m3

ht+1 j2 j3

Figure 6.9: An illustration for the proof (case 2.). The filled dots • symbolize
L and the circles ◦ symbolize R.

Since nt and m1 are connected, we finally apply Lemma 6.14 and conclude

m1 L̃12 m2 ⇐⇒ nt L̃12 m2 ⇐⇒ nt L̃12 m3 ⇐⇒ m1 L̃12 m3.

Remind that nt ∈ [v, v], i.e. [nt ∧ m2, nt ∨ m2] ⊆ [v, v]. Hence m1, m2 and
m1, m3 are not connected in that interval as well. The same holds for the
interval [nt ∧ m3, nt ∨ m3].) �

We mentioned already that the free triples will turn out to be the only
problematic cases that may violate the transitivity of L̃. Now we are able to
prove that:

Corollary 6.17 [Zsc07a] Let K = (J, M,≤) be the standard context of a
lattice V and Γ its bipartite Ferrers-graph. Let m1, m2, m3 ∈ M . If m1 L̃ m2 L̃
m3 L̃ m1 then (m1, m2, m3) is a free triple.

Proof: : Let {i, j, k} = {1, 2, 3}.

1. No two
∧

-irreducibles mi, mj are connected since mi L̃ mj L̃ mk =⇒
mi L̃ mk (see Lemma 6.15).
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2. No
∧

-irreducible mi is bound since then mi L̃ mj L̃ mk =⇒ mi L̃ mk

(see Lemma 6.16).

By Definition 6.10 (m1, m2, m3) is then a free triple. �

We want to show that components Γ◦ of the bipartite Ferrers-graph are
“nice”, i.e. their induced relation a strict order. We observed now that the
only obstacle on our way is that of free triples. Now we want to exclude free
triples to be in one of such component (i.e. in the set M(Γ◦)). The three
components defined by a free triple are even all disjoint, as we see now:

Lemma 6.18 [Zsc07a] Let K = (J, M,≤) be the standard context of a lattice
V and Γ its bipartite Ferrers-graph. Let m1, m2, m3 ∈ M . Then (m1, m2, m3)
is a free triple if and only if the components Γmi,mj

(i 6= j ∈ {1, 2, 3}) are
pairwise disjoint.

Proof: ⇒: We suppose Γm1,m2 = Γm1,m3 . W.l.o.g. we find an edge sequence

(j1, m1)E(j2, m2)E(h0, n0)E(h1, n1)E . . . E(hr, nr)E(j3, m3)E(j4, m1).

in Γ (with appropriate
∨

-irreducibles j1, . . . , j4, h0, . . . , hr and
∧

-irreducibles
n0, . . . , nr. Since none of m1, m2 and m3 is bound we know that

{j1, . . . , j4, h0, . . . , hr, n0, . . . , nr} ⊆ [v, v]

(see Definition 6.10). Hence p = m2, h0, . . . , m is a connection in the interval
[m1 ∧ m2 ∧ m3, m1 ∨ m2 ∨ m3] (see Definition 6.9) where m ∈ {m1, m3}. This
contradicts our assertion that no two attributes are connected.
⇐: If (m1, m2, m3) is not a free triple then two

∧
-irreducibles are connected

or one is bound. In both cases we find with Lemma 6.15 and Lemma 6.16
respectively that not all components Γmi,mj

are disjoint.
�

We can subsume the last two results to the following:

Proposition 6.19 Let K = (J, M,≤) be the standard context of a lattice V

and L
.
∪ R be a bipartition of its Ferrers-graph Γ. If the relation L̃ induced by

L is not transitive then Γ consists of at least three components.

Proof: Let m1, m2, m3 ∈ M meeting m1 L̃ m2 L̃ m3 and (m1, m3) /∈L̃. By
Lemma 6.4 we know m3 L̃ m1. By Corollary 6.17 we conclude (m1, m2, m3)
to be a free triple. With Lemma 6.18 we know that there exist at least three
components of Γ.

�

Now we have all ingredients for the final result of this subsection. Inside
a component of a bipartite Ferrers-graph, all

∧
-irreducibles are connected to
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other ones or bound to the outside. This enriches the induced relation of that
component in a satisfactory way. It becomes “rigid” enough to be transitive,
i.e. a strict order.

Proposition 6.20 Let K = (J, M,≤) be the standard context of a lattice V

and Γ its Ferrers-graph with a bipartition L
.
∪ R. Let Γ◦ be a component of Γ

and L̃◦ its induced relation (w.r.t. L and R). Then L̃◦ is a strict order.

Proof: The relation L̃◦ is asymmetric since L̃ is (see Lemma 6.4).

Let m1, m2, m3 ∈ M . We have to show m1 L̃◦ m2 L̃◦ m3 =⇒ m1 L̃◦ m3:

Since we know Γ◦ = Γm1,m2 = Γm2,m3 we notice by applying Lemma 6.18
that (m1, m2, m3) is not a free triple. With Lemma 6.4 we find m1 ‖ m3.

If m1, m2 or m2, m3 are connected in [v, v] = [m1 ∧ m2 ∧ m3, m1 ∨ m2 ∨ m3]
then we find m1 L̃◦ m3 by applying Lemma 6.15. The case that only m1, m3

are connected in [v, v] can not occur: Then we had [v, v] = [m1 ∧m2, m1 ∨m2]
and concluded with Lemma 6.14 that m1 L̃◦ m2 ⇐⇒ m3 L̃◦ m2 contradicting
our precondition.

If otherwise m1 or m3 is bound then we apply Lemma 6.16 and notice
m1 L̃◦ m3. If m2 is bound we conclude m1 L̃◦ m2 ⇐⇒ m3 L̃◦ m2, again
a contradiction. We conclude in all possible cases m1 L̃◦ m3. Therefore L̃◦ is
transitive, i.e. a strict order.

�

Proposition 6.20 enables us to search for left-orders on lattices possessing
a bipartite Ferrers-graph Γ: Since the components of Γ provide parts of the
induced relation that are strict orders, we can hope to find a strategy to flip
over the components until we find a suitable configuration. We will come back
to this issue in Section 6.3.

6.2.3 Edge Sequences in Γ and Connections in V

In this subsection we will highlight the coherence between connections in a lat-
tice V and edge sequences in its corresponding Ferrers-graph Γ in detail. It will
turn out that m-components (see Definition 6.12) are an adequate instrument
to describe the set of

∧
-irreducibles M(Γ◦) contained in a component Γ◦ of Γ.

Our first result embarks the easy way from the Ferrers-graph to the lattice:
Edge sequences of Γ represent connections in V in the interval I(Γ).

Lemma 6.21 [Zsc08] Let V be a lattice with Ferrers-graph Γ. Let

(j0, n0)E(j1, n1)E . . . E(jr−1, nr−1)E(jr, nr)

be an edge sequence in a component Γ◦ of the Ferrers-graph. Then n0 is con-
nected to either nr−1 or nr in the interval [v, v] of Γ◦.
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Proof: By Definition 6.9 we note that p := n0 ≥ j1 ≤ n2 ≥ j3 ≤ n4 . . . ≤ ns is
a connection in V with either s = r− 1 (if r is odd) or s = r (if r is even). Let
[v, v] be the interval of Γ◦. With Lemma 6.8 we know that ji > v and ni < v
holds for all i ∈ {0, . . . , r}. Hence p is a connection of n0 and ns in [v, v].

�

See the picture on the right for an example:
The edge sequence

(j0, n0)E(j1, n1)E(j2, n2)E(j3, n3)E(j4, n4)

is represented by the graph in the diagonal and
the connection p = n0, j1, n2, j3, n4 by the thick
crosses. More precisely, every edge sequences de-
termines two connections; the other one given by
the thin crosses connects n1 and n3 via j2.

n0 n1 n2 n3 n4

j0

j1

j2

j3

j4

The other way round can not proceeded in such a straightforward manner.
An edge sequence in Γ can be constructed by two connections in an interval
only. Additionally the elements of the connections have to meet further con-
ditions. However, finding those edge sequences will enable us to describe the
components of the Ferrers-graph by underlying lattice structures.

The following first result can intuitively be under-
stood quite simple in a cross table of a standard con-
text: If we find in a component Γ◦ a vertex in the
column corresponding to m that is connected to an
edge between two vertices situated in the columns
corresponding to m1 and m2 then there exists also an
edge in Γ◦ between vertices in the columns of m and
m1 or m and m2.

m1 m2 . . . m

•

Lemma 6.22 [Zsc08] Let K = (J, M,≤) be the standard context of a lattice
V with Ferrers-graph Γ. Furthermore let m, m1, m2 ∈ M , s.t. m ∈ M(Γm1,m2)
and m is incomparable to m1 or m2. Then Γm1,m2 = Γm,m1 or Γm1,m2 = Γm,m2 .

Proof: If there is a connection between m and m1 or between m and m2 in the
interval I := [m1 ∧m2, m1 ∨m2] then we may apply Lemma 6.14 to prove the
claim.

Since m ∈ M(Γm1,m2), we find for adequate
∨

-irreducibles hi ∈ J and
∧

-ir-
reducibles ni ∈ M , (for all indices i ∈ {1, . . . , r} an edge sequence

K := (h1, n1) E (h2, n2) E . . . E (hr−1, nr−1)E (hr, nr)

with n1 = m1, n2 = m2 and nr = m. Clearly Γn1,n2 = Γnr−1nr
. W.l.o.g. (in

case of 2 6 | r)
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p = n1 ≥ h2 ≤ n3 ≥ . . . ≥ hr−1 ≤ nr and

q = n2 ≥ h1 ≤ n2 ≥ h3 ≤ . . .

. . . ≤ nr−1 ≥ hr ≤ nr−1

n1

h1

n2

h2

nr−1

hr−1

nr

hr

. . .

p

q

are connections in I(Γm1,m2) (see Lemma 6.21). Consider the sequence

S = (hr, nr), (hr−1, nr−1), (hr−2, nr), (hr−1, nr−3), (hr−4, nr),

. . . , (hr−1, n2), (h1, nr).

1. If the conditions hi ‖ nr and hr−1 ‖ nj

hold for all i ∈ {1, . . . , r} \ {r − 1}
and j ∈ {1, . . . , r} \ {r, r − 2} then S
is an edge sequence in Γ. We conclude
Γn1,n2 = Γnr−1,nr

= Γn2,nr
.

h1

n2n1

h2

nr−1

hr−1

nr

hr

. . .

2. Otherwise let t be the smallest index satisfying ht ≤ nr or hr−1 ≤ nt

(recall that ht > nr =⇒ hr−1 ≤ nt±1 and hr−1 > nt =⇒ ht±1 ≤ nr).

(a) Let ht ≤ nr: In case of t ≤ 2 we find the connection m3−t ≥ ht ≤ m
in I. Otherwise t > 2 and

(ht, nt)E(ht−1, nr)E(hr−1, nt−2)E(ht−3, nr)E . . . E(hy, nr)E(hr−1, nx)

with y = (t (mod 2)) + 1
and x = 3 − y is an edge
sequence in Γny ,n2 = Γn1,n2

since (ht, nt) ∈ V (Γn1,n2)
(see picture; y = 1).

n1

h2

nt−1 nr−1

hrh1

n2

ht−1 ht

nt

hr−1

nr

. . .

(b) Let hr−1 ≤ nt:

(b1) t > 2: Then

(ht, nt)E(hr−1, nt−1)E(ht−2, nr)E(hr−1, nt−3)E . . .

. . . E(hr−1, ny)E(hx, nr)

with y = (t (mod 2)) + 1
and x = 3 − y is an edge
sequence in Γny ,n2 = Γn1,n2

since (ht, nt) ∈ V (Γn1,n2)
(see picture; y = 1).

h1

n2

ht−1

nr−1

hr

n1

h2

nt−1

ht

nt

hr−1

nr

. . .
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(b2) t ∈ {1, 2}. We consider only the case hr−1 ≤ n2 ⇐⇒ hr−1 ≤ n1,
otherwise we had a connection nt ≥ hr−1 ≤ nr in I proving our
claim. By precondition we know n1 ‖ nr or n2 ‖ nr. W.l.o.g. let
n1 ‖ nr, then we find a

∨
-irreducible j satisfying nr ≥ j ‖ n1.

If j 6≤ nr−1 then we extend K by two nodes and gain the sequence
K̃ = (h1, n1)E . . . E(hr, nr)E(j, nr−1)E(hr, nr). For the appropriate
sequence

S̃ = (hr, nr), (j, nr−1), (hr−2, nr), (j, nr−3), (hr−4, nr),

. . . , (j, n2), (h1, nr)

we can apply one of the other cases 1. or 2.(a) or 2.(b1).

Let otherwise j ≤ nr−1. We again have to distinguish two cases.

First, if h2 ≤ nr−1 then we find an edge
sequence (j, n1)E(h2, nr)E(hr−1, nr−1)
(or a connection n1 ≥ h2 ≤ nr in I).
We conclude Γn1,nr

= Γnr ,nr−1 = Γn1,n2.

n2

h1
n1 ∧ n2

n1

h2

nr−1

j

nr

hr−1

Finally assume h2 6≤ nr−1, then
(h2, nr)E(j, n1)E(h2, nr−1) is an edge
sequence, i.e. Γn1,nr

= Γn1,nr−1. More-
over, by the construction of K, also
nr−1 is an element of M(Γn1,n2). We
observe that n1 ≥ hr−1 ≤ nr is a con-
nection in [nr ∧ nr−1, nr ∨ nr−1].

n2

h1
n1 ∧ n2

hr−1

n1

h2

nr−1

j

nr

With Lemma 6.14 we conclude Γnr,nr−1 =Γn1,nr
or Γnr ,nr−1 =Γn1,nr−1

which both implies Γn1,n2 = Γn1,nr
.

�

In the next lemma, we will find a first coherence between m-components of
a lattice V and components of its respective Ferrers-graph Γ. More precisely,
all
∧

-irreducibles that are connected in the interval of a component Γ◦ to an
∧

-irreducible in Γ◦ (i.e. an element of M(Γ◦)) are itself contained in M(Γ◦).

Lemma 6.23 [Zsc08] Let K = (J, M,≤) be the standard context of a lattice
V and Γ its Ferrers-graph. Let m1, m2 ∈ M , s.t. Γm1,m2 is a component of Γ.
Then Um1(I(Γm1,m2)) ⊆ M(Γm1,m2).

Proof: Let [v, v] := I(Γm1,m2). Furthermore let m be a
∧

-irreducible meeting
m ∈ Um1([v, v]). We show m ∈ M(Γm1,m2):
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If m and m1 are also connected in [m1 ∧ m2, m1 ∨ m2] then by Lemma 6.14
we may conclude w.l.o.g. Γm1,m2 = Γm,m2 . This implies m ∈ M(Γm1,m2) (see
Definition 6.7).

Let otherwise q = m ≥ h1 ≤ n1 ≥ . . . ≤ nr−1 ≥ hr ≤ nr =: m1 be a shortest
connection (for adequately chosen hi ∈ J , ni ∈ M , i ∈ {1, . . . , r}) between m
and m1 in I(Γm1,m2) containing a

∨
-irreducible hk ≤ m12 := m1 ∧ m2 (then

k = r since q is a shortest connection) or a
∧

-irreducible nk ≥ m12 := m1 ∨m2

(then k = r−1). We may exclude the case that both inequalities hold since then
we could find a

∨
-irreducible j̃ with nr−1 ≥ j̃ ≤ nr and j̃ > m12. We consider

the case hr ≤ m12, nr−1 6≥ m12 and omit the dual hr 6≤ m12, nr−1 ≥ m12.
Remind that

m2 ‖ hk ‖ m1 holds for all k ∈ {1, . . . , r − 1} (6.2)

since we had a connection q̃ = m ≥ h1 ≤ . . . ≥ hk ≤ m1(m2) in [m12, m
12]

otherwise. Similarly

m2 ‖ nk ‖ m1 holds for all k ∈ {1, . . . , r − 1}. (6.3)

Since q is a connection in [v, v], we note hr 6≤ v, i.e. nr−1 ∧ m12 ∈ I(Γm1,m2).
According to Definition 6.7 there exists a

∧
-irreducible m̃ ∈ M(Γm1,m2) with

nr−1 ∧ m12 ‖ m̃. Hence, there exists an edge sequence (with mt := m̃)

(j1, m1)E(j2, m2)E . . . E(jt−1, mt−1)E(jt, mt)

for suitably chosen
∨

-irreducibles ji and
∧

-irreducibles mi (i ∈ {1, . . . , t}).

1. If there exists an index i ∈ {3, . . . , t} with
nr−1 ∧ m12 ‖ mi ‖ m12 then we note w.l.o.g.
Γm1,m2 = Γmi,m2 due to Lemma 6.22. Also, we
find a

∨
-irreducible j̃ with mi ‖ j̃ ≤ nr−1∧m12.

Then, q̃ = m ≥ h1 ≤ . . . ≤ nr−1 ≥ j̃ ≤ m2 is a
connection in [mi ∧ m2, mi ∨ m2]:
nk ≥ m2 ∨ mi contradicts Condition 6.3,
hk ≤ m2 ∧ mi contradicts Condition 6.2 and
j̃ ≤ m2 ∧ mi is not possible since we chose
j̃ ‖ mi. Hence, m ∈ M(Γmi,m2) = M(Γm1,m2).

m1 m2

m12

mim

h1

nr−1

hr

. . .
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2. Otherwise we find an index i ∈ {2, . . . , t − 1}
with mi ≥ nr−1 ∧ m12 ‖ mi+1 (recall mi ‖ mi+1

and m1 ≥ nr−1∧m12 ‖ mt. Again, we find a
∨

-irreducible j̃ with mi+1 ‖ j̃ ≤ nr−1 ∧ m12.
Then q̃ = m ≥ h1 ≤ . . . ≤ nr−1 ≥ j̃ ≤ m2 is a
connection in [mi ∧ mi+1, mi ∨ mi+1]:
First, nk ≥ mi ∨ mi+1 =⇒ nk ≥ mi ≥ hr, i.e.
k = r − 1 contradicts m12 ≥ mi ≥ nr−1 ∧ m12.
Second, hk ≤ mi ∧ mi+1 =⇒ hk ≤ m12

contradicts q to be a shortest connection and j̃ ≤ mi∧mi+1 is not possible
since we assumed j̃ ‖ mi+1. Hence, m ∈ M(Γmi,mi+1

) = M(Γm1,m2).

m

h1

nr−1

hr

. . .

m1 m2

m12mi
mi+1

�

Now, we are prepared for the main result of this subsection. Additionally
to Lemma 6.23, all

∧
-irreducibles of a component Γ◦ of a Ferrers-graph Γ

are connected in the interval of Γ◦. Thus, we can describe components of Γ
quite comfortably by m-components. More generally, the following proposition
allows to describ graph properties by lattice properties.

Proposition 6.24 [Zsc08] Let K = (J, M,≤) be the standard context of a
lattice with Ferrers-graph Γ. Let m1 ‖ m2 ∈ M . Then

M(Γm1,m2) = Um1(I(Γm1,m2)) ∪ Um2(I(Γm1,m2)).

Proof: Lemma 6.23 states M(Γm1,m2) ⊇ Um1(I) ∪ Um2(I).

Let m ∈ M(Γm1,m2). Then there exists an edge sequence

(j, m)E . . . E(j1, m1)E(j2, m2)

for adequate j, j1, j2 ∈ J . According to Lemma 6.21, m is connected to m1 or
m2, i.e. m ∈ Um1(I) ∪ Um2(I). Hence M(Γm1,m2) ⊆ Um1(I) ∪ Um2(I).

�

Finally, we want to verify Proposition 6.24 in an ex-
ample. Consider the lattice given by a diagram on the
right. We easily check that we find two intervals pro-
viding m-components, namely [0, 1] and [e, 1] with

Ua([0, 1]) = {a}, Ub([0, 1]) = {b, c}, Ud([0, 1]) = {d}

Ub([e, 1]) = {b}, Uc([e, 1]) = {c}.

In the standard context, we find four components: Γab,
Γad and Γbd have the interval [0, 1] and Γbc has [e, 1].
Due to Proposition 6.24, M(Γab) = {a, b, c}, M(Γad) =
{a, d}, M(Γbd) = {b, c, d} and M(Γbc) = {b, c}.

0

1

a b c d

e

K a b c d

a • • •
b • • •
c • • •
e • •
d • • •
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6.2.4 Components of Type 1 and Type 2

In this subsection, we introduce a distinction of the components of a Ferrers-
graph into two types. This will enable us to investigate coherences to m-
components on the respective lattice more precisely than in Proposition 6.24.
Eventually, we need this preparations in order to count the number of left-
orders on a lattice in Section 6.3.2. We will obtain these left-orders by turning
around components of the Ferrers-graph in the “right manner”.

In the following lemma, we make an observation that is a consequence of
Lemma 6.21. Sloppily spoken, edge sequences of the Ferrers-graph cause con-
nections in the respective lattice.

Lemma 6.25 [Zsc08] Let K = (J, M,≤) be the standard context of a lattice
V with the Ferrers-graph Γ. Let m1, m2, m3, m4 ∈ M , s.t. Γm1,m2 = Γm3,m4 is
a component of Γ possessing the interval [v, v]. Then m1, m2 are connected in
[v, v] if and only if m3, m4 are connected in [v, v].

Proof: Since Γm1,m2 = Γm3,m4 , there exists an edge sequence

(h1, m1)E(h2, m2)E . . . E(h3, m3)E(h4, m4)

By Lemma 6.21 this refers w.l.o.g. to a connection between m1 and m3 and m2

and m4 in [v, v] respectively. If m1 and m2 are connected, we find a connection

p := m3 . . .m1 . . .m2 . . .m4

in [v, v]. Since m3, m4 ∈ M(Γm3,m4), both
∧

-irreducibles are connected. Du-
ally, if m3, m4 are connected, then m1, m2 are, too.

�

Now we are able to introduce the already mentioned partition. The reason
for the name we chose for the elements of the two classes will be discovered in
Corollary 6.27.

Definition 6.26 [Zsc08] Let Γ be the Ferrers-graph of a lattice V. A com-
ponent Γm,n is of type 1 if m and n are connected in I(Γm,n). Otherwise Γm,n

is of type 2.
♦

Definition 6.26 is well-defined, in particular a component is either of type 1
or of type 2. This is a direct consequence of Lemma 6.25.

See Figure 6.10 for an example of different types of components. In the
standard context one can encounter two components Γn1,n2 = Γn1,n3 = Γn1,n4

and Γn2,n3 = Γn3,n4. Both possess the interval [0V, 1V]. We observe that Γn1,n2

is of type 2 since m1 is not connected to one of the other
∧

-irreducible elements.
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K n1 n2 n3 n4

j1

j2

j3

j4

Γn1,n2

Γn2,n3

0V

1V

j3

n4

n2n3

n1

j1

j2

j4

Figure 6.10: The Ferrers-graph of the standard context of this lattice consists
of two components. Thereby Γn1,n2 is of type 2 and Γn2,n3 of type 1.

In contrast, we notice that n2 and n3 are connected in [0V, 1V] via j3. Hence,
Γn2,n3 is of type 1. Also n2, n4 (via j2) and n3, n4 (via j3, n2, j2) are connected
in that interval.

Combining Definition 6.26 with the characterization of components of the
Ferrers-graph by appropriate m-components in Proposition 6.24 will explain
the notations “type 1” and “type 2” we chose. We will see that the set of
∧

-irreducibles M(Γ◦) of a type 1 component is equal to 1 such m-component.
If otherwise Γ◦ is of type 2, then M(Γ◦) equals the (disjoint) union of 2 of
them.

Corollary 6.27 [Zsc08] Let V be a lattice with Ferrers-graph Γ. Let Γm1,m2

be a component of Γ possessing the interval I := I(Γm1,m2).

1. If Γm1,m2 is of type 1 then M(Γm1,m2) = Um1(I) = Um2(I).

2. If Γm1,m2 is of type 2 then M(Γm1,m2) = Um1(I)
.
∪ Um2(I).

Proof: By Definition 6.26 we immediately see Um1(I) = Um2(I) for type 1 and
Um1(I) ∩ Um2(I) = ∅ for type 2. The claim follows with Proposition 6.24.

�

See Figure 6.11 for a schematic depiction of components of type 1 (on the
left) and type 2 (on the right) in the lattice perspective. The sets J(Γ◦) and
M(Γ◦) of a type 1 component Γ◦ are all situated in one proper component of
the lattice V. Contrary, in a type 2 component these sets are spread on two
proper components.

Components of type 1 and of type 2 can be easily distinguished when calcu-
lating their intervals. Thereby a type 2 component Γm,n is the less complicated
candidate, instead of determining I(Γm,n) by [

∧
M(Γm,n),

∨
M(Γm,n)] accord-

ing to Definition 6.6 it is enough to consider [m∧n, m∨n] only, as the following
lemma states.
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Figure 6.11: How to find components of type 1 and type 2 in the underlying
lattice.

In fact, also in type 1 components the limits of I(Γm,n) can be determined
as intersection and union of only two elements of M(Γm,n). However, these
elements can not be arbitrarily chosen.

Lemma 6.28 [Zsc08] Let Γm,n be a component of the Ferrers-graph of a lattice
and I(Γm,n) = [v, v].

1. If Γm,n is of type 2 then [m ∧ n, m ∨ n] = [v, v].

2. If Γm,n is of type 1 then there exists an edge {(j1, m1), (j2, m2)} in Γm,n

with m1 ∧ m2 > v.

Proof:

1. Let m ∧ n > v. Then we find a
∨

-irreducible j satisfying j ≤ m ∧ n
and j 6≤ v. Hence m and n are connected in [v, v], i.e. Γm,n is not of
type 2. In analogy, if m ∨ n < v then there exists a

∧
-irreducible ñ

satisfying ñ ≥ m ∨ n and ñ 6≥ v. Hence m and n are connected via
p = m ≥ j ≤ ñ ≥ h ≤ n in [v, v].

2. The second fact is shown by induction over the length of a shortest con-
nection p between m and n in [v, v].

If p is of length one, i.e. p = m ≥ j ≤ n then m ∧ n ≥ j 6≤ v, hence
m ∧ n > v.
If p is of length r > 1, i.e. p = n0 ≥ h1 ≤ n1 ≥ . . . ≥ hr ≤ nr

(with m = n0 and n = nr) then n1 is connected to m in [m ∧ n, m ∨ n].
We conclude with Lemma 6.14 that Γm,n = Γm,n1 or Γm,n = Γn,n1. In
both cases the connections between m and n1 and n and n1 respectively
are shorter than p. Hence we find a pair of

∧
-irreducibles meeting the

requirements of the claim. �
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Let us further consider the the interval I(Γm,n) of a component Γm,n of a
Ferrers-graph. By Definition 6.6 we know that [m ∧ n, m ∨ n] is a subset of
I(Γm,n). Now we want to find out, when we may flip over the inclusion sign.

Lemma 6.29 Let K = (J, M,≤) be the standard context of a lattice V pos-
sessing the Ferrers-graph Γ. Let m ‖ n ∈ M be both non-bound in [v, v] :=
[m ∧ n, m ∨ n]. Then I(Γm,n) ⊆ [v, v].

Proof: Let m̃ ∈ M(Γm,n). Hence there exists (for adequate chosen {hi | i ∈
{1, . . . , r} ⊆ J and {ni | i ∈ {1, . . . , r} ⊆ M) an edge sequence

(h1, n1)(h2, n2) . . . (hr, nr)

in Γm,n with n1 = m, n2 = n and nr = m̃. According to Remark 6.11 and
Lemma 6.21, for all k ∈ {1, . . . , r} the

∧
-irreducible nk is non-bound.

Suppose that, for an index k ∈ {2, . . . , r − 1}, both nk−1 > v and nk > v
hold. Then jk ‖ v contradicts nk−1 to be non-bound and jk ≤ v contradicts
jk ‖ nk. Hence, nk+1 ≥ jk > v. Since n1, n2 > v, we conclude m̃ > v. In
analogy we may realize that m̃ < v. Hence, M(Γm,n) ⊆ [v, v]. The claim
follows with Definition 6.6.

�

We have seen in Corollary 6.27 that every type 2 component Γm,n of a Ferrers-
graph Γ determines two m-components. The following lemma states that the
converse holds as well: every pair of m-components over the same interval
uniquely determines a type 2 component of Γ:

Lemma 6.30 Let K = (J, M,≤) be the standard context of a lattice V with
the Ferrers-graph Γ. Let [v, v] be an interval in V and m, n ∈ M , satisfying
Um([v, v]) 6= Un([v, v]). Then Γm,n is of type 2 and I(Γm,n) = [v, v].

In particular, if (m, n, o) is a free triple then Γm,n is of type 2 and I(Γm,n) =
[m ∧ n ∧ o, m ∨ n ∨ o].

Proof: Due to Definition 6.12 we know m, n ∈ [v, v] i.e., [m∧n, m∨n] ⊆ [v, v].
With Remark 6.11 we conclude [m ∧ n, m ∨ n] = [v, v] and with Definition 6.7
I(Γm,n) ⊇ [v, v].

By Definition 6.12 m and n are non-bound in [v, v]. By applying Lemma
6.29 we find I(Γm,n) ⊆ [v, v]. Hence, I(Γm,n) = [v, v] and with Definition 6.26
we conclude that Γm,n is of type 2.

If (m, n, o) is a free triple then Um([m ∧ n ∧ o, m ∨ n ∨ o]) 6= Un([m ∧ n ∧
o, m ∨ n ∨ o]). The claim follows with the first statement.

�

In Figure 6.12 we show the differences between type 1 and type 2 components
in the context perspective. We are given a lattice on the left together with its
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standard context K = (J, M,≤). Its Ferrers-graph consists of two components,
thereby Γo = Γm,n is of type 2 and Γ1 = Γn,o is of type 1. In the context,
a type 2 component has edges between columns of different m-components
only. In case of Γ0, the involved m-components are Um([0V, 1V]) = {m} and
Un([0V, 1V]) = {n, o, p, q}. Hence, we find in Γm,n only edges between the first
column and the other columns. In Γ1, every pair of columns belonging to
incomparable

∧
-irreducibles is connected by an edge.

We may reveal this difference even better by introducing a graph Γ̂◦ corre-
sponding to a component Γ◦ of Γ in the following way: The vertices of Γ̂◦ are
the columns of K that are touched by Γ◦. Two vertices of Γ̂◦ are connected by
an edge, if the respective columns are connected by an edge of Γ◦. Formally,
we define:

V (Γ̂◦) := M(Γ◦) and

E(Γ̂◦) := {(m, n) ∈ M2 | ∃j, h ∈ J : {(j, m), (h, n)} ∈ E(Γ◦)}.

We realize that the graph Γ̂0 is bipartite with the vertex classes Um([0V, 1V])

and Un([0V, 1V]). Meanwhile, two vertices in Γ̂1 are connected if and only if

the appropriate
∧

-irreducibles are incomparable, i.e. E(Γ̂1) =‖V (Γ1).

At least the first observation always holds; we may subsume to the following

Remark 6.31 If Γm,n is a component of type 2 then the graph Γ̂m,n is bipartite
with the vertex classes Um(I(Γm,n)) and Um(I(Γm,n)).

If Γm,n is a component of type 1 then E(Γ̂m,n) ⊆‖V (Γm,n).

The first fact follows from Lemma 6.28 and Lemma 6.14. The second fact
is trivial since it is a direct consequence of Definition 6.6. However, it can not
be formulated in a stricter form similar to the first.

g

h j k

lm
n p o

q

Γ1

Γ0

K m n o p q
g

h
j

k

l

m

n

o

p

q
Γ̂0

o p

n

q

Γ̂1

Figure 6.12: A lattice together with its standard context K. The Ferrers-graph
consists of the components Γ0 of type 2 and Γ1 of type 1. On the right the
respective graphs Γ̂0 and Γ̂1 are depicted.
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We found out already that for a type 2 component Γ◦, the set M(Γ◦) of
its contained

∧
-irreducibles is the disjoint union of two m-components Um

and Un. We can describe the structure of Γ◦ even more accurate; every pair
(m1, n1) ∈ Um × Un is connected in Γ◦, i.e. there exists an edge between them
in the graph Γ̂◦, as we see now:

Lemma 6.32 [Zsc07a] Let K = (J, M,≤) be the standard context of a lattice
V with the Ferrers-graph Γ. Let m ‖ n ∈ M , s.t. Γm,n is of type 2. Then

Γm,n = Γm1,n1 ⇐⇒ m1 ∈ Um(I(Γm,n)) and n1 ∈ Un(I(Γm,n)) (or vice versa).

Furthermore, if Γ is bipartite and one of the statements above is true then
m L̃ n ⇐⇒ m1 L̃ n1 holds for the respective induced relation L̃.

Proof: “⇒”: Let Γm,n = Γm1,n1. Hence there exists an edge sequence

(g1, m1)E(h1, n1)E . . . E(g, m)E(h, n).

By Definition 6.7 we observe m1, n1 ∈ M(Γm,n). Applying Lemma 6.21 w.l.o.g.
m1 ∈ Um(I(Γm,n)) and n1 ∈ Un(I(Γm,n)). If Γ is additionally bipartite then

m L̃j n =⇒ g Rj m =⇒ . . . =⇒ h1 Lj n1 =⇒ g1 Rj m1 =⇒ m1 L̃j zn1.

“⇐“: By Lemma 6.28 we know I(Γm,n) = [m∧n, m∨n]. Furthermore m1 and n
are not connected in I(Γm,n) since then also m and n would be connected (recall
that connectedness in an interval is an equivalence relation). Hence we may
apply Lemma 6.14 and conclude Γm,n = Γm1,n. With an analog argumentation
we find Γm1,n = Γm1,n1. �

Combining Lemma 6.32 with Remark 6.31 we may
conclude that the graph Γ̂◦ is a complete bipartite
graph if Γ◦ is of type 2. In particular, if Γ◦ is also bi-
partite with induced relation L̃◦ and interval I◦ then
we easily notice that Γ̂◦ = (M(Γ◦), L̃◦

.
∪ L−1

◦ ).
For the associated directed graph (M(Γ◦), L̃◦) we
obtain L̃◦ = Um(I◦) × Un(I◦) (see picture on the
right; L̃◦ is symbolized by the arrows), or vice versa
L̃◦ = Un(I◦) × Um(I◦).

︷ ︸︸ ︷
M(Γ◦)

Um(I) Un(I)

After collecting a lot of “little” results describing the structure of the com-
ponents of a Ferrers-graph, we are now able to collect the fruits of our work.
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6.3 Gaining Left-orders out of Ferrers-graphs

In the last section, we analyzed components of Ferrers-graphs. Thereby, we
achieved two main results. First, the induced relation L̃ of each component Γ◦

can be extended to a strict order, and second, the
∧

-irreducibles of Γ◦ can be
described comfortably by m-components of the underlying lattice.

Now we are interested in the behavior of L̃ if we turn around some compo-
nents. As already mentioned, we mean by this phrase the process of changig
the orientation of the induced relations L̃◦ of some components Γ◦. In sub-
section 6.3.1, we concern the question which of the components to flip over in
order to make L̃ transitive, i.e. (see Lemma 6.5) the respective lattice planar.

Afterwards in Subsection 6.3.2, we consider a bipartition of Γ that induces
already a left-order and try to find all possibilities to flip components while
keeping the induced relation transisitve. Thus, we will be allowed to specify
all non-similar plane diagrams of a lattice.

6.3.1 Turning Components of Γ

We start this subsection with an obvious observation: A bipartite graph G
stays bipartite, if some of its components are “turned around”2. See Figure
6.13 for an intuition of this fact.

Remark 6.33 Let Γ = (V, E) be a bipartite graph with vertex classes X and
Y and Γk, k ∈ K its components. Let Xk = X ∩ V (Γk) and Yk = Y ∩ V (Γk)
be the vertex classes of the appropriate components Γk. Let Rk ∈ {Xk, Yk} for
all k ∈ K. Then the sets R =

⋃

k∈K Rk and V \ R are a bipartition of Γ.

Γ1

Γ2

Γ3

Γ4

Figure 6.13: The bipartite graph Γ consists of four components. “Turning
around” some of them (here Γ2 and Γ4) supplies a new bipartition.

2More general, the technique of “recoloring” vertices of graphs is used (without proof),
for instance in Brooks Theorem [Die96].
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The following lemma gives a constructive method to obtain a left-order from
a bipartite Ferrers-graph. Thereby, components are turned according to given
linear orders on m-components sharing the same interval.

Lemma 6.34 [Zsc07a] Let K = (J, M,≤) be the standard context of a lattice
V and Γ its bipartite Ferrers-graph. Let Γk, k ∈ K be the components of Γ
and L̃k their respective induced relations. There exists a relation L̂ =

⊎

k∈K L̂k

with L̂k ∈ {L̃k, L̃
−1

k } that is transitive.

Proof: For each interval [v, v] ⊆ V we introduce a linear order on its compo-
nents:

Um1 ≤ Um2 ≤ . . . ≤ Umt
. (6.4)

Let Γm,n be a component of type 2 with induced relation L̃m,n. We define

L̂m,n := Um(I) × Un(I).

According to Lemma 6.32 (and below) L̂m,n ∈ {L̃m,n, L̃
−1

m,n}. For all relations

L̃◦ induced by components Γ◦ of type 1, we set L̂◦ := L̃◦.
Let m L̂m,n n L̂n,o o. By Lemma 6.4 we know m ‖ o. If L̂m,o is an element

of {L̂m,n, L̂n,o} then we conclude with Lemma 6.18 and Corollary 6.17 that

m L̂m,o o. Otherwise (m, n, o) is a free triple by Lemma 6.18.
Applying Lemma 6.30 we know that the components Γm,n, Γm,o and Γn,o are

of type 2, possessing the interval Imno := [m∧n∧o, m∨n∨o]. From setting (6.4)
we conclude Um(Imno) < Un(Imno) < Uo(Imno). This is, Um(Imno) < Uo(Imno)
and according to (6.4) m L̂m,o o.

�

By turning components due to the changed orientations of L̂ in Lemma 6.34
we gain a bipartition of Γ that provides a left-order on the respective lattice
V. This is the first main result of this chapter.

Theorem 6.35 [Zsc07a] Let K = (J, M,≤) be the standard context of a lattice
V and Γ its Ferrers-graph. Then

Γ is bipartite ⇐⇒ V is planar.

Proof: “⇒”: Consider the relation L̂ from Lemma 6.34. Let L̂ :=
⋃

k∈K L̂k

and R̂ :=
⋃

k∈K R̂k with

L̂k :=

{

Lk, L̂k =L̃k

Rk, L̂k =L̃
−1

k .

L̂ and R̂ are a bipartition of Γ since Lk= Vk(Γ) ∩ L (see Remark 6.33) and L̂
is its induced relation. The relation L̂ is asymmetric and connex (Lemma 6.4)
and transitive (Lemma 6.34). Therefore V is planar (Lemma 6.5).



106 Chapter 6: Left-relations on Contexts

“⇐”: If V is planar then its order dimension is at most two (Theorem 3.20).
Therefore, the Ferrers-dimension is at most two (Theorem 3.39) and hence its
Ferrers-graph bipartite (Lemma 3.42).

�

In this chapter we used to consider standard contexts K of lattices until now.
This seems reasonable since we were interested in a lattice property (namely
planarity) that we were able to derive from a certain property of K (namely
the bipartiteness of the associated Ferrers-graph). Having a look on FCA as
applied lattice theory, one can ask now, whether we must restrict us to reduced
contexts as equivalent to K or whether it suffices to consider any context to
check the planarity of the appropriate concept lattice. We will see that the
second is true.

As a preparation, we first prove that inserting or deleting rows and columns
in a context K do not affect the bipartiteness of its Ferrers-graph Γ if B(K)
remains the same up to isomorphy.

Lemma 6.36 Let K = (G, M, I) be a context possessing the Ferrers-graph Γ
and K̃ be the reduced context of K possessing the Ferrers-graph Γ̃. Then Γ is
bipartite if and only if Γ̃ is bipartite.

Proof: “⇒”: K̃ emerges from K by deleting some rows and columns. For the
appropriate Ferrers-graphs, we note that Γ̃ results from Γ by deleting certain
vertices and their incident edges. Clearly, the property of bipartiteness is
conserved.

“⇐”: Let n be a non-
∧

-irreducible element of M . Then µn =
∧

Mn for a
set Mn ⊆ M . Now let {(g, n), (h, m)} ∈ E(Γ). There exists a

∧
-irreducible

m1 ∈ Mn with g  I m1. Since m′ ⊆ m′
1, we conclude also hIm1 and hence

{(g, m1), (h, m)} ∈ E(Γ). We conclude N(g, m) ⊆ N(g, m1), where N(γ)
denotes the set of neighbors of a vertex γ ∈ Γ. Therefore, for every (odd) circle
in the Ferrers-graph Γ we find another one in Γ̃.

�

Applying this lemma we may extend the characterization given in the main
result Theorem 6.35 to arbitrary contexts and their respective concept lattices.
More precisely, a context K with bipartite Ferrers-graph possesses a planar
concept lattice B(K) and vice versa all contexts K̃ having a concept lattice
isomorphic to the planar one B(K) possess a bipartite Ferrers-graph.

Corollary 6.37 Let K = (G, M, I) be a context with Ferrers-graph Γ. Then

Γ is bipartite ⇐⇒ B(K) is planar .

Proof: Follows from Lemma 6.36, Theorem 6.35 and the fact that for an arbi-
trary context K and its reduced version K̃, the equality B(K) ∼= B(K̃) holds.

�
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6.3.2 The Number of Plane Diagrams of a Lattice

After giving a possibility to find one plane diagram of a lattice now we want
to find all of them. Of course, this can be done up to similarity only. One
obviously obtains infinitely many plane diagrams by jiggling slightly a node.

Let us recall where we stand: Every plane diagram uniquely (up to similarity)
determines a left-order that gives a bipartition on the Ferrers-graph Γ. Vice
versa there exist bipartions of Γ inducing left-orders, i.e. plane diagrams. We
want to find now all these bipartitions.

Doignon et al. [DDF84] tried to tackle the issue of finding the number of
plane diagrams of a poset with the same approach but could not find a general
solution. Golumbic [Gol80] solves the problem by counting all transitive ori-
entations3 of the incomparability graph. However, as far as we know, we are
the first to publish an algorithm for this task in Section 6.4.

In the following two lemmas we investigate, in which way type 1 and type 2
components can be turned around while keeping the induced relation transitive.
For the former, there are no constraints at all, as the first observation claims.
See also Figure 6.14 for a visual substantiation.

Lemma 6.38 Let V be a lattice with bare Ferrers-graph Γ. Let V (Γ) = L
.
∪ R

be a bipartition of Γ, s.t. the induced relation L̃1 can be extended to a left-order
L1. Furthermore let Γ◦ be a component of Γ of type 1. Then the bipartition

V (Γ) = ((L \ L◦)∪ R◦)
.
∪ ((R \ R◦)∪ L◦)

is again a bipartition inducing a relation L̃2 that can be extended to a left-order
L2 distinct from L1.

Proof: We have to evidence the following claims

1. ((L \ L◦)∪ R◦)
.
∪ ((R \ R◦)∪ L◦) is again a bipartition of the vertex

set of Γ: This is intuitively clear since we just “turned around” one of its
components, see Remark 6.33.

2. The induced relation L̃2 can be extended to a left-order: We know (see
Lemma 6.4) that L̃2 is asymmetric and connex since it is induced by a
bipartition. Now assume L̃2 not to be transitive. Hence we have three
∧

-irreducibles satisfying m L̃2 n L̃2 o L̃2 m. Since L̃1 is transitive
by precondition, let w.l.o.g. m L̃1 n. In particular this means Γ◦ =
Γm,n. Otherwise we know by Corollary 6.17 that (m, n, o) is a free triple
and, due to Lemma 6.30, that Γ◦ is of type 2. This contradicts our
precondition.

3A transitive orientation (V, F ) is an orientation of a simple undirected graph (V, E), s.t.
F ∩ F−1 = ∅, F ∪ F−1 = E and F ◦ F ⊆ F hold [Gol80].
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1V

0V

v

v

1V

0V

v

v

Figure 6.14: In a plane diagram, turning a type 1 component results again
in a plane diagram. The interval [v, v] of the component (depicted diagonally
striped) is thereby reflected.

3. L1 6= L2: By Definition 6.26, Γ◦ contains at least one edge. Let Γ◦ = Γm,n

for some m, n ∈ M . W.l.o.g. let m L̃1 n and n L̃2 m. This extends to
the respective left-relations, i.e. m L1 n and n L2 m. Both left-orders
are asymmetric, so we conclude L1 6= L2.

�

Type 2 components have to be handled more carefully. As already suggested
in the proof of Lemma 6.34, the orientations of those components with the
same interval have to comply with a certain order of the accompanying m-
components. Therefore, the number of bipartitions equals to the number of
linear orders on the set of respective m-components. See Figure 6.15 for an
example.

Lemma 6.39 [Zsc08] Let K = (J, M,≤) be the standard context of a lattice
V with Ferrers-graph Γ. Let V (Γ) = L

.
∪ R be a bipartition of Γ, s.t. the

induced relation L̃ is transitive. Furthermore let Γ[v,v] := {Γ1, . . . , Γr} be the
set of components of type 2 possessing the interval [v, v] and s the number of
m-components in [v, v], i.e. U([v, v]) = Um1 [v, v], . . . , Ums

[v, v]. Then

1. r =
(

s

2

)
.

2. Let K ⊆ {1, . . . , r}. The relation L̂ induced by the bipartition

V (Γ) =

((

L \
⋃

k∈K

Lk

)

∪
⋃

k∈K

Rk

)

.
∪

((

R \
⋃

k∈K

Rk

)

∪
⋃

k∈K

Lk

)

(6.5)

is transitive if and only if it is a linear order on the set Ms = {m1, . . . , ms}.

3. There exist exactly s! bipartitions of the form of Equation (6.5) whose
induced relations are transitive.
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v

v

1V

0V

v

v

1V

0V

v

v

1V

0V

v

v

1V

0V

v

v

1V

0V

v

v

1V

0V

Figure 6.15: In a plane diagram, turning type 2 components results again in a
plane diagram if their respective ordering corresponds to a linear ordering of the
involved proper components. In this picture we have three proper components
Um1 (horizontally striped), Um2 (vertically striped) and Um3 (crosshatched).
Therefore there exist three components of type 2, namely Γm1,m2 , Γm1,m3 and
Γm2,m3. Of the eight possible orientations of that components, six supply a
plane diagram.

Proof:

1. Due to Lemma 6.30 there exist (at least)
(

s

2

)
different components Γmi,mj

(with i 6= j ∈ {1, . . . , s}) possessing the interval [v, v].

Due to Corollary 6.27 each component Γmi,mj
possessing the interval

corresponds to a pair of m-components (Umi
([v, v]), Umj

([v, v])). Hence,
r =

(
s

2

)
.

2. Due to Definition 6.12 and Lemma 6.4 we know that L̂ is asymmetric and
connex on Ms. If L̂ is not a linear order on Ms then it is not transitive
on Ms and therefore not transitive on M .

Now assume to find a triple n1, n2, n3 ∈ M satisfying n1 L̂ n2 L̂ n3 L̂ n1.
By Corollary 6.17 we know that (n1, n2, n3) is a free triple. Since L̃
is transitive and L̂ evolved as the induced relation of the bipartition
(6.5) where we just turned around some components of Γ[v,v], let w.l.o.g.
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Γn1,n2 = Γm1,m2 . We conclude that the components Γn1,n2, Γn1,n3 and
Γn2,n3 are of type 2 (Lemma 6.30) possessing the interval [v, v]. Hence, the
m-components Uni

([v, v]) are pairwise disjoint (Corollary 6.27). W.l.o.g.
let ni ∈ Umi

([v, v]) for i ∈ {1, 2, 3}. With Lemma 6.32 we conclude
m1 L̂ m2 L̂ m3 L̂ m1, i.e. L̂ is not a strict order on Ms.

3. This is obvious: there exist s! linear orders on an s-elemental set and
therefore also s! orientations of the involved components of Γ inducing a
relation L̂ that is transitive.

�

Kelly and Rival in [KR75] first observed that flipping or interchanging m-
components Um([v, v]) (or precisely the set {

∧
N | N ⊆ Um([v, v])}, they called

this a proper 〈v, v〉-component) keeps a lattice diagram planar. Our achieve-
ment is to be able to count the number of those transformations correctly4 by
assigning components of the corresponding Ferrers-graph to m-components (or
pair of them). This is the concern of the next result which is the second goal
of this chapter.

Theorem 6.40 [Zsc08] Let K = (J, M,≤) be the standard context of a lattice
V with Ferrers-graph Γ.

1. If Γ is not bipartite then V possesses no plane diagram.

2. Let Γ is bipartite with κ components of type 1 and n = n1 + . . . + nt

components of type 2, s.t. ni > 0 is the number of components of the set
Γ[v,v] for some interval [v, v]. Then V possesses 2κ ·

∏t

i=1 µi! non-similar
plane diagrams. Thereby ni =

(
µi

2

)
.

Proof:

1. This is the assertion of Theorem 6.35.

2. Due to Theorem 6.35 there exists at least one plane diagram. The claim
follows then from Lemma 6.38 and Lemma 6.39. Remind that non-similar
plane diagrams can be represented by different left-orders and vice versa
(see Corollary 5.7).

�

A statement concerning the number of transitive orientations of a compa-
rability graph which is equal to the number of plane diagrams of a poset (see
Theorem 3.20) is given in [Gol80]. Although relying on different constructions,
a product of factorials as resulting number is the outcome, too.

4The problem is, flipping one m-component may result in the same diagram as inter-
changing two others.
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See Figure 6.16 for an example. We consider the lattice we already intro-
duced in Figure 6.10. There we noticed that the Ferrers-graph consists of
two components, one being of type 1 and the other one of type two. Since
1 =

(
2
2

)
, we conclude with Theorem 6.40 that the lattice possesses 21 · 2! = 4

plane diagrams. These are depicted in the Figure. One may observe that
flipping the type 1 component Γn,o results in turning around its m-component
(more precisely, the set {

∧
N | N ⊆ Un(I(Γn,o))}). However, flipping the

type 2 component Γm,n results in interchanging its m-components, i.e. the sets
{
∧

N | N ⊆ Um(I(Γn,o))} and {
∧

N | N ⊆ Un(I(Γn,o))}.
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Figure 6.16: All plane diagrams (up to similarity) of a lattice.

After giving the number of non-similar plane diagrams, we also want deter-
mine the number of realizers of a planar lattice. As Lemma 3.18 may suggest
already, the number of left-orders equals twice the number of realizers since
every conjugate order together with its inverse uniquely determines a realizer
and vice versa every realizer ascertains two conjugate orders L and L−1.

Corollary 6.41 Let V be a lattice with the bipartite bare Ferrers-graph Γ as
previously described in Theorem 6.40. Then V possesses 2κ−1·

∏t

i=1 µi! realizers.

Proof: The number of plane diagrams of V equals to the number of conjugate
orders of V, i.e. to half the number of realizers of V (see Corollary 5.7, Theorem
4.9 and Lemma 3.18). The claim follows with Theorem 6.40.

�

In [DDF84] a characterization of posets of dimension 2 possessing a unique
realizer is given. Applying our consideration we can derive this result, restricted
to lattices, too:

Corollary 6.42 [DDF84] Let V be a lattice with the bipartite bare Ferrers-
graph Γ. Then V possesses a unique realizer of size two if and only if Γ is
connected.

Proof: Follows immediately from Corollary 6.41.
�

Finally we can specify the subset of natural numbers that can be described
as the number of non-similar plane diagrams of a lattice:



112 Chapter 6: Left-relations on Contexts

Corollary 6.43 Let α be a natural number. There exists a lattice possessing
α non-similar plane diagrams if and only if α = 0 or α =

∏t

i=1 αi! for natural
numbers α1, . . . , αt.

Proof: The case α = 0 refers to non-planar lattices. The number of non-similar
plane diagrams of a planar lattice is a product of factorials; this is implied by
Theorem 6.40 if one recalls 2 = 2!.

Otherwise for any number α =
∏t

i=1 αi!, the lattice consisting of a parallel
composition of lattices Mαi

has exactly α plane diagrams: The bare Ferrers-
graph of the lattice Mn

5 possesses
(

n

2

)
components of size 2, which all share

the interval [0Mn
, 1Mn

] and has therefore n! plane diagrams. Additionally, the
bare Ferrers-graph Γ of the parallel composition of two lattices V1 and V2 is
exactly the (disjoint) union of the bare Ferrers-graphs of its parts. This is due
to the fact that all pairs of the form (j, m) with j ∈ J(V1) and m ∈ M(V2)
or j ∈ J(V2) and m ∈ M(V1) fulfill either j ≤ m or j ≥ m. Both cases imply
(j, m) /∈ V (Γ).

�

See Figure 6.17 for an example of the previous result. On the left we see
the ordinal sum M3 + M3 of two lattices M3. Obviously, there exist (3!)2 = 36
non-similar plane diagrams of this lattice: By permuting the

∧
-irreducibles a,

b and c one gains 6 possibilities and while permuting d, e and f the other 6.

One may argue that all the different diagrams are isomorphic, i.e. for each
pair of those diagrams given by the mappings pos1 and pos2 we can find an
isomorphism ϕ of M3 + M3, s.t. both diagrams are equal, i.e. pos1 = pos2 ◦ϕ.
However, by adding some extra nodes making the branches distinguishable,
non-similar diagrams are not isomorphic in this sense anymore.

1

x

0

a b c

d e f

1

x

0

a b c

d e f

a b c d e f

a
b
c
d
e
f

Figure 6.17: Two lattices possessing 36 non-similar plane diagrams.

5The lattice Mn consists of an n-elemental antichain completed by top and bottom ele-
ment.
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6.4 Determining All Non-similar Plane Dia-

grams of a Lattice

With the help of the previous statements we can design an algorithm that
specifies all left-orders, i.e. all non-similar plane diagrams, of a lattice V. it
consists of the following steps:

1. Calculate the bare Ferrers-graph Γ of V.

2. Decide, whether Γ is bipartite. If yes, assign a bipartition L
.
∪ R to the

vertices of Γ.

3. Determine all components of Γ.

4. Calculate the interval I(Γ◦) of each component Γ◦ and determine, whether
Γ◦ is of type 1 or type 2.

5. Find a partition of the set of components of Γ into a set of components
of type 1 and sets of components of type 2 sharing the same interval:

Γ = {Γ◦ | Γ◦ is of type 1}
.
∪

·⋃

v<v∈V

Γ[v,v]

6. Calculate the m-components of each interval [v, v] defining a non-empty
set Γ[v,v].

7. Find all bipartitions inducing a relation L̃ that can be extended to a
left-order.

The algorithm finds exactly all bipartitions that define a left-order. This is
assured by Theorem 6.40. To gain a plane diagram from that, one can use for
instance the method described in Section 5.3.

The last step of the algorithm can not be processed in polynomial time (both
in terms of

∧
-irreducibles and of lattice elements). This is due to the fact

that a planar lattice may possess up to |M(V)|! non-similar plane diagrams.
Actually it is not possible to write them down or draw them in polynomial
time. However, the other steps are polynomial however, as we want to clarify
in the following. In particular, just determining the number of plane diagrams
of a lattice can be found in polynomial time.

1. The first step needs a complexity of O((|J | · |M |)2) by a naive calculation.

2. Finding a bipartition of a graph (V, E) can be done in O(|E|) = O((|J | ·
|M |)2) by a breadth-first-search algorithm [Jun94].



114 Chapter 6: Left-relations on Contexts

3. Finding all components of the bare graph can be done in O(|E|) = O((|J |·
|M |)2) by a variation of a breadth-first-search algorithm [Jun94].

4. In a planar lattice every element v can be represented as the infimum of
at most two

∧
-irreducibles and as the supremum of at most two

∨
-irre-

ducibles (see Lemma 3.26). Therefore the calculation of the intervals can
be done in O(|M |2).

The distinction between type 1 and type 2 components can be done easily
in this process, as Lemma 6.28 states: In a component Γ◦ of type 2, every
pair of

∧
-irreducibles m, n ∈ M(Γ◦) has the same infimum m ∧ n = v

(where I(Γ◦) = [v, v]). In contrast, if Γ◦ is of type 1 then there are two
∧

-irreducibles m, n ∈ M(Γ◦) satisfying m ∧ n > v.

5. This step is obviously done in O(n) where n ≤ |M |2 is the number of
components of type 2.

6. Exactly those pairs of
∧

-irreducibles m, n that are connected by an edge
of the form {(j, m), (h, n)} are in different m-components (see Lemma
6.32). That is, every component Γm,n of type 2 defines two m-components

by the given unique bipartition V (Γm,n) =L
.
∪ R by

Um(I(Γm,n)) = {m̃ ∈ M(Γm,n) |6 ∃j, h ∈ J : {(j, m̃), (h, m)} ∈ E(Γm,n}

Un(I(Γm,n)) = {m̃ ∈ M(Γm,n) | ∃j, h ∈ J : {(j, m̃), (h, m)} ∈ E(Γm,n}

Hence this step takes a complexity of O(|M(Γ◦)|) for each component Γ◦

and O(|M |3) altogether.

By this consideration we observe that the first six steps of the algorithm need
a time complexity of

max{O((|J |·|M |)2),O(|M3|),O(|M2|)} ≤ max{O((|J |4),O(|M4|)} = O(|V|2).

See Proposition 3.27 for the equality between the second and third term. The
number of plane diagrams can be calculated already after accomplishing step
5 by the formula

2κ ·
∏

Γ[v,v] 6=∅

µ[v,v],

where κ = |{Γ◦ | Γ◦ is of type 1}| is the number of type 1 components and µ[v,v]

is the number of m-components of an interval [v, v] if that interval possesses
several m-components at all, i.e. |Γ[v,v]| =

(
µ[v,v]

2

)
.

Let us finally have another look at the last step. “Writing down” all left-
orders here means to provide all possible linear orders on the sets of m-
components sharing the same upper neighbor and to arrange the components
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of the Ferrers-graph Γ respectively. Finding all linear orders (or, equivalently,
all permutations) of an n-elemental set can not be done in polynomial time,
since its number is not a polynom of n, but n! instead.

However, determining them can be done in polynomial delay. That means,
it takes only polynomially many steps to calculate each configuration. There
is a well known algorithm called Next Permutation [Knu05] finding all
permutations of an n-elemental set with linear delay. Hence, specifying all the
α ≤ |M |! plane non-similar diagrams of a lattice can be done in O(|M | · α).



Chapter 7

Conclusion and Further Work

7.1 Conclusion

In this section we want to highlight, what we achieved in this work. We re-
capitulate the most important conclusions and compare them with existing
results.

Left-relations on Lattices

We found an efficient way to describe conjugate orders by introducing left-
relations on lattices. They can be uniquely represented by sorting relations
(on lattices). This means in particular that not the exact positions of the
diagram nodes of the

∧
-irreducible elements, but only their relative positions

to each other determine a lattice diagram to be plane or not.
The importance of the

∧
-irreducibles (and dually

∨
-irreducibles ) for the

planarity of the underlying lattice becomes evident once again in the planarity
conditions. Particularly, the FPC is a helpful result that simplifies many proofs
if we know a left-relation not completely.

Finally, the TPC gives a quite intuitive and easily presentable imagination on
how the standard context of a planar lattice looks like. Moreover, a respective
enumeration ε provides a sorting relation that can be used to draw a plane
diagram.

Left-relations on Diagrams

By investigating this issue we contributed two advances. Firstly, we showed in
Theorem 5.6 that every conjugate order uniquely determines a plane diagram
up to similarity and vice versa. This fact was, as we think, already known,
but never explicitly formulated before. Secondly, by modifying the left-right
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numbering method that emerges from the proof of Theorem 5.6 we were able
to create an algorithm that draws plane attribute additive diagrams of planar
lattices.

Left-relations on Contexts

In our opinion, the main contribution of this dissertation comes from the final
part. By introducing left-relations on contexts in an adequate manner we
found a fruitful coherence to Ferrers-graphs. This enabled us to investigate the
interplay between properties of these graphs and the shape of the appropriate
lattice. Although these correlations itself might be an interesting research issue,
we want to discuss the two main results of that chapter only.

In Theorem 6.35 we gave a possibility to characterize planar lattices, i.e.
lattices of order dimension at most two. Due to the proof, constructing the
Ferrers-graph out of the standard context and checking it for inducing a left-
relation has a time complexity of O(|V |2).

It is well known that deciding the order dimension is NP-hard for posets
[Yan82] if it exceeds two. However, there already exist many polynomial ap-
proaches in case of the dimension being at most two.

For posets there are two algorithms based on procedures to recognize com-
parability graphs. The one by Golumbic [Gol80] has a complexity O(δ · |E|)
while the other by Spinrad and McConnell [MS97] is quicker with complexity
O(|V | + |E|). Thereby, V and E denote the number of vertices and edges of
the comparability graph of a poset and δ its maximal degree1. Both methods
are not quicker than the one we developed in this work, but may be applied on
a broader range since they are designed more generally for posets. As well as
we did, Doignon et al. [DDF84] tackles the problem with the help of Ferrers-
graphs. However, his result is not constructive.

If we consider lattices in particular, the result of Platt (see Theorem 3.23)
supplies together with a quick graph planarity algorithm (e.g. [HT74], [LEC67])
a possibility to recognize and lay out planar lattices with a complexity of
O(|V |). Hence, it is the quickest available method so far.

In the other result in Theorem 6.40 we give an algorithm to calculate the
number of all plane diagrams in O(|V |2). Actually writing down the corre-
sponding left-orders can be done with polynomial delay, namely O(|M |). In
the worst case - if the observed lattice is of the form Mn - calculating all n!
left-orders has a complexity of O(|M | ·n!) therefore. An algorithm as described
in Section 6.4 was, as far as we know, not known yet.

1In graph theory, the degree of a vertice v is the number of its neighbors, i.e. the number
of vertices adjacent to v.
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7.2 Further Work

7.2.1 Algebraic Consequences

Of course, this dissertation aims at an applicational direction. The results
may be used primarily for designing better algorithms for drawing diagrams of
lattices. However, some of the newly introduced concepts may deserve to be
investigated further.

One the one hand one can observe left-orders more deeply. Questions could
include the following: Is it possible to characterize those (planar) lattices whose
conjugate order is a lattice itself? Which lattices (or posets) have conjugate
orders isomorphic to the original order? Which lattices/posets can be repre-
sented as conjugate orders?

On the other hand it seems to be fruitful also to analyze Ferrers-graphs fur-
ther. We only observed the bipartite ones. In the general case, the partition
into types according to Definition 6.26 remains the same. However, the in-
duced relations on type 1 components are no orders anymore. Contrary, type 2
components always seem to possess an order as induced relation since thay are
complete directed bipartite graphs (see Lemma 6.32). We think that the rich
coherences between lattices and Ferrers-graphs, between the different concepts
of components and of connections give a broad space for further discoveries.

7.2.2 Minimizing the Crossing Number

Although it was the initial concern of this work to find strategies to minimize
the crossing number, the fruitfulness of the prerequisite theory of planarity did
not allow us to investigate it reasonably yet. However, we discovered some
preliminary results that we present here. Thus, we try to indicate the chances
that the theory of Ferrers-graphs introduced in Chapter 6 offers for advancing
in this topic.

By the well-known result Garey and Johnson [GJ83] we know that mini-
mizing the crossing number cr of a graph is NP-complete. The same holds
for posets and lattices [Fre04]. However, it might be possible that the prob-
lem becomes tractable if we choose cr small enough. The crossing number
problem for graphs, i.e. deciding whether a simple undirected graph has a
diagram with at most cr edge crossings, can be solved in O(|V |2) time by an
algorithm of Grohe [Gro01]. However, the constant factor grows doubly expo-
nentially in cr. Hence, it is efficient if cr is small, only. A problem that can be
solved - for a fixed parameter k - in polynomial time is called fixed-parameter-
tractable [FG06].
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There are several approaches to describe the “non-planarity” of lattices (or,
more general, of graphs). One is by means of the above-mentioned crossing
number, another by the size of a minimal subset W ⊆ V whose deletion makes
the remaining induced subgraph planar. We present a new approach (for lat-
tices only) that is inspired by the usefulness of Ferrers-graphs.

Definition 7.1 Let V be a lattice with standard context (J, M, I). We call V

∇-naplar if there exists a planar lattice W generated by the context (J, M, Ĩ)
meeting2 |I △ Ĩ| = ∇.

♦

In particular we will be interested in the simplest case of 1-naplar lattices.
They are characterized by a standard context that becomes planar (in the sense
of Section 4.4) by deleting or adding a cross. A first result on nearly planar
lattice is the following observation which is proved in [Zsc07c].

Lemma 7.2 Let K = (G, M, I) be a context and Γ(I) its Ferrers-graph. Fur-
thermore, let the chromatic number χ(Γ(I)) = 3 and I = I1

.
∪ I2

.
∪ I3 a

valid partition into color classes with |I1| = 1. Then, Γ(I ∪ I1) is bipartite.

That is, if we have a context whose empty cells can
be tricolored with a valid vertex coloring (e.g. with
black, light and shaded), s.t. one color (e.g. black)
is used exactly once then replacing the appropriate
node by a cross leaves the Ferrers-graph 2-colorable.
This sounds obvious. In fact, adding a cross in K also
adds new edges in the graph Γ(I), i.e. the modified
Γ(I ∪ I1) is not just the subgraph induced by I2 ∪ I3.
See picture for an example, replacing the black dot
by a cross adds the edge {(h, a), (g, b)}.

a b c d
g

h •
j

k

We may conclude that every lattice possessing a standard context satisfying
the preconditions of Lemma 7.2 is 1-naplar. This allows us to ask for the
crossing number of certain lattices possessing a Ferrers-graph that is “nearly”
bipartite. Although we did not prove the following conjecture yet, for small
lattices it seems to be true.

Conjecture: Let V be a lattice. Let the Ferrers-graph of V possess exactly

one chordless cycle of odd length 2n + 1. Then cr(V) =

{
2, n = 1
1, n > 1

.

2By △ we denote the operator of the symmetric difference.
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Unfortunately, 1-naplar lattices may have an
arbitrary crossing number in general. Consider
the lattice Mr × D2 as an example. Its Ferrers-
graph consists of a set of triangles with the ver-
tices (g, m), (hi, nj) and (hj, ni) (for all i 6= j ∈
{1, . . . , r}). Removing the black dot leaves the
Ferrers-graph bipartite. However, the lattice has
(with growing r) an increasing number of edge
crossings.

m n1 n2 · · · nr

g •
h1

h2
...

hr

. . .

A long-term objective of all this considerations could be to characterize lat-
tices having a small crossing number cr by their respective Ferrers-graphs, e.g.
by the number and length of their chordless odd cycles. This could be possible
even in polynomial time. In order to figure out that a graph possesses at most
n odd cycles one has to delete all n-elemental vertex subsets respectively and to
check the remaining induced subgraph to be bipartite. This requires a complex-
ity of O(|V |n · |V 2|). That means that the problem becomes fixed-parameter
tractable. Furthermore, it ought to be possible to generate a left-relation that
describes a diagram possessing cr edge crossings.

7.2.3 Drawing Nice Diagrams

Recent lattice layout algorithms do not include strategies for recognizing or
drawing planar lattices. Only methods based on layer assignment use heuris-
tical approaches for minimizing the crossing number. Our framework does not
only allow to easily implement a procedure for detecting and drawing planar
lattices (a feature that has not been used yet since not very many lattices in
practice are planar indeed), but the possibility to find all plane diagrams up
to similarity offers a new approach for drawing non-planar structures as well.
Given a lattice V with standard context K, this can be done by performing
the following steps:

1. Find, by deleting some
∧

-irreducibles , all maximal subcontexts that
possess a planar lattice.

2. Find, for each subcontext found in step 1., all plane diagrams of the
respective lattice.

3. Add the deleted
∧

-irreducibles into each context found in step 1., i.e.
add the respective prime ideals into the diagrams of step 2., s.t. the
conflict distance3 is being maximized.

3That is, the least distance between a diagram node and a non-incident diagram edge
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4. Apply a force directed placement4 algorithm on each diagram found in
step 3. to further enhance the conflict distance and to fulfill other esthetic
criteria.

5. Apply a quality function that chooses the best diagram (or diagrams)
due to a certain metrics.

The first step is to be understood that a minimal number of
∧

-irreducibles
should be removed.

Step 3 can be undertaken by using an algorithm proposed by Schmidt [Sch02]
that assigns a vector to a

∧
-irreducible m maximizing the conflict distance

between the original diagram and the newly included prime ideal of m.
Step 4 demands some more experience with the importance of esthetic cri-

teria and some intuition about how to create forces to model them, of course.
Many algorithms exist already (see, e.g. [Ead84, FR91] or [DETT99] for an
overview of the topic), although most of them are designed for undirected
graphs only. However, we have our own framework [Zsc07b] that could be
extended in an appropriate manner.

The last step seems to be the most complicated. One has to balance the
importance of the included esthetic criteria quantitatively in order to weight
them. A naive formula could be of the form

q(cr, dst) := α · cr + β · dst−1.

Thereby the quality function q has to be minimized. The crossing number cr
is supposed to be small as well as the inverse of the conflict distance dst. The
parameters α and β have to be chosen in a way that indeed the best diagram
is selected.

4An algorithm class developed in the graph drawing community. A diagram is considered
as a physical system with forces that act on vertices and edges due to the desired diagrams
properties. A balanced state of the system often supplies a good layout.
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