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Historical overview

Fusion and transporter categories

Let G be a finite group, S ∈ Sylp(G ) and ∆ ⊆ Subgr(G ).

Definition (Puig, 1976)

The fusion category FS(G ) is the category with
Ob(FS(G )) = {subgroups of S},
MorFS (G)(X ,Y ) = {cg | g ∈ G and X g ≤ Y }, where cg denotes the
conjugation morphism.

Definition
The transporter category T∆(G ) is the category with

Ob(T∆(G )) = ∆,
MorT∆(G)(X ,Y ) = {g ∈ G | X g ≤ Y }.

When ∆ ⊆ Ob(FS(G )), there is an obvious functor T∆(G ) −→ FS(G ).
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Historical overview

From transporter systems to partial groups

Algebraic topologists studied fusion and transporter systems, abstract
generalizations of fusion and transporter categories.
Their goal being a proof of existence and uniqueness of a centric
linking system (i.e. a transporter system with some specific properties)
over any fusion system with the saturation property.

In 2013 A. Chermak proved both existence and uniqueness by
translating the categorical language of transporter systems into the
language of other algebraic structures, namely partial groups.
He translated the composition of morphisms in a transporter system
into the product of elements of a partial group.

X0
g1−→ X1

g2−→ . . .
gn−→ Xn
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Partial groups

Partial groups

Definition

Let L be a non-empty set and W (L) = W be the free monoid on L; also

D = D(L) ⊆W (domain) , Π : D → L (multivariable product)

and i : L → L an involutory bijection.
Then the quadruple (L,D,Π, i) is a partial group provided:

1 L ⊆ D and moreover u ◦ v ∈ D =⇒ u, v ∈ D;
2 Π|L = idL;
3 if u ◦ v ◦ w ∈ D, then u ◦ (v)Π ◦ w ∈ D and

(u ◦ v ◦ w)Π = (u ◦ (v)Π ◦ w)Π;
4 by extending i to W (L) defining (x1, . . . , xn)i = ((xn)i , . . . , (x1)i), if

w ∈ D then we have (w)i ◦ w ∈ D and
((w)i ◦ w)Π = 1 = (∅)Π, where ∅ is the empty word.
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Partial groups

The category Part of partial groups

Definition

Given partial groups (L,D,Π, i) and (L′,D ′,Π′, i ′) and a set-wise map
β : L → L′, consider the componentwise extension β∗ : W (L)→W (L′).
Then β is a morphism of partial groups if:

(a) (D)β∗ ⊆ D ′;
(b) we have Πβ = β∗Π′, i.e. a commutative diagram

D L

D ′ L′.

Π

β∗ ′′ β

Π′

Thus we obtain a category Part with objects partial groups and morphisms
as defined above.
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Partial groups

An example

Example

Let G be a finite group with S ∈ Sylp(G );
S ∈ ∆ ⊆ Subgr(S) closed under G -conjugation and overgroups.
Set

L = L∆(G ) := {g ∈ G | S ∩ Sg ∈ ∆}.

The product Π and the inversion i are defined by restriction of those in G ,
D(L) by a technical property we require on L.

For every P ∈ ∆, NG (P) ≤ L.

L∆(G ) is the partial group corresponding to T∆(G ). The strings of
morphisms that can be composed in T∆(G ) are exactly the strings in the
domain D(L).

There is an abstract generalization of the partial groups L∆(G ), namely
localities, corresponding to transporter systems.
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Partial groups

Limits and colimits

I is a small category, C any category, D : I −→ C a diagram.

A limit of D is a universal terminal
object.

i

h

T C

j

k

∃!

A colimit of D is a universal initial
object.

i

h

I C

j

k

∃!
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Partial groups

Few examples: I

Products in Grp

Products are limits over
diagrams with no morphisms.
In Grp they correspond to
direct products.

Gi

×Gk G

Gj

πi

πj

∃!

Coequalizers in Set

Coequalizers are colimits over
the diagram • • In Set
we have

X Y Y / ∼

Zt◦f =t◦g

f

g

q

∀t ∃!

where ∼ is the equivalence
relation generated by pairs
(xf , xg).
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Partial groups

Adjoint functors

Definition (Sketch)

Consider two functors C C′
F

U
between locally small categories.

We say that F is a left adjoint to U (equivalently, that U is a right adjoint
to F ), and write F a U, if there are natural bijections

HomC′(FX ,Y )
1:1←→ HomC(X ,UY ).

For example, let U be the forgetful and F the free-construction functor;
then F a U : Grp → Set. Indeed, for any set X

X FX

G
∀f ∃!f̃

which provides the bijection HomGrp(FX ,G ) ∼= HomSet(X ,UG ).
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Categorical properties

Some category theory facts

Lemma
Suppose to have functors F ` U : C −→ C′; then F preserves colimits and
U preserves limits.

For example, the forgetful functor U : Grp −→ Set is a right adjoint, so for
groups Gi ,

U (×Gi ) = ×U(Gi ).

Theorem
If C is a locally small category, every (co)limit is the (co)equalizer of a
(co)product.
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Categorical properties

Limits and colimits in Part

Forgetful and free-construction functors in Part

Similar to what happens in Grp, we have forgetful and free-construction
functors in Part:

U : Part −→ Set∗, F : Set∗ −→ Part such that F a U.

Set∗ is the category of pointed sets.
Objects are pairs (X , x) with X a non-empty set and x ∈ X .
Morphisms f : (X , x)→ (Y , y) are set-wise maps such that f : x 7→ y .

In our setting, Set and Set∗ play analogous roles.

A limit in Part is built the same way as limits in Grp.
Take the set-wise limit as underlying set.
Endow it with a proper partial group structure.
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Categorical properties

Colimits in Part

Coproducts in Part behave as in Set∗.

L =
∐
Li :=

⊔
Li
∼0

, ”D(L) =
⋃

D(Li ) (mod ∼0)”

where ∼0 is the equivalence relation identifying the units.

Instead, coequalizers in Part behave similarly as in Grp.

Problem!
In Part we don’t have a substructure analogous to normal subgroups of
groups and affording quotients!

M L coeq(f , g) = L/ ∼f

g

q

Who is ∼? How do we control it?
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Categorical properties

Coequalizers in Part: a first attempt

Let’s try to make the set-wise coequalizer L/ ∼0 (i.e., ∼0 is generated by
the pairs (xf , xg) for x ∈M) also the coequalizer in Part.
q has to be a morphism in Part, so we need a commutative diagram

D(L) D(L/ ∼0)

M L L/ ∼0

q∗

Π π

f

g

q

Thus, define
D(L/ ∼0) := im(q∗).

Consider (xf , yf ), (xf , yg), (xg , yg) ∈ D(L). They all represent the
same string in D(L/ ∼0).
(xf , yf )Π = (x , y)f ∗Π = ((x , y)ΠM)f ∼0 ((x , y)ΠM)g = (xg , yg)Π.
Problem! There is no guarantee (xf , yf )Π ∼0 (xf , yg)Π
(counterexample, S.).
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Categorical properties

Coequalizers in Part

We need a relation ∼ on L such that:

1 ∼ contains ∼0, the relation generated by the pairs (xf , xg).
2 u = (ui ), v = (vi ) ∈ D(L) with ui ∼ vi ∀i , then uΠ ∼ vΠ.

One can then prove that:
a relation ∼ satisfying (1) and (2) exists;
(1) and (2) are stable under taking intersections;
there exists a smallest equivalence relation R satisfying (1) and (2);
L
R

admits a partial group structure, making it the coequalizer.

Final result
Part is complete and cocomplete.
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Categorical properties

For the future

Obtain a generalization of Chermak’s elementary expansions, a
construction for expanding the sets ∆ of localities (i.e. transporter
systems), including the partial groups L∆(G ).
Develop a theory of generators and relations for partial groups and
localities.
Detect a suitable notion of morphisms of localities (i.e. of transporter
systems).

Edoardo Salati (TUD) (Co)limits of part. gr. HaJe MaDre, 13.07.2021 15 / 16



Categorical properties

Thank you
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