Limits and colimits of partial groups

Edoardo Salati

Technische Universität Dresden

HaJe MaDre Algebra-Seminar

July 13th, 2021

Edoardo Salati (TUD)

(Co)limits of part. gr.

HaJe MaDre, 13.07.2021

- 3

1/16

イロト イヨト イヨト イヨト

Fusion and transporter categories

Let G be a finite group, $S \in Syl_p(G)$ and $\Delta \subseteq Subgr(G)$.

Definition (Puig, 1976)

The fusion category $\mathcal{F}_{S}(G)$ is the category with

- Ob(F_S(G)) = {subgroups of S},
- $Mor_{\mathcal{F}_{S}(G)}(X, Y) = \{c_{g} \mid g \in G \text{ and } X^{g} \leq Y\}$, where c_{g} denotes the conjugation morphism.

Fusion and transporter categories

Let G be a finite group, $S \in Syl_p(G)$ and $\Delta \subseteq Subgr(G)$.

Definition (Puig, 1976)

The fusion category $\mathcal{F}_{\mathcal{S}}(G)$ is the category with

- Ob(F_S(G)) = {subgroups of S},
- $Mor_{\mathcal{F}_{S}(G)}(X, Y) = \{c_{g} \mid g \in G \text{ and } X^{g} \leq Y\}$, where c_{g} denotes the conjugation morphism.

Definition

The *transporter category* $\mathcal{T}_{\Delta}(G)$ is the category with

•
$$Ob(\mathcal{T}_{\Delta}(G)) = \Delta$$
,

•
$$Mor_{\mathcal{T}_{\Delta}(G)}(X,Y) = \{g \in G \mid X^g \leq Y\}.$$

Fusion and transporter categories

Let G be a finite group, $S \in Syl_p(G)$ and $\Delta \subseteq Subgr(G)$.

Definition (Puig, 1976)

The fusion category $\mathcal{F}_{S}(G)$ is the category with

- Ob(F_S(G)) = {subgroups of S},
- $Mor_{\mathcal{F}_{S}(G)}(X, Y) = \{c_{g} \mid g \in G \text{ and } X^{g} \leq Y\}$, where c_{g} denotes the conjugation morphism.

Definition

The *transporter category* $\mathcal{T}_{\Delta}(G)$ is the category with

•
$$Ob(\mathcal{T}_{\Delta}(G)) = \Delta$$
,

•
$$Mor_{\mathcal{T}_{\Delta}(G)}(X,Y) = \{g \in G \mid X^g \leq Y\}.$$

When $\Delta \subseteq Ob(\mathcal{F}_{\mathcal{S}}(G))$, there is an obvious functor $\mathcal{T}_{\Delta}(G) \longrightarrow \mathcal{F}_{\mathcal{S}}(G)$.

From transporter systems to partial groups

- Algebraic topologists studied fusion and transporter systems, abstract generalizations of fusion and transporter categories.
- Their goal being a proof of existence and uniqueness of a centric linking system (i.e. a transporter system with some specific properties) over any fusion system with the *saturation* property.

From transporter systems to partial groups

- Algebraic topologists studied fusion and transporter systems, abstract generalizations of fusion and transporter categories.
- Their goal being a proof of existence and uniqueness of a centric linking system (i.e. a transporter system with some specific properties) over any fusion system with the *saturation* property.
- In 2013 A. Chermak proved both existence and uniqueness by translating the categorical language of transporter systems into the language of other algebraic structures, namely partial groups.
- He translated the composition of morphisms in a transporter system into the product of elements of a partial group.

$$X_0 \xrightarrow{g_1} X_1 \xrightarrow{g_2} \ldots \xrightarrow{g_n} X_n$$

Definition

Let \mathcal{L} be a non-empty set and $W(\mathcal{L}) = W$ be the free monoid on \mathcal{L} ; also

 $D = D(\mathcal{L}) \subseteq W$ (domain) , $\Pi: D \rightarrow \mathcal{L}$ (multivariable product)

and $i : \mathcal{L} \to \mathcal{L}$ an involutory bijection. Then the quadruple (\mathcal{L}, D, Π, i) is a partial group provided:

Definition

Let \mathcal{L} be a non-empty set and $W(\mathcal{L}) = W$ be the free monoid on \mathcal{L} ; also

 $D = D(\mathcal{L}) \subseteq W$ (domain) , $\Pi: D \rightarrow \mathcal{L}$ (multivariable product)

and $i : \mathcal{L} \to \mathcal{L}$ an involutory bijection. Then the quadruple (\mathcal{L}, D, Π, i) is a partial group provided: **1** $\mathcal{L} \subseteq D$ and moreover $u \circ v \in D \implies u, v \in D$; **2** $\Pi|_{\mathcal{L}} = id_{\mathcal{L}}$;

Definition

Let \mathcal{L} be a non-empty set and $W(\mathcal{L}) = W$ be the free monoid on \mathcal{L} ; also

 $D = D(\mathcal{L}) \subseteq W$ (domain) , $\Pi: D \rightarrow \mathcal{L}$ (multivariable product)

and $i : \mathcal{L} \to \mathcal{L}$ an involutory bijection. Then the quadruple (\mathcal{L}, D, Π, i) is a partial group provided:

 $\ \, \bullet \ \, \mathcal{L}\subseteq D \qquad \text{and moreover} \qquad u\circ v\in D \quad \Longrightarrow \quad u,v\in D;$

 $if \ u \circ v \circ w \in D, \ then \quad u \circ (v) \Pi \circ w \in D \ and \\ (u \circ v \circ w) \Pi = (u \circ (v) \Pi \circ w) \Pi;$

Definition

Let \mathcal{L} be a non-empty set and $W(\mathcal{L}) = W$ be the free monoid on \mathcal{L} ; also

 $D = D(\mathcal{L}) \subseteq W$ (domain) , $\Pi: D \rightarrow \mathcal{L}$ (multivariable product)

and $i : \mathcal{L} \to \mathcal{L}$ an involutory bijection. Then the quadruple (\mathcal{L}, D, Π, i) is a partial group provided:

• if $u \circ v \circ w \in D$, then $u \circ (v) \Pi \circ w \in D$ and $(u \circ v \circ w) \Pi = (u \circ (v) \Pi \circ w) \Pi$;

• by extending *i* to $W(\mathcal{L})$ defining $(x_1, \ldots, x_n)i = ((x_n)i, \ldots, (x_1)i)$, if $w \in D$ then we have $(w)i \circ w \in D$ and $((w)i \circ w)\Pi = 1 = (\emptyset)\Pi$, where \emptyset is the empty word.

The category *Part* of partial groups

Definition

Given partial groups (\mathcal{L}, D, Π, i) and $(\mathcal{L}', D', \Pi', i')$ and a set-wise map $\beta : \mathcal{L} \to \mathcal{L}'$, consider the componentwise extension $\beta^* : W(\mathcal{L}) \to W(\mathcal{L}')$. Then β is a morphism of partial groups if:

イロト イポト イヨト イヨト 二日

The category *Part* of partial groups

Definition

Given partial groups (\mathcal{L}, D, Π, i) and $(\mathcal{L}', D', \Pi', i')$ and a set-wise map $\beta : \mathcal{L} \to \mathcal{L}'$, consider the componentwise extension $\beta^* : W(\mathcal{L}) \to W(\mathcal{L}')$. Then β is a morphism of partial groups if: (a) $(D)\beta^* \subseteq D'$;

イロト 不得下 イヨト イヨト 二日

The category *Part* of partial groups

Definition

Given partial groups (\mathcal{L}, D, Π, i) and $(\mathcal{L}', D', \Pi', i')$ and a set-wise map $\beta : \mathcal{L} \to \mathcal{L}'$, consider the componentwise extension $\beta^* : W(\mathcal{L}) \to W(\mathcal{L}')$. Then β is a morphism of partial groups if:

(a) $(D)\beta^* \subseteq D';$ (b) we have $\Pi\beta = \beta^*\Pi'$, i.e. a commutative diagram $D \xrightarrow{\Pi} \mathcal{L}$ $\downarrow^{\beta^*} \hspace{0.1cm} \prime \prime \hspace{0.1cm} \downarrow^{\beta}$ $D' \xrightarrow{\Pi'} \mathcal{L}'.$

Thus we obtain a category *Part* with objects partial groups and morphisms as defined above.

Edoardo Salati (TUD)

(Co)limits of part. gr.

HaJe MaDre, 13.07.2021

Example

Let G be a finite group with $S \in Syl_p(G)$; $S \in \Delta \subseteq Subgr(S)$ closed under G-conjugation and overgroups. Set

$$\mathcal{L} = \mathcal{L}_{\Delta}(G) := \{g \in G \mid S \cap S^g \in \Delta\}.$$

The product Π and the inversion *i* are defined by restriction of those in *G*, $D(\mathcal{L})$ by a technical property we require on \mathcal{L} .

イロト イポト イヨト イヨト 二日

Example

Let G be a finite group with $S \in Syl_p(G)$; $S \in \Delta \subseteq Subgr(S)$ closed under G-conjugation and overgroups. Set

$$\mathcal{L} = \mathcal{L}_{\Delta}(G) := \{g \in G \mid S \cap S^g \in \Delta\}.$$

The product Π and the inversion *i* are defined by restriction of those in *G*, $D(\mathcal{L})$ by a technical property we require on \mathcal{L} .

For every $P \in \Delta$, $N_G(P) \leq \mathcal{L}$.

イロト イポト イヨト イヨト 二日

Example

Let G be a finite group with $S \in Syl_{p}(G)$; $S \in \Delta \subset Subgr(S)$ closed under *G*-conjugation and overgroups. Set

$$\mathcal{L} = \mathcal{L}_{\Delta}(G) := \{g \in G \mid S \cap S^g \in \Delta\}.$$

The product Π and the inversion *i* are defined by restriction of those in G, $D(\mathcal{L})$ by a technical property we require on \mathcal{L} .

For every $P \in \Delta$, $N_G(P) < \mathcal{L}$.

 $\mathcal{L}_{\Lambda}(G)$ is the partial group corresponding to $\mathcal{T}_{\Lambda}(G)$. The strings of morphisms that can be composed in $\mathcal{T}_{\Delta}(G)$ are exactly the strings in the domain $D(\mathcal{L})$.

Example

Let G be a finite group with $S \in Syl_p(G)$; $S \in \Delta \subseteq Subgr(S)$ closed under G-conjugation and overgroups. Set

$$\mathcal{L} = \mathcal{L}_{\Delta}(G) := \{g \in G \mid S \cap S^g \in \Delta\}.$$

The product Π and the inversion *i* are defined by restriction of those in *G*, $D(\mathcal{L})$ by a technical property we require on \mathcal{L} .

For every $P \in \Delta$, $N_G(P) \leq \mathcal{L}$.

 $\mathcal{L}_{\Delta}(G)$ is the partial group corresponding to $\mathcal{T}_{\Delta}(G)$. The strings of morphisms that can be composed in $\mathcal{T}_{\Delta}(G)$ are exactly the strings in the domain $D(\mathcal{L})$.

There is an abstract generalization of the partial groups $\mathcal{L}_{\Delta}(G)$, namely *localities*, corresponding to transporter systems.

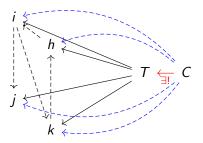
Edoardo Salati (TUD)

(Co)limits of part. gr.

Limits and colimits

 $\mathcal I$ is a small category, $\mathcal C$ any category, $D:\mathcal I\longrightarrow \mathcal C$ a diagram.

A limit of D is a universal terminal object.

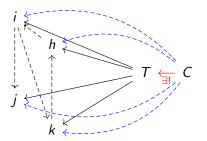


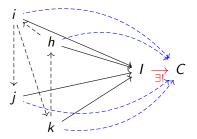
Limits and colimits

 $\mathcal I$ is a small category, $\mathcal C$ any category, $D:\mathcal I\longrightarrow \mathcal C$ a diagram.

A limit of D is a universal terminal object.

A colimit of D is a universal initial object.

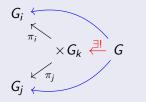




Few examples: I

Products in Grp

Products are limits over diagrams with no morphisms. In *Grp* they correspond to direct products.



Coequalizers in Set

Coequalizers are colimits over the diagram $\bullet \Longrightarrow \bullet$ In *Set* we have

$$X \stackrel{f}{\underset{g}{=}} Y \xrightarrow{q} Y / \sim$$

where \sim is the equivalence relation generated by pairs (xf, xg).

< □ > < 同 > < 回 > < 回 > < 回 >

Adjoint functors

Definition (Sketch)

Consider two functors $C \xleftarrow{F}{U} C'$ between locally small categories. We say that F is a left adjoint to U (equivalently, that U is a right adjoint to F), and write $F \dashv U$, if there are *natural* bijections

$$Hom_{\mathcal{C}'}(FX,Y) \xleftarrow{1:1} Hom_{\mathcal{C}}(X,UY).$$

Edoardo Salati (TUD)

イロト 不得下 イヨト イヨト 二日

Adjoint functors

Definition (Sketch)

Consider two functors $C \xleftarrow{F}{U} C'$ between locally small categories. We say that F is a left adjoint to U (equivalently, that U is a right adjoint to F), and write $F \dashv U$, if there are *natural* bijections

$$Hom_{\mathcal{C}'}(FX, Y) \stackrel{1:1}{\longleftrightarrow} Hom_{\mathcal{C}}(X, UY).$$

For example, let U be the forgetful and F the free-construction functor; then $F \dashv U : Grp \rightarrow Set$. Indeed, for any set X

which provides the bijection $Hom_{Grp}(FX, G) \cong Hom_{Set}(X, UG)$.

(Co)limits of part. gr.

Some category theory facts

Lemma

Suppose to have functors $F \vdash U : C \longrightarrow C'$; then F preserves colimits and U preserves limits.

For example, the forgetful functor $U: Grp \longrightarrow Set$ is a right adjoint, so for groups G_i ,

$$U(\times G_i) = \times U(G_i).$$

Some category theory facts

Lemma

Suppose to have functors $F \vdash U : C \longrightarrow C'$; then F preserves colimits and U preserves limits.

For example, the forgetful functor $U: Grp \longrightarrow Set$ is a right adjoint, so for groups G_i ,

$$U(\times G_i) = \times U(G_i).$$

Theorem

If C is a locally small category, every (co)limit is the (co)equalizer of a (co)product.

	4	日本人間を人間を人間をし	1 9 A CP
Edoardo Salati (TUD)	(Co)limits of part. gr.	HaJe MaDre, 13.07.2021	10/16

Forgetful and free-construction functors in Part

Similar to what happens in *Grp*, we have forgetful and free-construction functors in *Part*:

 $U: Part \longrightarrow Set^*, \qquad F: Set^* \longrightarrow Part \qquad \text{such that } F \dashv U.$

Edoardo Salati (TUD)

(Co)limits of part. gr.

HaJe MaDre, 13.07.2021 11/16

イロト 不得 トイヨト イヨト 二日

Forgetful and free-construction functors in Part

Similar to what happens in *Grp*, we have forgetful and free-construction functors in *Part*:

 $U: Part \longrightarrow Set^*, \qquad F: Set^* \longrightarrow Part \qquad \text{such that } F \dashv U.$

Set* is the category of pointed sets.

- Objects are pairs (X, x) with X a non-empty set and $x \in X$.
- Morphisms $f:(X,x) \to (Y,y)$ are set-wise maps such that $f: x \mapsto y$.

In our setting, Set and Set* play analogous roles.

Forgetful and free-construction functors in Part

Similar to what happens in *Grp*, we have forgetful and free-construction functors in *Part*:

 $U: Part \longrightarrow Set^*, \qquad F: Set^* \longrightarrow Part \qquad \text{such that } F \dashv U.$

Set* is the category of pointed sets.

- Objects are pairs (X, x) with X a non-empty set and $x \in X$.
- Morphisms $f : (X, x) \to (Y, y)$ are set-wise maps such that $f : x \mapsto y$. In our setting, *Set* and *Set*^{*} play analogous roles.

A limit in *Part* is built the same way as limits in *Grp*.

Forgetful and free-construction functors in Part

Similar to what happens in *Grp*, we have forgetful and free-construction functors in *Part*:

 $U: Part \longrightarrow Set^*, \qquad F: Set^* \longrightarrow Part \qquad \text{such that } F \dashv U.$

Set* is the category of pointed sets.

• Objects are pairs (X, x) with X a non-empty set and $x \in X$.

• Morphisms $f : (X, x) \to (Y, y)$ are set-wise maps such that $f : x \mapsto y$. In our setting, *Set* and *Set*^{*} play analogous roles.

A limit in *Part* is built the same way as limits in *Grp*.

- Take the set-wise limit as underlying set.
- Endow it with a proper partial group structure.

(Co)limits of part. gr.

Colimits in *Part*

Coproducts in Part behave as in Set*.

$$\mathcal{L} = \coprod \mathcal{L}_i := rac{igsquarpi \mathcal{L}_i}{\sim_0}, \quad "D(\mathcal{L}) = \bigcup D(\mathcal{L}_i) \pmod{\sim_0}"$$

where \sim_0 is the equivalence relation identifying the units.

Edoardo Salati (TUD)

(Co)limits of part. gr.

HaJe MaDre, 13.07.2021 12 / 16

3

- 4 回 ト 4 回 ト

Colimits in Part

Coproducts in Part behave as in Set*.

$$\mathcal{L} = \coprod \mathcal{L}_i := rac{igsquarpi \mathcal{L}_i}{\sim_0}, \quad "D(\mathcal{L}) = \bigcup D(\mathcal{L}_i) \pmod{\sim_0}"$$

where \sim_0 is the equivalence relation identifying the units.

Instead, coequalizers in Part behave similarly as in Grp.

Problem!

In *Part* we don't have a substructure analogous to normal subgroups of groups and affording quotients!

Colimits in Part

Coproducts in Part behave as in Set*.

$$\mathcal{L} = \coprod \mathcal{L}_i := rac{igsquarpi \mathcal{L}_i}{\sim_0}, \quad "D(\mathcal{L}) = \bigcup D(\mathcal{L}_i) \pmod{\sim_0}"$$

where \sim_0 is the equivalence relation identifying the units.

Instead, coequalizers in Part behave similarly as in Grp.

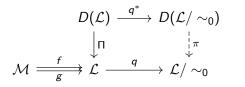
Problem!

In *Part* we don't have a substructure analogous to normal subgroups of groups and affording quotients!

$$\mathcal{M} \stackrel{f}{\Longrightarrow} \mathcal{L} \stackrel{q}{\longrightarrow} \textit{coeq}(f,g) = \mathcal{L}/\sim$$

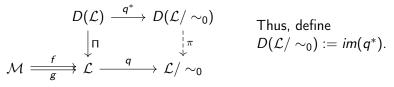
Who is \sim ? How do we control it?

Let's try to make the set-wise coequalizer \mathcal{L}/\sim_0 (i.e., \sim_0 is generated by the pairs (xf, xg) for $x \in \mathcal{M}$) also the coequalizer in *Part*. *q* has to be a morphism in *Part*, so we need a commutative diagram



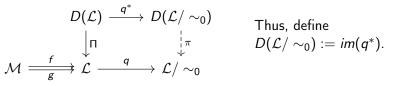
Thus, define $D(\mathcal{L}/\sim_0):=\mathit{im}(q^*).$

Let's try to make the set-wise coequalizer \mathcal{L}/\sim_0 (i.e., \sim_0 is generated by the pairs (xf, xg) for $x \in \mathcal{M}$) also the coequalizer in *Part*. *q* has to be a morphism in *Part*, so we need a commutative diagram



• Consider $(xf, yf), (xf, yg), (xg, yg) \in D(\mathcal{L})$. They all represent the same string in $D(\mathcal{L}/\sim_0)$.

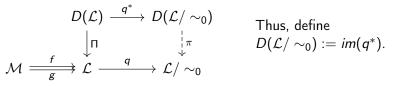
Let's try to make the set-wise coequalizer \mathcal{L}/\sim_0 (i.e., \sim_0 is generated by the pairs (xf, xg) for $x \in \mathcal{M}$) also the coequalizer in *Part*. *q* has to be a morphism in *Part*, so we need a commutative diagram



• Consider $(xf, yf), (xf, yg), (xg, yg) \in D(\mathcal{L})$. They all represent the same string in $D(\mathcal{L}/\sim_0)$.

•
$$(xf, yf)\Pi = (x, y)f^*\Pi = ((x, y)\Pi_{\mathcal{M}})f \sim_0 ((x, y)\Pi_{\mathcal{M}})g = (xg, yg)\Pi.$$

Let's try to make the set-wise coequalizer \mathcal{L}/\sim_0 (i.e., \sim_0 is generated by the pairs (xf, xg) for $x \in \mathcal{M}$) also the coequalizer in *Part*. *q* has to be a morphism in *Part*, so we need a commutative diagram



- Consider $(xf, yf), (xf, yg), (xg, yg) \in D(\mathcal{L})$. They all represent the same string in $D(\mathcal{L}/\sim_0)$.
- $(xf, yf)\Pi = (x, y)f^*\Pi = ((x, y)\Pi_{\mathcal{M}})f \sim_0 ((x, y)\Pi_{\mathcal{M}})g = (xg, yg)\Pi.$
- Problem! There is no guarantee (xf, yf) ⊓ ∼₀ (xf, yg) ⊓ (counterexample, S.).

We need a relation \sim on ${\cal L}$ such that:

3

イロン イ理 とく ヨン イヨン

We need a relation \sim on ${\cal L}$ such that:

• contains \sim_0 , the relation generated by the pairs (xf, xg).

3

< ロ > < 同 > < 三 > < 三 > <

We need a relation \sim on ${\cal L}$ such that:

- contains \sim_0 , the relation generated by the pairs (xf, xg).
- $u = (u_i), v = (v_i) \in D(\mathcal{L}) \text{ with } u_i \sim v_i \ \forall i, \text{ then } u \Pi \sim v \Pi.$

イロト 不得 トイヨト イヨト 二日

We need a relation \sim on ${\cal L}$ such that:

- contains \sim_0 , the relation generated by the pairs (xf, xg).
- $u = (u_i), v = (v_i) \in D(\mathcal{L}) \text{ with } u_i \sim v_i \forall i, \text{ then } u \Pi \sim v \Pi.$

One can then prove that:

ullet a relation \sim satisfying (1) and (2) exists;

We need a relation \sim on ${\cal L}$ such that:

- **Q** ~ contains \sim_0 , the relation generated by the pairs (xf, xg).
- $u = (u_i), v = (v_i) \in D(\mathcal{L}) \text{ with } u_i \sim v_i \forall i, \text{ then } u \Pi \sim v \Pi.$

One can then prove that:

- a relation \sim satisfying (1) and (2) exists;
- (1) and (2) are stable under taking intersections;

イロト 不得下 イヨト イヨト 二日

We need a relation \sim on ${\cal L}$ such that:

- contains \sim_0 , the relation generated by the pairs (*xf*, *xg*).
- $u = (u_i), v = (v_i) \in D(\mathcal{L}) \text{ with } u_i \sim v_i \forall i, \text{ then } u \Pi \sim v \Pi.$

One can then prove that:

- a relation \sim satisfying (1) and (2) exists;
- (1) and (2) are stable under taking intersections;
- there exists a smallest equivalence relation $\mathcal R$ satisfying (1) and (2);

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We need a relation \sim on ${\cal L}$ such that:

- contains \sim_0 , the relation generated by the pairs (*xf*, *xg*).
- $u = (u_i), v = (v_i) \in D(\mathcal{L}) \text{ with } u_i \sim v_i \forall i, \text{ then } u \Pi \sim v \Pi.$

One can then prove that:

- a relation \sim satisfying (1) and (2) exists;
- (1) and (2) are stable under taking intersections;
- there exists a smallest equivalence relation \mathcal{R} satisfying (1) and (2); \mathcal{L}
- $\frac{\mathcal{L}}{\mathcal{R}}$ admits a partial group structure, making it the coequalizer.

We need a relation \sim on ${\cal L}$ such that:

- **Q** ~ contains \sim_0 , the relation generated by the pairs (*xf*, *xg*).
- $a = (u_i), v = (v_i) \in D(\mathcal{L}) \text{ with } u_i \sim v_i \ \forall i, \text{ then } u \Pi \sim v \Pi.$

One can then prove that:

- a relation \sim satisfying (1) and (2) exists;
- (1) and (2) are stable under taking intersections;
- there exists a smallest equivalence relation \mathcal{R} satisfying (1) and (2); \mathcal{L}
- $\frac{\mathcal{L}}{\mathcal{R}}$ admits a partial group structure, making it the coequalizer.

Final result

Part is complete and cocomplete.

Edoardo Salati (TUD)

14/16

HaJe MaDre, 13.07.2021

For the future

- Obtain a generalization of Chermak's elementary expansions, a construction for expanding the sets Δ of localities (i.e. transporter systems), including the partial groups L_Δ(G).
- Develop a theory of generators and relations for partial groups and localities.
- Detect a suitable notion of morphisms of localities (i.e. of transporter systems).

Thank you

	lo Sa		

(Co)limits of part. gr.

HaJe MaDre, 13.07.2021 16 / 16

3

・ロト ・四ト ・ヨト ・ヨト