The Smallest Hard Trees

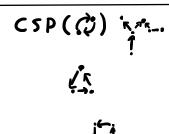
Florian Starke

joint work with Manuel Bodirsky, Jakub Bulín, and Michael Wernthaler

The CSP of G is the following Problem:

Input: H

Output: 3 homomorphism H-> G?


The CSP of G is the following Problem:

The LSP of G is the following Problem:

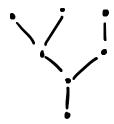
The LSP of G is the following Problem:

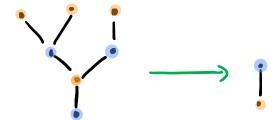
The LSP of G is the following Problem:

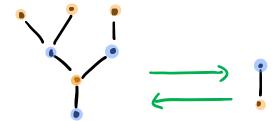
Output: 3 homomorphism H-> G?

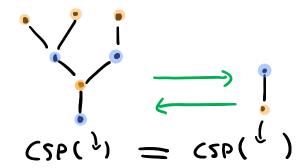
The CSP of G is the following Problem:

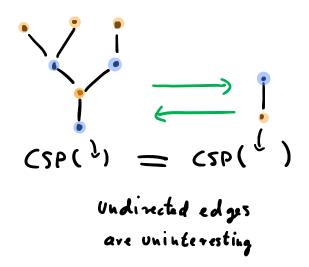
Input: He finite digraphs

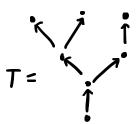

Output: 3 homomorphism H-> 6?

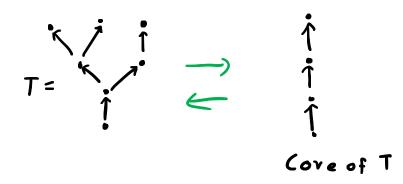

The CSP of G is the following Problem:

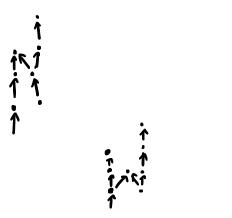

Input: H


Output: 3 homomorphism H-> 6?


H-) is iff H contains







History of NP-Hard Trees

History of NP-Hard Trees

author	year	size	comment
Gutjahr, Welzl, and Woeginger	1992	287	First published

History of NP-Hard Trees

author	year	size	comment
Gutjahr, Welzl, and Woeginger	1992	287	First published
Gutjahr	1991	81	PhD thesis
Hell, Nešetřil, and Zhu	1996	45	Triad
Barto, Kozik, Maróti, and Niven	2009	39	Triad
Fischer	2015	30	Master thesis
Tatarko	2019	26	Triad, Bachelor thesis

Goal: assuming P+NP

Find the smallest NP-hard Tree.

TFAE (assuming P+NP)

- · CSP(T) is NP-hard
- T can pp-construct of f(area) = f(rare)
- · Thas ho Siggers polymorphism

TFAE (ASSUMING P+NP)

• T can pp-construct of area)
• T has no Siggers-polymorphism

(can be computed by testing

Taveau rave

contract tuples that should have the same image

TFAE (assuming P+NP)

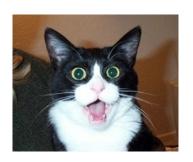
· CSP(T) is NP-hard • T can pp-construct = f(area) · T has no Siggers - polymorphism can be computed by testing 204 THE TAVERS THAT Should

TFAE (assuming P+NP)

- · CSP(T) is NP-hard
- T can pp-construct = f(area) = f(rare)
- · Thas ho Siggers polymorphism
- T has no Kearnes-Marković-Mckmzie-Polymorphisus

 P(abb)= q(baa)=q(aab)

 p(aba)=q(aba)


TFAE (assuming PANP)

- · CSP(T) is NP-hard
- T can pp-construct of f(area) = f(rare)
- · Thas ho Siggers polymorphism
- P(abb)= q(baa)=q(aab) 2.203 = 16000
 P(aba)=q(aba) huch before

but still not easy

n	trees
1	1
2	1
3	3
4	8
5	27
6	91
7	350
8	1376
9	5743
10	24635

n	trees
1	1
2	1
3	3
4	8
5	27
6	91
7	350
8	1376
9	5743
10	24635
11	108968
12	492180
13	2266502
14	10598452
15	50235931
16	240872654
17	1166732814
18	5702001435
19	28088787314
20	139354922608

testing 100 Evers per second this would take 317 years

n	trees	cores
1	1	1
2	1	1
3	3	1
4	8	1
5	27	1
6	91	2
7	350	3
8	1376	7
9	5743	15
10	24635	36
11	108968	85
12	492180	226
13	2266502	578
14	10598452	1569
15	50235931	4243
16	240872654	11848
17	1166732814	33104
18	5702001435	94221
19	28088787314	269455
20	139354922608	779268

testing 100 trees per second this would take 2 hours

much better but still not easy

Theorem Let \mathbb{T} be a finite tree. Then the following are equivalent.

- 1. \mathbb{T} is a core;
- 2. $\operatorname{End}(\mathbb{T}) = \{ \operatorname{id}_T \};$
- 3. $AC_{\mathbb{T}}(\mathbb{T})$ terminates such that the list for each vertex contains a single element.

Theorem Let \mathbb{T} be a finite tree. Then the following are equivalent.

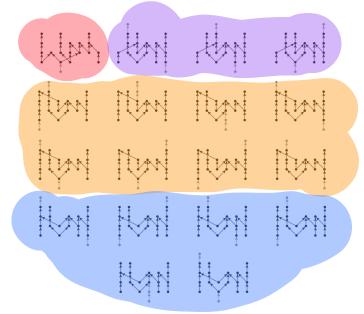
```
1. \mathbb{T} is a core;

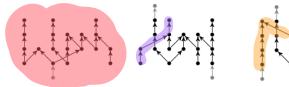
2. \operatorname{End}(\mathbb{T}) = \{\operatorname{id}_T\};

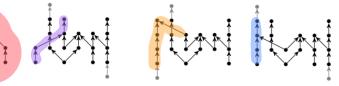
3. \operatorname{AC}_{\mathbb{T}}(\mathbb{T}) terminates such that the list
```

for each vertex contains a single element.

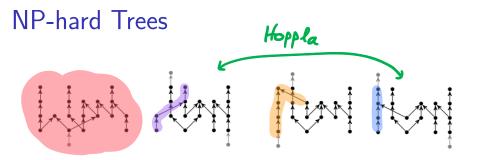


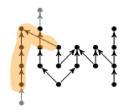

Theorem Let \mathbb{T} be a finite tree. Then the following are equivalent.

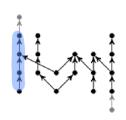



foreach core tree T

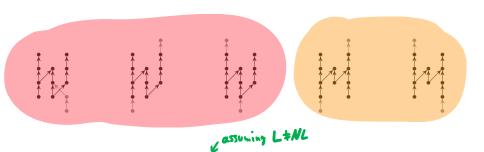
IF T has no kMM-polymorphisms than return T

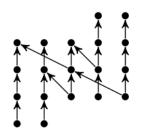




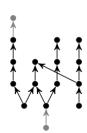

author	year	size	comment
Gutjahr, Welzl, and Woeginger	1992	287	First published
Gutjahr	1991	81	PhD thesis
Hell, Nešetřil, and Zhu	1996	45	Triad
Barto, Kozik, Maróti, and Niven	2009	39	Triad
Fischer	2015	30	Master thesis
Tatarko	2019	26	Triad, Bachelor thesis
Present article	2022	20	Smallest tree
			C ASSUMING PLAN

author	year	size	comment
Gutjahr, Welzl, and Woeginger	1992	287	First published
Gutjahr	1991	81	PhD thesis
Hell, Nešetřil, and Zhu	1996	45	Triad
Barto, Kozik, Maróti, and Niven	2009	39	Triad
Fischer	2015	30	Master thesis
Tatarko	2019	26	Triad, Bachelor thesis
Present article	2022	20	Smallest tree
			e assuming PANF





author	year	size	comment
Gutjahr, Welzl, and Woeginger	1992	287	First published
Gutjahr	1991	81	PhD thesis
Hell, Nešetřil, and Zhu	1996	45	Triad
Barto, Kozik, Maróti, and Niven	2009	39	Triad
Fischer	2015	30	Master thesis
Tatarko	2019	26	Triad, Bachelor thesis
Present article	2022	20	Smallest tree
			Taccoming DL MD


smallest NL-hard trees
(12 vertices)

smallest tree not solved by AC
(19 vertices)

Open Problem

Open Problem

- in P
- NL-hard
- Smallest tree without majority polymorphism
- has kearnes-kiss-chain of length 5 (no kk-clain=) P-hand)
- has no Jóhnsson-chain of Lugth 1000 (J-chain =) in NL)

(16 vertices)

Paper: The Smallest Hard Trees

https://arxiv.org/abs/2205.07528