CSPs with finite duality closed under

primitive positive constructions

Florian Starke

joint work with Manuel Bodirsky

CSPs

Definition \mathbb{T} a relational structure

$\operatorname{CSP}(\mathbb{T}):=\{\mathbb{I} \mid \mathbb{I}$ finite structure such that $\mathbb{I} \rightarrow \mathbb{T}\}$

CSPs

Definition
 \mathbb{T} a relational structure

$\operatorname{CSP}(\mathbb{T}):=\{\mathbb{I} \mid \mathbb{I}$ finite structure such that $\mathbb{I} \rightarrow \mathbb{T}\}$
$\operatorname{CSP}\left(\mathbb{K}_{3}\right)=\{\mathbb{G} \mid \mathbb{G}$ is 3-colourable $\}$

CSPs

Definition
 \mathbb{T} a relational structure

$\operatorname{CSP}(\mathbb{T}):=\{\mathbb{I} \mid \mathbb{I}$ finite structure such that $\mathbb{I} \rightarrow \mathbb{T}\}$
$\operatorname{CSP}\left(\mathbb{K}_{3}\right)=\{\mathbb{G} \mid \mathbb{G}$ is 3-colourable $\}$
$\operatorname{CSP}\left(\mathbb{P}_{2}\right)=\{\mathbb{G} \mid$ no directed path of length 2 in $\mathbb{G}\}$

Dichotomy

\mathbb{T} a finite relational structure

Theorem (Bulatov17,Zhuk17)

The following are equivalent

1. \mathbb{T} has a Siggers polymorphism and $\operatorname{CSP}(\mathbb{T})$ is in P
2. \mathbb{T} cannot pp-construct $\mathbb{K}_{3}\left(\mathbb{T} \not \Varangle_{\mathrm{pp}} \mathbb{K}_{3}\right)$ NP-complate

Dichotomy

\mathbb{T} a finite relational structure

Theorem (Bulatov17,Zhuk17)

The following are equivalent

1. \mathbb{T} has a Siggers polymorphism and $\operatorname{CSP}(\mathbb{T})$ is in P
2. \mathbb{T} cannot pp-construct $\mathbb{K}_{3}\left(\mathbb{T} \not \not_{\mathrm{pp}} \mathbb{K}_{3}\right)$

$$
\mathbb{T} \leq_{p p} \mathbb{S} \Rightarrow \operatorname{CSP}(\mathbb{T}) \geq_{\log } \operatorname{CSP}(\mathbb{S})
$$

Dichotomy

\mathbb{T} a finite relational structure

Theorem (Bulatov17,Zhuk17)

The following are equivalent

1. \mathbb{T} has a Siggers polymorphism and $\operatorname{CSP}(\mathbb{T})$ is in P
2. \mathbb{T} cannot pp-construct $\mathbb{K}_{3}\left(\mathbb{T} \not \ddagger_{\mathrm{pp}} \mathbb{K}_{3}\right)$
$\mathbb{T} \leq_{p p} \mathbb{S} \Rightarrow \operatorname{CSP}(\mathbb{T}) \geq_{\log } \operatorname{CSP}(\mathbb{S})$
has NP-complete
CSP

Dichotomy

\mathbb{T} a finite relational structure

Theorem (Bulatov17,Zhuk17)

The following are equivalent

1. \mathbb{T} has a Siggers polymorphism and $\operatorname{CSP}(\mathbb{T})$ is in P
2. \mathbb{T} cannot pp-construct $\mathbb{K}_{3}\left(\mathbb{T} \not \ddagger_{\mathrm{pp}} \mathbb{K}_{3}\right)$
$\mathbb{T} \leq_{\text {pp }} \mathbb{S} \Rightarrow \operatorname{CSP}(\mathbb{T}) \geq_{\log } \operatorname{CSP}(\mathbb{S})$
\Rightarrow use $\leq_{p p}$ to study complexity classes in P

Dichotomy

\mathbb{T} a finite relational structure

Theorem (Bulatov17,Zhuk17)

The following are equivalent

1. \mathbb{T} has a Siggers polymorphism and $\operatorname{CSP}(\mathbb{T})$ is in P
2. \mathbb{T} cannot pp-construct $\mathbb{K}_{3}\left(\mathbb{T} \not \not_{\mathrm{pp}} \mathbb{K}_{3}\right)$
$\mathbb{T} \leq_{\text {pp }} \mathbb{S} \Rightarrow \operatorname{CSP}(\mathbb{T}) \geq_{\log } \operatorname{CSP}(\mathbb{S})$
\Rightarrow use $\leq_{p p}$ to study complexity classes in P
T Definition later

Datalog

Theorem
The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is solved by a Datalog program
2. \mathbb{T} cannot pp-construct $\mathbb{D}_{\text {LiN } p}$ for any prime p
$\mathbb{D}_{3 \text { LIN } p}:=\left(\{0, \ldots, p-1\}, R_{0000}, R_{1000}, R_{2000}, \ldots\right)$
$\hat{R_{a b c d}}:=\{(x, y, z) \mid a x+a y+c z=d\}$
linear equation
with 3 variables

Datalog

Theorem
The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is solved by a Datalog program
2. \mathbb{T} cannot pp-construct $\mathbb{D}_{\text {3LiN } p}$ for any prime p

$$
\begin{aligned}
\mathbb{D}_{3 \text { LIN } p} & :=\left(\{0, \ldots, p-1\}, R_{0000}, R_{1000}, R_{2000}, \ldots\right) \\
R_{\text {abcd }} & :=\{(x, y, z) \mid a x+a y+c z=d\}
\end{aligned}
$$

Lets come up with a new theorem!

Finite Duality

Finite Duality

Definition \mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \nrightarrow \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Finite Duality

Definition \mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \nrightarrow \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Example $D\left(\mathbb{P}_{2}\right)=\left\{\mathbb{P}_{3}\right\}$

Finite Duality

Definition
\mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \nrightarrow \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Example $D\left(\mathbb{P}_{2}\right)=\left\{\mathbb{P}_{3}\right\}$
$\operatorname{Csp}(i)=\{., i, i x, n+i k, \ldots\}$

Finite Duality

Definition \mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \nrightarrow \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Example $D\left(\mathbb{P}_{2}\right)=\left\{\mathbb{P}_{3}\right\}$ $D\left(\mathbb{P}_{3}\right)=\left\{\mathbb{P}_{4}\right\}$

Finite Duality

Definition
\mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \notin \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Finite Duality

Definition
\mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \notin \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Finite Duality

Definition
\mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \nrightarrow \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Finite Duality

Definition \mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \nrightarrow \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Example
$D\left(\mathbb{P}_{2}\right)=\left\{\mathbb{P}_{3}\right\}$
$D\left(\mathbb{P}_{3}\right)=\left\{\mathbb{P}_{4}\right\}$ no finite duality

Finite Duality

Definition
\mathbb{T} has finite duality if there is a finite set $D(\mathbb{T})$ of finite structures such that for all II

$$
\mathbb{I} \nrightarrow \mathbb{T} \Leftrightarrow(\exists \mathbb{F} \in D(\mathbb{T}): \mathbb{F} \rightarrow \mathbb{I})
$$

Example
$D\left(\mathbb{P}_{2}\right)=\left\{\mathbb{P}_{3}\right\}$
$D\left(\mathbb{P}_{3}\right)=\left\{\mathbb{P}_{4}\right\}$ no finite duality
$\mathrm{FD}:=\{\operatorname{CSP}(\mathbb{T}) \mid \mathbb{T}$ has finite duality $\}$

Finite Duality

Theorem (Atserias05)
$F D=F O$

Finite Duality

Theorem (Atserias05)

$$
F D=F O
$$

$$
\begin{gathered}
\mathrm{NL} \\
\mathrm{~L} \\
\mathrm{~L} \\
\mathrm{l} \\
\mathrm{FO}=A C_{0} .
\end{gathered}
$$

Finite Duality

Theorem (Atserias05)

$$
F D=F O
$$

Can we get a theorem for FD similar to the one for Datalog?

GOAL: find structures $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$ such that The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in FD
2. \mathbb{T} cannot pp-construct $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$

GOAL: find structures $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$ such that The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in FD
2. \mathbb{T} cannot pp-construct $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$
Definition?

Define pp-construction

homomorphic equivalence

If $\mathbb{T} \rightarrow \mathbb{S}$ and $\mathbb{S} \rightarrow \mathbb{T}$, then $\mathbb{T}={ }_{p p} \mathbb{S}$.

Define pp-construction

homomorphic equivalence

If $\mathbb{T} \rightarrow \mathbb{S}$ and $\mathbb{S} \rightarrow \mathbb{T}$, then $\mathbb{T}={ }_{p p} \mathbb{S}$.
Example

Define pp-construction

homomorphic equivalence

If $\mathbb{T} \rightarrow \mathbb{S}$ and $\mathbb{S} \rightarrow \mathbb{T}$, then $\mathbb{T}={ }_{p p} \mathbb{S}$.
Example

$$
\begin{aligned}
& \mathbb{C}_{3} \leftrightarrow \mathbb{C}_{3,3} \leftrightarrow \mathbb{C}_{3,6} \\
& \text { any graph with a loop } \leftrightarrow \mathbb{C}_{1} \mathbb{R}
\end{aligned}
$$

Define pp-construction

homomorphic equivalence

If $\mathbb{T} \rightarrow \mathbb{S}$ and $\mathbb{S} \rightarrow \mathbb{T}$, then $\mathbb{T}={ }_{p p} \mathbb{S}$.
Example

Note that: $\mathbb{T} \leftrightarrow \mathbb{S}$ implies $\operatorname{CSP}(\mathbb{T})=\operatorname{CSP}(\mathbb{S})$

Define pp-construction

homomorphic equivalence

If $\mathbb{T} \rightarrow \mathbb{S}$ and $\mathbb{S} \rightarrow \mathbb{T}$, then $\mathbb{T}={ }_{p p} \mathbb{S}$.
Example

$$
\begin{aligned}
& \operatorname{CsP}\left(?_{0}\right)=\{G \mid \text { entry cycle in } G \text { has a } \\
& \text { net length divisible by } 3\} \\
& \mathbb{C}_{3} \leftrightarrow \mathbb{C}_{3,3} \leftrightarrow \mathbb{C}_{3,6} \\
& \text { any graph with a loop } \leftrightarrow \mathbb{C}_{1} \\
& \operatorname{CSP}(?)=\{\text { all graphs }\}
\end{aligned}
$$

Note that: $\mathbb{T} \leftrightarrow \mathbb{S}$ implies $\operatorname{CSP}(\mathbb{T})=\operatorname{CSP}(\mathbb{S})$

Define pp-construction

pp-power

> If $S=T^{n}$ and every relation $R^{(k)}$ of \mathbb{S} is (as a $n k$-ary relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{p p} \mathbb{S}$.

Define pp-construction

pp-power

If $S=T^{n}$ and every relation $R^{(k)}$ of \mathbb{S} is (as a $n k$-ary relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{p p} \mathbb{S}$.
\uparrow
$\Phi(\bar{x})=\exists \bar{y}, R_{1}\left(\bar{z}_{1}\right) \wedge \ldots \wedge R_{l}\left(\overline{\bar{z}}_{l}\right) \wedge\left(x_{i_{1}}=x_{j}\right) \wedge \ldots$

Define pp-construction

pp-power

If $S=T^{n}$ and every relation $R^{(k)}$ of \mathbb{S} is (as a $n k$-ary relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{p p} \mathbb{S}$.
\uparrow
$\Phi(\bar{x})=\exists \bar{y}, R_{1}\left(\bar{z}_{1}\right) \wedge \ldots \wedge R_{l}\left(\bar{z}_{l}\right) \wedge\left(x_{i_{1}}=x_{j}\right) \wedge \ldots$
T and 5 can have different signatures

Define pp-construction

pp-power

If $S=T^{n}$ and every relation $R^{(K)}$ of \mathbb{S} is (as a $n k$-ary relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{p p} \mathbb{S}$.
Example
$\mathbb{P}_{3} \leq_{\text {pp }} \mathbb{P}_{2}$

$\Phi_{\uparrow}(x, y)=\exists z . x \rightarrow y \wedge y \rightarrow z$

Define pp-construction

pp-power

If $S=T^{n}$ and every relation $R^{(K)}$ of \mathbb{S} is (as a $n k$-ary relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{p p} \mathbb{S}$.
Example
$\mathbb{P}_{3} \leq_{p p} \mathbb{P}_{2}$

$\Phi_{\uparrow}(x, y)=\exists z, x \rightarrow y \wedge y \rightarrow z$

Define pp-construction

pp-power

If $S=T^{n}$ and every relation $R^{(K)}$ of \mathbb{S} is (as a $n k$-are relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{\mathrm{pp}} \mathbb{S}$.
Example
$\mathbb{P}_{3} \leq_{\text {pp }} \mathbb{P}_{2}$

$\mathbb{P}_{2} \leq_{\mathrm{pp}} \mathbb{P}_{3}$
$\Phi_{\uparrow}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=$

Define pp-construction

pp-power

If $S=T^{n}$ and every relation $R^{(K)}$ of \mathbb{S} is (as a $n k$-are relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{\mathrm{pp}} \mathbb{S}$.
Example
$\mathbb{P}_{3} \leq_{\mathrm{pp}} \mathbb{P}_{2}$

$\mathbb{P}_{2} \leq_{\mathrm{pp}} \mathbb{P}_{3}$
$\Phi_{\uparrow}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=$

Define pp-construction

pp-power

If $S=T^{n}$ and every relation $R^{(K)}$ of \mathbb{S} is (as a $n k$-are relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{p p} \mathbb{S}$.
Example
$\mathbb{P}_{3} \leq_{\mathrm{pp}} \mathbb{P}_{2}$

$=P P \quad \dot{i}^{2}$
$\mathbb{P}_{2} \leq_{\mathrm{pp}} \mathbb{P}_{3}$
$\Phi_{\uparrow}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=$

Define pp-construction

pp-power

If $S=T^{n}$ and every relation $R^{(K)}$ of \mathbb{S} is (as a $n k$-ary relation) pp-definable in \mathbb{T}, then $\mathbb{T} \leq_{p p} \mathbb{S}$.
Example

$$
\mathbb{P}_{3} \leq_{\mathrm{pp}} \mathbb{P}_{2}
$$

$$
\mathbb{P}_{2} \leq_{\mathrm{pp}} \mathbb{P}_{3}
$$

GOAL: find structures $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$ such that The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in FD
2. \mathbb{T} cannot pp-construct $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$

OH NO! $\operatorname{CSP}\left(\mathbb{P}_{2}\right) \in \mathrm{FD}, \operatorname{CSP}\left(\mathbb{P}_{3}\right) \notin \mathrm{FD}$, and $\mathbb{P}_{2}={ }_{p p} \mathbb{P}_{3}$

GOAL: find structures $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$ such that The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in FD
2. \mathbb{T} cannot pp-construct $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$

OH NO! $\operatorname{CSP}\left(\mathbb{P}_{2}\right) \in \mathrm{FD}, \operatorname{CSP}\left(\mathbb{P}_{3}\right) \notin \mathrm{FD}$, and $\mathbb{P}_{2}={ }_{p p} \mathbb{P}_{3}$
$\Rightarrow \mathrm{FD}$ is not closed under pp-constructions

NEW GOAL: find structures $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$ such that
The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in $\operatorname{PP}(F D)$
2. \mathbb{T} cannot pp-construct $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$

PP(FD) - First observations

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$

$$
\begin{gathered}
\uparrow \\
F D \subset L
\end{gathered}
$$

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard $\overbrace{i}^{\text {el mith }}$

PP(FD) - First observations

$$
P P(F D) \subseteq P P(L)=L
$$

$\operatorname{CSP}(\mathbb{O})$ is NL-hard $\int_{\substack{0}}^{0}$ with constants $(\{0,1\}, \leqslant, 0,1)$

PP(FD) - First observations

$$
\begin{aligned}
& \mathrm{PP}(\mathrm{FD}) \subseteq \mathrm{PP}(\mathrm{~L})=\mathrm{L} \\
& \operatorname{CSP}(\mathbb{O}) \text { is NL-hard } \prod_{0}^{Q_{0}^{1}} \text { with constants }(\{0,1\}, \leqslant, 0,1)
\end{aligned}
$$

PP(FD) - First observations

$$
\begin{aligned}
& P P(F D) \subseteq P P(L)=L \\
& \operatorname{CSP}(\mathbb{O}) \text { is NL-hard } \overbrace{0}^{Q} 0_{0}^{\text {uith }} \text { constats }(\{0,1\}, \leqslant, 0,1)
\end{aligned}
$$

$\left\{\begin{array}{l}\text { all partially labelled guphs } \\ \text { with no directed path from } 1 \text { to } 0\end{array}\right\}$

PP(FD) - First observations

$$
\begin{aligned}
& \mathrm{PP}(\mathrm{FD}) \subseteq \mathrm{PP}(\mathrm{~L})=\mathrm{L} \\
& \mathrm{CSP}(\mathbb{O}) \text { is NL-hard } \\
& \|
\end{aligned}
$$

$\left\{\begin{array}{l}\text { all partially labelled graphs } \\ \text { with no directed path from } 1 \text { to } 0\end{array}\right\}$ coNL-hard

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard
\Rightarrow If $L \neq \mathrm{NL}$, then no problem in $\mathrm{PP}(\mathrm{FD})$ can pp-construct \mathbb{C}

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard
\Rightarrow If $L \neq \mathrm{NL}$, then no problem in $\mathrm{PP}(\mathrm{FD})$ can pp-construct \mathbb{D}
any problem in FD can be solved by Arc Consistency

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard \Rightarrow If $L \neq N L$, then no problem in $\operatorname{PP}(F D)$ can pp-construct \mathbb{O}
any problem in FD can be solved by Arc Consistency

solve exactly the
 CSPs with tree duality

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard \Rightarrow If $L \neq \mathrm{NL}$, then no problem in $\mathrm{PP}(\mathrm{FD})$ can pp-construct \mathbb{D}
any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard \Rightarrow If $L \neq \mathrm{NL}$, then no problem in $\mathrm{PP}(\mathrm{FD})$ can pp-construct \mathbb{O}
any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions AC cannot solve $\operatorname{CSP}\left(\mathbb{C}_{p}\right)$ for any prime p

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard \Rightarrow If $L \neq \mathrm{NL}$, then no problem in PP(FD) can pp-construct \mathbb{C}
any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions AC cannot solve $\operatorname{CSP}\left(\mathbb{C}_{p}\right)$ for any prime p
does not have tree duality

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard \Rightarrow If $L \neq \mathrm{NL}$, then no problem in PP(FD) can pp-construct \mathbb{O}
any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions AC cannot solve $\operatorname{CSP}\left(\mathbb{C}_{p}\right)$ for any prime p \Rightarrow no problem in $\operatorname{PP}(F D)$ can pp-construct \mathbb{C}_{p} for any p

PP(FD) - First observations

$P P(F D) \subseteq P P(L)=L$
$\operatorname{CSP}(\mathbb{O})$ is NL-hard
\Rightarrow If $L \neq \mathrm{NL}$, then no problem in PP(FD) can pp-construct \mathbb{O}
any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions AC cannot solve $\operatorname{CSP}\left(\mathbb{C}_{p}\right)$ for any prime p \Rightarrow no problem in PP(FD) can pp-construct \mathbb{C}_{p} for any p
Funfart $\operatorname{CsP}\left(C_{2}\right)=2$ Coloratility $\in L$

Conjecture

The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in $\operatorname{PP}(F D)$
2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_{2}, \mathbb{C}_{3}, \ldots$

Conjecture

The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in $\operatorname{PP}(F D)$
2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_{2}, \mathbb{C}_{3}, \ldots$

What to do now?

Conjecture

The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in $\operatorname{PP}(F D)$
2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_{2}, \mathbb{C}_{3}, \ldots$

What to do now?
Find another equivalent statement.

Dusl Programms

Dusl Programms

Definition

a Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(\bar{x}) \dashv \exists \bar{y}: R_{1}\left(\overline{z_{11}}\right) \wedge \ldots \wedge S_{1}\left(\overline{z_{21}}\right) \wedge \ldots$
$S_{1}, \ldots \in \tau, R, R_{1}, \ldots \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
Datalog programm for $\operatorname{CSP}\left(\mathbb{P}_{2}\right)$

Dusl Programms

Definition

a Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(\bar{x}) \dashv \exists \bar{y}: R_{1}\left(\overline{z_{11}}\right) \wedge \ldots \wedge S_{1}\left(\overline{z_{21}}\right) \wedge \ldots$
$S_{1}, \ldots \in \tau, R, R_{1}, \ldots \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $\mathbb{G} \in \sigma$
Datalog programm for $\operatorname{CSP}\left(\mathbb{P}_{2}\right)$

$$
G \dashv \exists y_{1}, y_{2}, y_{3}: y_{1} \rightarrow y_{2} \wedge y_{2} \rightarrow y_{3}
$$

Dusl Programms

Definition

a Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(\bar{x}) \dashv \exists \bar{y}: R_{1}\left(\overline{z_{11}}\right) \wedge \ldots \wedge S_{1}\left(\overline{z_{21}}\right) \wedge \ldots$
$S_{1}, \ldots \in \tau, R, R_{1}, \ldots \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $\mathcal{G} \in \sigma$
Datalog programm for $\operatorname{CSP}\left(\mathbb{P}_{2}\right)$

Dusl Programms

Definition

a Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(\bar{x}) \dashv \exists \bar{y}: R_{1}\left(\overline{z_{11}}\right) \wedge \ldots \wedge S_{1}\left(\overline{z_{21}}\right) \wedge \ldots$
$S_{1}, \ldots \in \tau, R, R_{1}, \ldots \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
Datalog programm for $\operatorname{CSP}\left(T_{T}\right) \in F D$

$$
G \dashv \mathbb{F} \text { for any } \mathbb{F} \in D(\mathbb{T})
$$

Dusl Programms

Definition
a linear Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(\bar{x}) \dashv \exists \bar{y}: R_{1}\left(\overline{z_{1}}\right) \wedge S_{1}\left(\overline{z_{21}}\right) \wedge \ldots$
$S_{1}, \ldots \in \tau, R, R_{1} \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
linear Datalog programm for $\operatorname{CSP}\left(\mathbb{C}_{2}\right)$

Dusl Programms

Definition
a linear Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(\bar{x}) \dashv \exists \bar{y}: R_{1}\left(\overline{z_{1}}\right) \wedge S_{1}\left(\overline{z_{21}}\right) \wedge \ldots$
$S_{1}, \ldots \in \tau, R, R_{1} \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
linear Datalog programm for $\operatorname{CSP}\left(\mathbb{C}_{2}\right)$

Dusl Programms

Definition

a unary linear Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(x) \dashv \exists \bar{y}: R_{1}(z) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots$
$S_{1}, \ldots \in \tau, R, R_{1} \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
unary linear Datalog programm for $\operatorname{CSP}(\mathbb{O})$

Dusl Programms

Definition

a unary linear Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(x) \dashv \exists \bar{y}: R_{1}(z) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots$
$S_{1}, \ldots \in \tau, R, R_{1} \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
unary linear Datalog programm for $\operatorname{CSP}(\mathbb{O})$

Dusl Programms

Definition
a symmetric unary linear Datalog Program consists of two signatures τ, σ, and a finite set of rules Rules: $R(x) \dashv \exists \bar{y}: R_{1}(z) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots$

$$
R_{1}(z) \dashv \exists \overline{y^{\prime}}: R(x) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots
$$

$S_{1}, \ldots \in \tau, R, R_{1} \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
Dusl programm for $\operatorname{CSP}\left(\mathbb{P}_{3}\right)$

Dusl Programms

Definition
a symmetric unary linear Datalog Program consists of two signatures τ, σ, and a finite set of rules Rules: $R(x) \dashv \exists \bar{y}: R_{1}(z) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots$

$$
R_{1}(z) \dashv \exists \overline{y^{\prime}}: R(x) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots
$$

$S_{1}, \ldots \in \tau, R, R_{1} \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
was not symmetric, $f(y)-\dot{T}_{y}^{1}$ is missing
 $G-1 \dot{i}_{1}^{0}$

Dusl Programms

Definition
a symmetric unary linear Datalog Program consists of two signatures τ, σ, and a finite set of rules Rules: $R(x) \dashv \exists \bar{y}: R_{1}(z) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots$

$$
R_{1}(z) \dashv \exists \overline{y^{\prime}}: R(x) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots
$$

$S_{1}, \ldots \in \tau, R, R_{1} \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
Dusl programm for $\operatorname{CSP}\left(\mathbb{P}_{3}\right)$

Dusl Programms

Definition
a symmetric unary linear Datalog Program consists of two signatures τ, σ, and a finite set of rules
Rules: $R(x) \dashv \exists \bar{y}: R_{1}(z) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots$

$$
R_{1}(z) \dashv \exists \overline{y^{\prime}}: R(x) \wedge S_{1}\left(\overline{z_{11}}\right) \wedge \ldots
$$

$S_{1}, \ldots \in \tau, R, R_{1} \in \sigma$
Input: a finite structure with signature τ
Output: can the program derive $G \in \sigma$
Dusl programm for $\operatorname{CSP}\left(\mathbb{P}_{3}\right)$

Conjecture

The following are equivalent

1. $\operatorname{CSP}(\mathbb{T})$ is in $\operatorname{PP}(F D)$
2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_{2}, \mathbb{C}_{3}, \ldots$
3. $\operatorname{CSP}(\mathbb{T})$ is solved by some Dusl program

What we know

1. $\operatorname{CSP}(\mathbb{T})$ is in $\operatorname{PP}(F D) \Longrightarrow$ solved by $A C$
 2. \mathbb{T} cannot pp-construct $\mathbb{O}, \overparen{C}_{2}, \mathbb{C}_{3}, \ldots$

3. $\operatorname{CSP}(\mathbb{T})$ is solved by some Dusl program

What we know

1. $\operatorname{CSP}(\mathbb{T})$ is in $\operatorname{PP}(F D) \Longrightarrow$ solved by $A C$
2. \mathbb{T} cannot pp-construct $\mathbb{O}, \overbrace{\mathbb{C}_{2}, \mathbb{C}_{3}, \ldots}^{\text {Lm }}$

介if $L \neq N L$
3. $\operatorname{CSP}(\mathbb{T})$ is solved by some Dusl program

What we know

Open Questions

1. are dusl programms closed under pp constructions?
2. Is \mathbb{N}_{123} in $\operatorname{PP}(F D)$?
3. Is there a Dusl program for

with constents
