CSPs with finite duality closed under primitive positive constructions

Florian Starke

joint work with Manuel Bodirsky

CSPs

Definition

 ${\mathbb T}$ a relational structure

 $\mathsf{CSP}(\mathbb{T}) \coloneqq \{ \mathbb{I} \mid \mathbb{I} \text{ finite structure such that } \mathbb{I} \to \mathbb{T} \}$

CSPs

Definition

 ${\mathbb T}$ a relational structure

$$\mathsf{CSP}(\mathbb{T}) \coloneqq \{ \mathbb{I} \mid \mathbb{I} \text{ finite structure such that } \mathbb{I} \to \mathbb{T} \}$$

$$CSP(\mathbb{K}_3) = \{ \mathbb{G} \mid \mathbb{G} \text{ is 3-colourable} \}$$

CSPs

Definition

 ${\mathbb T}$ a relational structure

$$\mathsf{CSP}(\mathbb{T}) \coloneqq \{ \mathbb{I} \mid \mathbb{I} \text{ finite structure such that } \mathbb{I} \to \mathbb{T} \}$$

$$CSP(\mathbb{K}_3) = \{ \mathbb{G} \mid \mathbb{G} \text{ is 3-colourable} \}$$

$$CSP(\mathbb{P}_2) = \{ \mathbb{G} \mid \text{no directed path of length 2 in } \mathbb{G} \}$$

 ${\mathbb T}$ a finite relational structure

Theorem (Bulatov17, Zhuk17)

The following are equivalent

1. \mathbb{T} has a Siggers polymorphism and $\mathsf{CSP}(\mathbb{T})$ is in P

2. \mathbb{T} cannot pp-construct \mathbb{K}_3 ($\mathbb{T} \not\leq_{pp} \mathbb{K}_3$) NP-complete

 ${\mathbb T}$ a finite relational structure

Theorem (Bulatov17, Zhuk17)

The following are equivalent

- 1. \mathbb{T} has a Siggers polymorphism and $\mathsf{CSP}(\mathbb{T})$ is in P
- 2. \mathbb{T} cannot pp-construct \mathbb{K}_3 ($\mathbb{T} \not \leq_{pp} \mathbb{K}_3$)

$$\mathbb{T} \leq_{\mathsf{pp}} \mathbb{S} \Rightarrow \mathsf{CSP}(\mathbb{T}) \geq_{\mathsf{log}} \mathsf{CSP}(\mathbb{S})$$

 ${\mathbb T}$ a finite relational structure

Theorem (Bulatov17, Zhuk17)

The following are equivalent

- 1. \mathbb{T} has a Siggers polymorphism and $\mathsf{CSP}(\mathbb{T})$ is in P
- 2. \mathbb{T} cannot pp-construct \mathbb{K}_3 ($\mathbb{T} \not\leq_{pp} \mathbb{K}_3$)

$$\mathbb{T} \leq_{\mathsf{pp}} \mathbb{S} \Rightarrow \mathsf{CSP}(\mathbb{T}) \geq_{\mathsf{log}} \mathsf{CSP}(\mathbb{S})$$
 has NP-complete

 ${\mathbb T}$ a finite relational structure

Theorem (Bulatov17, Zhuk17)

The following are equivalent

- 1. \mathbb{T} has a Siggers polymorphism and $\mathsf{CSP}(\mathbb{T})$ is in P
- 2. \mathbb{T} cannot pp-construct \mathbb{K}_3 ($\mathbb{T} \not\leq_{pp} \mathbb{K}_3$)

$$\mathbb{T} \leq_{\mathsf{pp}} \mathbb{S} \Rightarrow \mathsf{CSP}(\mathbb{T}) \geq_{\mathsf{log}} \mathsf{CSP}(\mathbb{S})$$

 \Rightarrow use \leq_{pp} to study complexity classes in P

 ${\mathbb T}$ a finite relational structure

Theorem (Bulatov17, Zhuk17)

The following are equivalent

- 1. \mathbb{T} has a Siggers polymorphism and $\mathsf{CSP}(\mathbb{T})$ is in P
- 2. \mathbb{T} cannot pp-construct \mathbb{K}_3 ($\mathbb{T} \not\leq_{pp} \mathbb{K}_3$)

$$\mathbb{T} \leq_{\mathsf{pp}} \mathbb{S} \Rightarrow \mathsf{CSP}(\mathbb{T}) \geq_{\mathsf{log}} \mathsf{CSP}(\mathbb{S})$$

 \Rightarrow use \leq_{pp} to study complexity classes in P

Datalog

Theorem

The following are equivalent

- 1. $\mathsf{CSP}(\mathbb{T})$ is solved by a Datalog program
- 2. \mathbb{T} cannot pp-construct $\mathbb{D}_{3\mathsf{LIN}_{\mathcal{P}}}$ for any prime p

Datalog

Theorem

The following are equivalent

- 1. $\mathsf{CSP}(\mathbb{T})$ is solved by a Datalog program
- 2. \mathbb{T} cannot pp-construct $\mathbb{D}_{3\mathsf{LIN}\,p}$ for any prime p

$$\mathbb{D}_{3\mathsf{LIN}\,p} := (\{0,\ldots,p-1\}, R_{0000}, R_{1000}, R_{2000},\ldots)$$

$$R_{abcd} := \{(x,y,z) \mid ax + ay + cz = d\}$$

Lets come up with a new theorem!

Definition

$$\mathbb{I} \not\to \mathbb{T} \Leftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$

Definition

 $\mathbb T$ has finite duality if there is a finite set $D(\mathbb T)$ of finite structures such that for all $\mathbb I$

$$\mathbb{I} \not\to \mathbb{T} \Leftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$

Example

$$D(\mathbb{P}_2) = \{\mathbb{P}_3\}$$

Definition

$$\mathbb{I} \not\to \mathbb{T} \Leftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$

Example
$$D(\mathbb{P}_2) = \{\mathbb{P}_3\}$$

$$\uparrow^{\dagger} \qquad \uparrow^{\dagger}$$

Definition

 $\mathbb T$ has finite duality if there is a finite set $D(\mathbb T)$ of finite structures such that for all $\mathbb I$

$$\mathbb{I} \not\to \mathbb{T} \Leftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$

Example

$$D(\mathbb{P}_2) = \{\mathbb{P}_3\}$$

$$D(\mathbb{P}_3) = \{\mathbb{P}_4\}$$

Definition

$$\mathbb{I} \not\to \mathbb{T} \Leftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$

Example
$$D(\mathbb{P}_2) = \{\mathbb{P}_3\}$$
 $D(\mathbb{P}_3) = \{\mathbb{P}_4\}$

Definition

$$\mathbb{I} \not\to \mathbb{T} \Leftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$

Example
$$D(\mathbb{P}_2) = \{\mathbb{P}_3\}$$
 $D(\mathbb{P}_3) = \{\mathbb{P}_4\}$

Definition

$$\mathbb{I} \not\to \mathbb{T} \Leftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$
Example
$$D(\mathbb{P}_2) = \{\mathbb{P}_3\}$$

$$D(\mathbb{P}_3) = \{\mathbb{P}_4\}$$

Definition

 $\mathbb T$ has finite duality if there is a finite set $D(\mathbb T)$ of finite structures such that for all $\mathbb I$

$$\mathbb{I} \not\to \mathbb{T} \Longleftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$

Example

$$D(\mathbb{P}_2) = \{\mathbb{P}_3\}$$

 $D(\mathbb{P}_3) = \{\mathbb{P}_4\}$ no finite duality

Definition

 $\mathbb T$ has finite duality if there is a finite set $D(\mathbb T)$ of finite structures such that for all $\mathbb I$

$$\mathbb{I} \not\to \mathbb{T} \Longleftrightarrow (\exists \mathbb{F} \in D(\mathbb{T}) : \mathbb{F} \to \mathbb{I})$$

Example

$$D(\mathbb{P}_2) = \{\mathbb{P}_3\}$$

 $D(\mathbb{P}_3) = \{\mathbb{P}_4\}$ no finite duality

 $FD := \{CSP(\mathbb{T}) \mid \mathbb{T} \text{ has finite duality}\}$

Theorem (Atserias05)
FD = FO

```
Theorem (Atserias05)

FD = FO

NL

L

FO = AC
```

```
Theorem (Atserias05)

FD = FO

NL

L
```

Can we get a theorem for FD similar to the one for Datalog?

FO

GOAL: find structures $\mathbb{A}_1, \mathbb{A}_2, \ldots$ such that

The following are equivalent

- 1. $CSP(\mathbb{T})$ is in FD
- 2. \mathbb{T} cannot pp-construct $\mathbb{A}_1, \mathbb{A}_2, \dots$

GOAL: find structures $\mathbb{A}_1, \mathbb{A}_2, \ldots$ such that

The following are equivalent

- 1. $CSP(\mathbb{T})$ is in FD
- 2. \mathbb{T} cannot pp-construct $\mathbb{A}_1, \mathbb{A}_2, \dots$

homomorphic equivalence

If
$$\mathbb{T} \to \mathbb{S}$$
 and $\mathbb{S} \to \mathbb{T}$, then $\mathbb{T} =_{pp} \mathbb{S}$.

homomorphic equivalence

If
$$\mathbb{T} \to \mathbb{S}$$
 and $\mathbb{S} \to \mathbb{T}$, then $\mathbb{T} =_{pp} \mathbb{S}$.
Example
$$\mathbb{C}_3 \leftrightarrow \mathbb{C}_{3,3} \leftrightarrow \mathbb{C}_{3,6}$$

homomorphic equivalence

homomorphic equivalence

If
$$\mathbb{T} \to \mathbb{S}$$
 and $\mathbb{S} \to \mathbb{T}$, then $\mathbb{T} =_{pp} \mathbb{S}$. Example
$$\mathbb{C}_3 \leftrightarrow \mathbb{C}_{3,3} \leftrightarrow \mathbb{C}_{3,6}$$
 any graph with a loop $\leftrightarrow \mathbb{C}_1$

Note that: $\mathbb{T} \leftrightarrow \mathbb{S}$ implies $CSP(\mathbb{T}) = CSP(\mathbb{S})$

homomorphic equivalence

Note that: $\mathbb{T} \leftrightarrow \mathbb{S}$ implies $CSP(\mathbb{T}) = CSP(\mathbb{S})$

pp-power

If $S = T^n$ and every relation $R^{(k)}$ of \mathbb{S} is (as a nk-ary relation) pp-definable in \mathbb{T} , then $\mathbb{T} \leq_{pp} \mathbb{S}$.

pp-power

pp-power

T and 5 can have different signatures

pp-power

If
$$S = T^n$$
 and every relation $R^{(K)}$ of \mathbb{S} is (as a nk -ary relation) pp-definable in \mathbb{T} , then $\mathbb{T} \leq_{pp} \mathbb{S}$.
Example \mathbb{T}^2 \mathbb{T}^2

pp-power

If $S = T^n$ and every relation $R^{(K)}$ of \mathbb{S} is (as a nk-ary relation) pp-definable in \mathbb{T} , then $\mathbb{T} \leq_{np} \mathbb{S}$. Example 1 \leftright \leftright \rightarrow \right $\mathbb{P}_3 \leq_{\mathsf{pp}} \mathbb{P}_2$ $\Phi_{\Lambda}(x,y) = \exists z. \ x \rightarrow y \wedge y \rightarrow z$

pp-power

If $S = T^n$ and every relation $R^{(K)}$ of \mathbb{S} is (as a nk-ary relation) pp-definable in \mathbb{T} , then $\mathbb{T} \leq_{pp} \mathbb{S}$. Example $\mathbb{P}_3 \leq_{pp} \mathbb{P}_2$

$$\mathbb{P}_2 \leq_{\mathsf{pp}} \mathbb{P}_3 \qquad \Phi_{\uparrow}(\chi_{1}, \chi_{2}, \chi_{1}, \chi_{2}) =$$

pp-power

If $S = T^n$ and every relation $R^{(K)}$ of \mathbb{S} is (as a nk-ary relation) pp-definable in \mathbb{T} , then $\mathbb{T} \leq_{pp} \mathbb{S}$. Example $\mathbb{P}_3 \leq_{\mathsf{pp}} \mathbb{P}_2$ $\overline{\Phi}_{\uparrow}(x_{1},x_{2},y_{1},y_{2}) = X$ $\mathbb{P}_2 \leq_{\mathsf{pp}} \mathbb{P}_3$

pp-power

If
$$S = T^n$$
 and every relation $R^{(K)}$ of \mathbb{S} is (as a nk -ary relation) pp-definable in \mathbb{T} , then $\mathbb{T} \leq_{pp} \mathbb{S}$. Example $\mathbb{P}_3 \leq_{pp} \mathbb{P}_2$ $\mathbb{P}_2 \leq_{pp} \mathbb{P}_3$ $\mathbb{P}_2 \leq_{pp} \mathbb{P}_3$

pp-power

If $S = T^n$ and every relation $R^{(K)}$ of \mathbb{S} is (as a nk-ary relation) pp-definable in \mathbb{T} , then $\mathbb{T} \leq_{pp} \mathbb{S}$.

Example

$$\mathbb{P}_3 \leq_{\mathsf{pp}} \mathbb{P}_2$$

$$\mathbb{P}_2 \leq_{\mathsf{pp}} \mathbb{P}_3$$

GOAL: find structures $\mathbb{A}_1, \mathbb{A}_2, \ldots$ such that The following are equivalent

- 1. $CSP(\mathbb{T})$ is in FD
- 2. \mathbb{T} cannot pp-construct $\mathbb{A}_1, \mathbb{A}_2, \dots$

OH NO!
$$CSP(\mathbb{P}_2) \in FD$$
, $CSP(\mathbb{P}_3) \notin FD$, and $\mathbb{P}_2 =_{pp} \mathbb{P}_3$

GOAL: find structures $\mathbb{A}_1, \mathbb{A}_2, \ldots$ such that The following are equivalent

- 1. $CSP(\mathbb{T})$ is in FD
- 2. \mathbb{T} cannot pp-construct $\mathbb{A}_1, \mathbb{A}_2, \dots$

OH NO! $CSP(\mathbb{P}_2) \in FD$, $CSP(\mathbb{P}_3) \notin FD$, and $\mathbb{P}_2 =_{pp} \mathbb{P}_3$

⇒ FD is not closed under pp-constructions

NEW GOAL: find structures $\mathbb{A}_1, \mathbb{A}_2, \ldots$ such that

- The following are equivalent
 - 1. $\mathsf{CSP}(\mathbb{T})$ is in $\mathsf{PP}(\mathsf{FD})$
 - 2. \mathbb{T} cannot pp-construct $\mathbb{A}_1, \mathbb{A}_2, \dots$

PP(FD) - First observations $PP(FD) \subseteq PP(L) = L$

FD C L

 $PP(FD) \subseteq PP(L) = L$

 $\mathsf{CSP}(\mathbb{O})$ is $\mathsf{NL} ext{-hard}$

```
d with constant
```

$$PP(FD) \subseteq PP(L) = L$$
 $CSP(\mathbb{O}) \text{ is NL-hard}$
 $CSP(\mathbb{O}) \text{ is NL-hard}$
 $CSP(\mathbb{O}) \text{ is NL-hard}$
 $CSP(\mathbb{O}) \text{ is NL-hard}$
 $CSP(\mathbb{O}) \text{ is NL-hard}$

$$PP(FD) \subseteq PP(L) = L$$
 $CSP(\mathbb{O}) \text{ is NL-hard}$
 $CSP(\mathbb{O}) \text{ is NL-hard}$
 $CSP(\mathbb{O}) \text{ is NL-hard}$
 $CONSTANTS$
 $CONSTANTS$

 $PP(FD) \subseteq PP(L) = L$

$$PP(FD) \subseteq PP(L) =$$

$$PP(FD) \subseteq PP(L) = L$$
 $CSP(\mathbb{O}) \text{ is NL-hard}$

CSP(\mathbb{O}) is NL-hard

| \mathcal{E} | $\mathcal{$ Eall partially Labelled Graphs 3 CONL-hard with no directed path from 1 to 0

 $PP(FD) \subseteq PP(L) = L$

 $CSP(\mathbb{O})$ is NL-hard \Rightarrow If L \neq NL, then no problem in PP(FD) can pp-construct \mathbb{O}

 $PP(FD) \subseteq PP(L) = L$

 $CSP(\mathbb{O})$ is NL-hard \Rightarrow If L \neq NL, then no problem in PP(FD) can pp-construct \mathbb{O}

any problem in FD can be solved by Arc Consistency

 $PP(FD) \subseteq PP(L) = L$

 $CSP(\mathbb{O})$ is NL-hard \Rightarrow If L \neq NL, then no problem in PP(FD) can pp-construct \mathbb{O}

any problem in FD can be solved by Arc Consistency

Can solve exactly the CSPs with tree duality

 $PP(FD) \subseteq PP(L) = L$

 $CSP(\mathbb{O})$ is NL-hard \Rightarrow If L \neq NL, then no problem in PP(FD) can pp-construct \mathbb{O}

any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions

$$PP(FD) \subseteq PP(L) = L$$

 $CSP(\mathbb{O})$ is NL-hard \Rightarrow If L \neq NL, then no problem in PP(FD) can pp-construct \mathbb{O}

any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions AC cannot solve $CSP(\mathbb{C}_p)$ for any prime p

 $PP(FD) \subseteq PP(L) = L$

 $CSP(\mathbb{O})$ is NL-hard \Rightarrow If L \neq NL, then no problem in PP(FD) can pp-construct \mathbb{O}

any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions AC cannot solve $\mathsf{CSP}(\mathbb{C}_p)$ for any prime p

does not have tree duality

$$PP(FD) \subseteq PP(L) = L$$

 $CSP(\mathbb{O})$ is NL-hard \Rightarrow If L \neq NL, then no problem in PP(FD) can pp-construct \mathbb{O}

any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions AC cannot solve $CSP(\mathbb{C}_p)$ for any prime $p \Rightarrow$ no problem in PP(FD) can pp-construct \mathbb{C}_p for any p

$$PP(FD) \subseteq PP(L) = L$$

 $CSP(\mathbb{O})$ is NL-hard \Rightarrow If L \neq NL, then no problem in PP(FD) can pp-construct \mathbb{O}

any problem in FD can be solved by Arc Consistency AC is closed under pp-constructions AC cannot solve $CSP(\mathbb{C}_p)$ for any prime $p \Rightarrow$ no problem in PP(FD) can pp-construct \mathbb{C}_p for any p

The following are equivalent

- 1. $CSP(\mathbb{T})$ is in PP(FD)
- 2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_2, \mathbb{C}_3, \dots$

The following are equivalent

- 1. $CSP(\mathbb{T})$ is in PP(FD)
- 2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_2, \mathbb{C}_3, \dots$

What to do now?

The following are equivalent

- 1. $CSP(\mathbb{T})$ is in PP(FD)
- 2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_2, \mathbb{C}_3, \dots$

What to do now? Find another equivalent statement.

Definition

a $Datalog\ Program$ consists of two signatures au, σ , and a finite set of rules

Rules: $R(\overline{x}) \dashv \exists \overline{y} : R_1(\overline{z_{11}}) \land \ldots \land S_1(\overline{z_{21}}) \land \ldots$

 $S_1,\ldots\in\tau,\ R,R_1,\ldots\in\sigma$

Input: a finite structure with signature au

Output: can the program derive $G \in \sigma$

Datalog programm for $CSP(\mathbb{P}_2)$

Definition

a Datalog Program consists of two signatures au, σ , and a finite set of rules

Rules: $R(\overline{x}) \dashv \exists \overline{y} : R_1(\overline{z_{11}}) \land \ldots \land S_1(\overline{z_{21}}) \land \ldots$

 $S_1,\ldots\in\tau$, $R,R_1,\ldots\in\sigma$

Input: a finite structure with signature τ

Output: can the program derive $G \in \sigma$

Datalog programm for $CSP(\mathbb{P}_2)$

Definition

a $Datalog\ Program$ consists of two signatures au, σ , and a finite set of rules

Rules: $R(\overline{x}) \dashv \exists \overline{y} : R_1(\overline{z_{11}}) \land \ldots \land S_1(\overline{z_{21}}) \land \ldots$

 $S_1,\ldots\in\tau,\ R,R_1,\ldots\in\sigma$

Input: a finite structure with signature au

Output: can the program derive $G \in \sigma$

Datalog programm for $CSP(\mathbb{P}_2)$

Definition

a $Datalog\ Program$ consists of two signatures au, σ , and a finite set of rules

Rules: $R(\overline{x}) \dashv \exists \overline{y} : R_1(\overline{z_{11}}) \land \ldots \land S_1(\overline{z_{21}}) \land \ldots$

 $S_1, \ldots \in \tau, R, R_1, \ldots \in \sigma$

Input: a finite structure with signature au

Output: can the program derive $G \in \sigma$

Datalog programm for $CSP(T) \in FD$

Definition

a *linear Datalog Program* consists of two signatures

 au, σ , and a finite set of rules

Rules: $R(\overline{z}) \dashv \exists \overline{y} : R_1(\overline{z_1}) \land S_1(\overline{z_{21}}) \land \dots$

 $S_1, \ldots \in \tau, R, R_1 \in \sigma$

Input: a finite structure with signature au

Output: can the program derive $G \in \sigma$

linear Datalog programm for $CSP(\mathbb{C}_2)$

Definition

a linear Datalog Program consists of two signatures τ, σ , and a finite set of rules

Rules: $R(\overline{x}) \dashv \exists \overline{y} : R_1(\overline{z_1}) \land S_1(\overline{z_{21}}) \land \dots$

 $S_1,\ldots\in\tau$, $R,R_1\in\sigma$

Input: a finite structure with signature τ **Output:** can the program derive $G \in \sigma$

linear Datalog programm for $CSP(\mathbb{C}_2)$

Definition

a unary linear Datalog Program consists of two signatures τ , σ , and a finite set of rules

Rules: $R(x) \dashv \exists \overline{y} : R_1(z) \land S_1(\overline{z_{11}}) \land \dots$

 $S_1, \ldots \in \tau, R, R_1 \in \sigma$

Input: a finite structure with signature τ

Output: can the program derive $G \in \sigma$

unary linear Datalog programm for $CSP(\mathbb{O})$

Definition

a unary linear Datalog Program consists of two signatures τ , σ , and a finite set of rules

Rules:
$$R(x) \dashv \exists \overline{y} : R_1(z) \land S_1(\overline{z_{11}}) \land \dots$$

$$S_1,\ldots\in\tau$$
, $R,R_1\in\sigma$

Input: a finite structure with signature τ

Output: can the program derive $G \in \sigma$

unary linear Datalog programm for $CSP(\mathbb{O})$

$$1(\overset{\times}{\cdot}) \rightarrow 1(\overset{\times}{\cdot}) / \overset{\times}{\cdot} 1$$

Definition

a symmetric unary linear Datalog Program consists of two signatures τ, σ , and a finite set of rules Rules: $R(x) \dashv \exists \overline{y} : R_1(z) \land S_1(\overline{z_{11}}) \land \dots$

$$R_1(z) \dashv \exists y' : R(x) \land S_1(\overline{z_{11}}) \land \dots$$

$$S_1,\ldots\in\tau$$
, $R,R_1\in\sigma$

Input: a finite structure with signature τ **Output:** can the program derive $G \in \sigma$

Dusl programm for $CSP(\mathbb{P}_3)$

Definition

a <u>symmetric</u> unary linear Datalog Program consists of two signatures τ, σ , and a finite set of rules Rules: $R(x) \dashv \exists \overline{y} : R_1(z) \land S_1(\overline{z_{11}}) \land \dots$

$$R_1(z) \dashv \exists y' : R(x) \land S_1(\overline{z_{11}}) \land \dots$$

$$S_1,\ldots\in\tau$$
, $R,R_1\in\sigma$

Input: a finite structure with signature τ **Output:** can the program derive $G \in \sigma$

was not symmetric, 1(y) - 1, is missing

$$1(\overset{\circ}{\cdot}) \rightarrow 1(\overset{\circ}{\cdot}) / (\overset{\circ}{\cdot})$$

Definition

a symmetric unary linear Datalog Program consists of two signatures τ, σ , and a finite set of rules Rules: $R(x) \dashv \exists \overline{y} : R_1(z) \land S_1(\overline{z_{11}}) \land \dots$

$$R_1(z) \dashv \exists \overline{y'} : R(x) \land S_1(\overline{z_{11}}) \land \dots$$

$$S_1,\ldots\in\tau,\ R,R_1\in\sigma$$

Input: a finite structure with signature τ

Output: can the program derive $G \in \sigma$

Dusl programm for $CSP(\mathbb{P}_3)$

Definition

a symmetric unary linear Datalog Program consists of two signatures τ , σ , and a finite set of rules

Rules:
$$R(x) \dashv \exists \overline{y} : R_1(z) \land S_1(\overline{z_{11}}) \land \dots$$

$$R_1(z) \dashv \exists y' : R(x) \land S_1(\overline{z_{11}}) \land \dots$$

$$S_1,\ldots\in\tau,\ R,R_1\in\sigma$$

Input: a finite structure with signature τ **Output:** can the program derive $G \in \sigma$

Dusl programm for $CSP(\mathbb{P}_3)$

$$o(x) \rightarrow \frac{1}{1}, \frac{1$$

$$2(x) + \int_{1}^{x}$$

The following are equivalent

- 1. $CSP(\mathbb{T})$ is in PP(FD)
- 2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_2, \mathbb{C}_3, \dots$
- 3. $\mathsf{CSP}(\mathbb{T})$ is solved by some Dusl program

What we know

- 1. $CSP(\mathbb{T})$ is in PP(FD)Solved by AC

 2. \mathbb{T} cannot pp-construct $\mathbb{O}, \mathbb{C}_2, \mathbb{C}_3, \dots$
 - 3. $\mathsf{CSP}(\mathbb{T})$ is solved by some Dusl program

What we know

CSP(T) is in PP(FD)
 If we have a solved by AC
 T cannot pp-construct O, C₂, C₃, ...
 If L+ML
 CSP(T) is solved by some Dusl program

What we know

Open Questions

- 1. are dusl programms closed under pp constructions?
- 2. Is \mathbb{N}_{123} in PP(FD)?

3. Is there a Dusl program for

