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Dichotomy

T a finite relational structure

Theorem (Bulatov17,Zhuk17)
The following are equivalent

1. T has a Siggers polymorphism and CSP(T) is
in P

2. T cannot pp-construct K3 (T /≤pp K3)

T ≤pp S⇒ CSP(T) ≤log CSP(S)
⇒ use ≤pp to study complexity classes in P
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Datalog

Theorem
The following are equivalent

1. CSP(T) is solved by a Datalog program

2. T cannot pp-construct D3LIN p for any prime p

D3LIN p ≔ ({0, . . . , p − 1},R0000,R1000,R2000, . . . )
Rabcd ≔ {(x , y , z) ∣ ax + ay + cz = d}

Lets come up with a new theorem!
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Definition
T has finite duality if there is a finite set D(T) of
finite structures such that for all I

I /→ T⇔ (∃F ∈ D(T) ∶ F→ I)

Example
D(P2) = {P3}

D(P3) = {P4}

FD ≔ {CSP(T) ∣ T has finite duality}
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Define pp-construction
homomorphic equivalence

If T→ S and S→ T, then T =pp S.

Example

C3↔ C3,3↔ C3,6

any graph with a loop↔ C1

Note that: T↔ S implies CSP(T) = CSP(S)
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Define pp-construction
pp-power

If S = T
n

and every relation R
(K)

of S is (as a
nk-ary relation) pp-definable in T, then T ≤pp S.

Example
P3 ≤pp P2
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GOAL: find structures A1,A2, . . . such that
The following are equivalent

1. CSP(T) is in FD

2. T cannot pp-construct A1,A2, . . .

OH NO! CSP(P2) ∈ FD, CSP(P3) ∉ FD, and
P2 =pp P3

⇒ FD is not closed under pp-constructions
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NEW GOAL: find structures A1,A2, . . . such that
The following are equivalent

1. CSP(T) is in PP(FD)

2. T cannot pp-construct A1,A2, . . .



PP(FD) - First observations

PP(FD) ⊆ PP(L) = L

CSP(O) is NL-hard
⇒ If L /= NL, then no problem in PP(FD) can
pp-construct O

any problem in FD can be solved by Arc Consistency
AC is closed under pp-constructions
AC cannot solve CSP(Cp) for any prime p
⇒ no problem in PP(FD) can pp-construct Cp for
any p
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Conjecture
The following are equivalent

1. CSP(T) is in PP(FD)

2. T cannot pp-construct O,C2,C3, . . .

What to do now?
Find another equivalent statement.



Conjecture
The following are equivalent

1. CSP(T) is in PP(FD)

2. T cannot pp-construct O,C2,C3, . . .

What to do now?

Find another equivalent statement.



Conjecture
The following are equivalent

1. CSP(T) is in PP(FD)

2. T cannot pp-construct O,C2,C3, . . .

What to do now?
Find another equivalent statement.



Dusl Programms

Definition
a Datalog Program consists of two signatures τ, σ,
and a finite set of rules
Rules: R(x) ⊣ ∃y ∶ R1(z11) ∧ . . . ∧ S1(z21) ∧ . . .
S1, . . . ∈ τ , R ,R1, . . . ∈ σ
Input: a finite structure with signature τ
Output: can the program derive G ∈ σ

Datalog programm for CSP(P2)
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Conjecture
The following are equivalent

1. CSP(T) is in PP(FD)

2. T cannot pp-construct O,C2,C3, . . .

3. CSP(T) is solved by some Dusl program
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Open Questions

1. are dusl programms closed under pp
constructions?

2. Is N123 in PP(FD)?

3. Is there a Dusl program for ?
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