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CSPs

Definition
T a relational structure

CSP(T) := {I | I finite structure such that I — T}

CSP(K3) = {G | G is 3-colourable}
CSP(IP,) = {G | no directed path of length 2 in G}
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Dichotomy

T a finite relational structure

Theorem (Bulatov17,Zhuk17)

The following are equivalent
1. T has a Siggers polymorphism and CSP(T) is
in P
2. T cannot pp-construct K3 (T £,, K3) A’P cow plte
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Datalog

Theorem
The following are equivalent

1. CSP(T) is solved by a Datalog program
2. T cannot pp-construct D3\, for any prime p

Dsiinp = ({0, ..., p = 1}, Roooo, Rio00: Roo00s - - - )
(Rabcd = {(X,y,Z) | ax + ay+ cz = d}
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Datalog

Theorem
The following are equivalent

1. CSP(T) is solved by a Datalog program
2. T cannot pp-construct D3\, for any prime p

D = ({0, ..., p = 1}, Roooo, Ri000s R2000, - - - )
Rabcd = {(X,y,Z) | ax + ay +cz = d}

Lets come up with a new theorem!



Finite Duality






Finite Duality

Definition
T has finite duality if there is a finite set D(T) of
finite structures such that for all I

15T e (IFeD(T):F - 1)



Finite Duality

Definition
T has finite duality if there is a finite set D(T) of
finite structures such that for all I

15T e (IFeD(T):F - 1)

Example

D(PP,) = {5}
i
‘o 1'\'



















































Finite Duality

Definition
T has finite duality if there is a finite set D(T) of
finite structures such that for all I

15T e (IFeD(T):F - 1)

Example

D(P,) = {P3}
1-‘l %2
‘o 1'\'

Csp(F)=53. 4,45, Ains .3









































































































































































































Finite Duality

Definition
T has finite duality if there is a finite set D(T) of
finite structures such that for all I

15T e (IFeD(T):F - 1)

Example

D(P,) = {Ps}

D(Ps) = {Py}
it
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Definition
T has finite duality if there is a finite set D(T) of
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Finite Duality

Definition
T has finite duality if there is a finite set D(T) of
finite structures such that for all I

15T e (IFeD(T):F - 1)

Example
D(Pg) = {P3}
D(P3) = {Br} wo fint, dvality

FD := {CSP(T) | T has finite duality}
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Finite Duality

Theorem (Atserias05)
FD = FO
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Can we get a theorem for FD similar to the one for
Datalog?
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Define pp-construction

homomorphic equivalence

If T—>SandS — T, then T =, S.
Example {TJ 1‘,} 12 1‘5 5 :

C3 & Cs3 & Csp
any graph with a loop < C; @

Note that: T < S implies CSP(T') = CSP(S)

















































































































































































Define pp-construction

homomorphic equivalence

If T—>SandS — T, then T =, S.

Example Csp(f}):gﬁ | ewzcyck in G haS a
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Cs & Ci3 & Csp
any graph with a loop < C;

CsP(®) =5 all grmphs’$
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Define pp-construction

pp-power

If S = T" and every relation R of Sis (as a
nk-ary relation) pp-definable in T, then T <, S.
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If S=T" and every relation RY) of S'is (as a
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Define pp-construction

pp-power

If S=T" and every relation RY) of S'is (as a
nk-ary relation) pp-definable in T, then T <, S.
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The following are equivalent

1. CSP(T) isin FD
2. T cannot pp-construct Aq, A,, ...

OH NO! CSP(P,) € FD, CSP(IP;) ¢ FD, and
Py =pp P

= FD is not closed under pp-constructions
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The following are equivalent
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Conjecture
The following are equivalent

1. CSP(T) is in PP(FD)
2. T cannot pp-construct O, C,, C;, . ..

What to do now?
Find another equivalent statement.
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Dusl Programms

Definition

a unary linear Datalog Program consists of two
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Conjecture
The following are equivalent

1. CSP(T) is in PP(FD)
2. T cannot pp-construct O, C,, Cs, . ..
3. CSP(T) is solved by some Dusl program
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What we know

L. CSP(T) is in PP(FD) =0 ¢ 1 14 by Ac
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2. T cannot pp-construct O, C,, Cs, ...

g ﬂif L+ML
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Open Questions

1. are dusl programms closed under pp
constructions?

2. Is Nyzs in PP(FD)?
|
&1 1 s

3. Is there a Dusl program for

with counstauts
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