

Weakest Non-trivial Finite Structures

Florian Starke

joint work with Manuel Bodirsky

European Research Council Established by the European Commission

Theorem (Barto, Opršal, Pinsker 2015) Let \mathbb{A} and \mathbb{B} be a finite structures. TFAE

- 1. A can pp-construct \mathbb{B} ($\mathbb{A} \leq_{pp} \mathbb{B}$)
- 2. \mathbb{B} is homomorphically equivalent to a pp-power of \mathbb{A}
- 3. $Pol(\mathbb{A})$ has a minion homomorphism to $Pol(\mathbb{B})$

PP-Constructability Poset (for Digraphs)

Weakest Non-trivial Finite Digraphs

Weakest Non-trivial Finite Digraphs

Malt: quasi Maltsev, m(x, y, y) = m(x, x, x) = m(y, y, x) Σ_p : *p*-cyclic, $f(x_1, x_2, \dots, x_p) = f(x_2, \dots, x_p, x_1)$

Theorem Let \mathbb{G} be a finite digraph. TFAE

- 2. \mathbb{G} has Malt and Σ_p polymorphisms for all p
- 3. G is homomorphically equivalent to a directed path or a loop

Weakest Non-trivial Finite Digraphs

Malt: quasi Maltsev, m(x, y, y) = m(x, x, x) = m(y, y, x) Σ_p : *p*-cyclic, $f(x_1, x_2, \dots, x_p) = f(x_2, \dots, x_p, x_1)$

Theorem Let \mathbb{G} be a finite digraph. TFAE

- 2. \mathbb{G} has Malt and Σ_p polymorphisms for all p
- 3. G is homomorphically equivalent to a directed path or a loop

Weakest Finite Structures

Weakest Finite Structures

Theorem

Let \mathbb{A} be a finite structure. TFAE

- 1. $\vartheta \leq_{pp} \mathbb{A}$
- 2. A has a constant polymorphism
- 3. A is homomorphically equivalent to a one-element structure

Duality Pairs (Nešetřil, Tardif 1998)

Duality Pairs

$\stackrel{\uparrow}{\uparrow} \longrightarrow \mathbb{G} \xrightarrow{} \stackrel{\uparrow}{\uparrow}$

(1) is a heality pair

$\begin{array}{c} \dot{i} \\ \dot{f} \\ \dot{f} \\ \dot{f} \\ \end{array} \overset{\circ}{\leftarrow} & \overset{\circ}{\uparrow} \\ \dot{f} \\ \dot$

 $R_1 R_2$

TS(n): totally symmetric, $f(x_1, \ldots, x_n)$ only depends on $\{x_1, \ldots, x_n\}$. Theorem (Feder, Vardi 93) Let A be a finite structure. TFAE 1. HornSat $\leq_{pp} \mathbb{A}$ 2. A has TS(n) polymorphisms of all n 3. A has tree duality

R-R2

k-ABS: *k*-absorbing block symmetric $f(x_{1,1}, \ldots, x_{1,k}, \ldots, x_{k,1}, \ldots, x_{k,k})$ only depends on the set of w.r.t. \subseteq **minimal** sets in

$$\{\{x_{1,1},\ldots,x_{1,k}\},\ldots,\{x_{k,1},\ldots,x_{k,k}\}\}$$

Theorem (Carvalho, Dalmau, Krokhin 2010) Let \mathbb{A} be a finite structure. TFAE

- 1. st-Con $≤_{pp}$ A
- 2. A has k-ABS polymorphisms for all k
- 3. A has caterpillar duality
- 4. A is homomorphically equivalent to a structure \mathbb{A}' with lattice polymorphisms \wedge, \vee

Unfolded Caterpillar Duality Unfolding. Prt C does not have Unfolded CP duchity

- Theorem (Bodirsky, Starke 2024) Let \mathbb{A} be a finite structure. TFAE
 - 1. → $\leq_{pp} A$
 - 2. A has Malt and k-ABS polymorphism for all k
 - 3. A has unfolded caterpillar duality
 - A is homomorphically equivalent to a structure A' with lattice polymorphisms ∧, ∨ and a Malt polymorphism

Theorem (Bodirsky, Starke 2024) Let \mathbb{A} be a finite structure. TFAE

- $1. \ {\scriptstyle \rightarrow \circ} \leq_{pp} \mathbb{A}$
- 2. A has Malt and k-ABS polymorphism for all k
- 2' A has generalised minority polymorphisms of all odd arities and TS(n) polymorphisms for all n (Vucaj, Zhuk 2024)
- 3. A has unfolded caterpillar duality
- A is homomorphically equivalent to a structure A' with lattice polymorphisms ∧, ∨ and a Malt polymorphism

Л

