
Core - The Contextual Role Editor

Henri Mühle

May 19, 2011

1

1 About Core

Core is a small tool that is thought to assist the process of developing role-
oriented software models1 in a context-based fashion. It consists of two parts:
a) a role model diagram editor and b) a command line tool.

The diagram editor is a GMF-based Eclipse plugin. Therewith you can
create UML style class diagrams (*.rd-files), describing role models. Even more,
if you omit the role hierarchy, you can design standard object-oriented class
hierarchies as well.

The command line tool is little bit more than a Java-based file converter. It
is able to create the respective formal contexts from given *.rd-files as well as
the appropriate *.rd-file from given formal contexts (representing the base and
role hierarchies). Even more, it lists the possible bonds between the given base
and role context, since these bonds are precisely the possible role-play relations.
The user can then interactively determine the desired role-play functionality. In
extension to this, one can determine the mergings between both hierarchies as
well, which has, however, not been included into the role models yet.

Note, that you can create standard object-oriented software models as well
using this tool. Simply leave the hierarchy of role types empty. A possible
extension for this editor can be a code generator, that generates the Java classes
from the diagram represented in the *.rd-file.

If you have any ideas to improve Core, any questions or found some bugs,
do not hesitate to contact me via henri.muehle@univie.ac.at.

2 Using the Diagram Editor

After you have successfully installed or copied (which is the same) the archive
files for the diagram editor into your Eclipse directory, you can run Eclipse
and should note a new entry in File → New → Example . . . called Role Model
Diagram. You should create a new folder (File → New → Folder) in your
workspace, in which to store the role model diagrams. After the you created
the *.rd- and *.rd.diag-files with the above mentioned wizard (File → New →
Example . . .→ Role Model Diagram), the Eclipse perspective should change and
look something like this:

1For a general introduction to the topic, we refer to [3] and [2].

2

Right-clicking somewhere on the canvas and selecting Show Properties View
allows you to edit the properties of the canvas elements. The palette on the
right-hand side contains all the possible elements that can be placed on the
canvas. Note that you can only place BaseTypes and Collaborations directly on
the canvas. RoleTypes have to be placed inside collaborations. (This needs some
patience sometimes. Try it close beneath the horizontal grey name separator.)
Attributes and Methods can be added to BaseTypes and RoleTypes, edges can
only be drawn between the appropriate elements. (RolePlayEdges go from a
RoleType towards a BaseType.)

If the editor does not open, when double-clicking an *.rd.diag-file, open it
via right-clicking the *.rd.diag-file, select Open With → Other . . . and choose
Role Model Editing.

If you already have a generated *.rd-file, initialize the diagram by right-
clicking the *.rd-file and choose Initialize rd.diag diagram file. Unfortunately
you have to resize and relocate the generated elements by hand.

3 Using the Command Line Tool

After you have unzipped the archive there is a file called core.jar. Navigate to
it using a command line window and type

java -jar core.jar

You should now see a welcome screen. Table 1 shows the possible commands
that can be entered and Table 2 explains the arguments.

If the installation process for any reason does not succeed (e. g. if you don’t
have the appropriate user rights), you should integrate the folders features and
plugins into the according folders of your Eclipse installation by hand.

3

command description arguments
help lists the available commands
path shows the path to the local Eclipse

distribution
setPath sets the path to the local Eclipse 〈path〉

distribution
eclipse starts an Eclipse instance from

the given path
install installs role diagram editor plugin 〈’all’〉

to eclipse
exit exits Core
clear deletes all cached contexts and

generators
load loads an input file 〈’bc’|’rc’|’cc’〉 〈path〉
print prints a context 〈’all’|’bc’|’rc’|’cc’|’mc’〉
store stores a context as *.csv or the 〈’all’|’bc’|’rc’|’cc’|’mc’|’rd’〉 [〈path〉]

diagram file as *.rd
nextBond shows the next available bond

between the given role and base
context

mergings prints the number of (proper) [〈’mc’〉][〈’p’〉]
mergings between the given
contexts and optionally creates
the context of mergings

Table 1: The available Core-commands

argument description
all in case of install it installs the GMF framework,

otherwise it stores resp. prints all active contexts
bc refers to the base type context
rc refers to the role type context
cc refers to the composition context
mc refers to the merging context
p refers to the proper mergings

Table 2: Description of the arguments

4

The first step will probably be to load the a context for the base hierarchy
and a context for the role hierarchy. To do so, type load bc 〈path〉 resp.
load rc 〈path〉 for entering the base resp. role context.

nextBond returns the next possible bond (resp. the first one, if you type it for
the first time) between the contraordinal scales of base and role type contexts.
You can proceed to the next bond (until infinity if you like, since there is a loop
between the largest and the smallest bond) or accept the provided bond.

With typing store rd 〈path〉 Core creates the *.rd-file from the given
contexts at the given path. Have a look at the generated diagram using the
Diagram Editor, if you like. If you load a role diagram file via load rd 〈path〉
the tool automatically creates the base and role context from this file. It addi-
tionally creates the composition context as described in [2]. To have a look at
the generated contexts, use the command print with the proper argument; to
save the contexts to your disk, use store. If you want to ensure that there do
not remain any objects from a previous load (and you do not want to restart
Core), you can clear the cache with clear.

There are two ways to use the command mergings. On the one hand, use
it without arguments or with the argument p. This returns the number of
(proper) mergings between the base and role type context. On the other hand
use mergings mc without further arguments or with the argument p to create
the context of (proper) mergings between the base and the role type context.
The notion of mergings is hereby understood as introduced in [1].

4 Developing Core

If you have downloaded the net.core.editor.*-projects in order to extend or cus-
tomize the editor, there are a few things to take care of.

4.1 Accesss Restriction Error

Sometimes, Eclipse will report several errors caused by an access restriction.
This is an annoying, but irrelevant error, that can be solved as follows: Select
Window → Preferences → Java → Compiler → Errors/Warnings. Locate
Forbidden reference (access rules) under Deprecated and restricted API. Change
the selection from “Error” to “Warning” and you will not be bugged again2.

4.2 Exporting the Diagram Editor

If you wan to export the customized diagram editor to make it usable without
the source files in the net.core.editor.*-projects, you need to create two more
projects:

• create a Plugin-Feature-Project
File→ New→ Other. . . → Plug-in Development→ Feature Project

2Found at http://lkamal.blogspot.com/2008/09/eclipse-access-restriction-on-library.
html.

5

• create a Plugin-Site-Project
File→ New→ Other. . . → Plug-in Development→ Update Site Project

In the feature project, you have to list all the net.core.editor.*-projects. You
can then use the site projet to create jars from these projects that you can
eventually distribute3.

References

[1] Bernhard Ganter, Christian Meschke, and Henri Mühle. Merging Ordered
Sets. In Robert Jäschke and Petko Valtchev, editors, Proceedings of the 9th
International Conference Formal Concept Analysis, volume 6628 of Lecture
Notes in Artificial Intelligence. Springer, 2011.

[2] Henri Mühle and Christian Wende. Describing Role Models in Terms of
Formal Concept Analysis. In Léonard Kwuida and Baris Sertkaya, editors,
Proceedings of the 8th International Conference Formal Concept Analysis,
volume 5986 of Lecture Notes in Artificial Intelligence. Springer, 2010.

[3] Friedrich Steimann. On the Representation of Roles in Object-Oriented and
Conceptual Modelling. Data Knowledge Engineering, 35, 2000.

3Found at http://dev.eclipse.org/newslists/news.eclipse.modeling.gmf/msg16304.

html.

6

