
Technische Universität Dresden
Herausgeber: Der Rektor

Using Bonds for Describing Method
Dispatch in Role-Oriented Software Models

Henri Mühle

MATH–AL–04–2010 August 2010





1 Introduction

Abstract. Role-oriented software modeling is an approach
to object-oriented software engineering which provides a stricter
encapsulation by separating the type behavior from the ob-
ject into so-called roles. This role behavior can dynamically
be accessed in certain situations and extends or alters the
original type behavior. The process of extending or altering
type behavior in object-oriented systems is realized by so-
called method dispatch which controls message sending and
routing. It is thus essential to guarantee the correct execution
of the model.

In this report we present a context-based construction to
describe the method dispatch via special formal contexts con-
taining bonds. It turns out that the bond-induced morphisms
serve well for determining the role method which is bound to a
certain base method during runtime. This formal context can
also be used to check the role model and determine whether
base and role methods are bound correctly.

1 Introduction

Role orientation is an approach to object-oriented software modeling that
relies on separating the behavior from the object. It was introduced in
the 1990s by Trygve Reenskaug [11] and later investigated by Friedrich
Steimann [12], who also gave a first formalisation of this approach, along
with a proposal for an UML notation of these concepts. Role types
encapsulate common behavior that is required in certain situations into
separate modules. In contrast to subclassing or delegation – as standard
techniques in object-orientation for encapsulating and altering behavior
– role types allow for flexible and dynamic change of behavior without
reinstantiating the object.

The scope of this report lies in formalizing the method dispatch in role-
oriented software models. Method dispatch is a mechanism in object-
oriented software models that determines and invokes the correct piece
of code for a certain method call [8]. Subsidiary to method dispatch

1



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

along the inheritance hierarchy in standard object-oriented models, role-
oriented modeling adds another dimension of method dispatch along the
role-play relation. It is our goal to provide a sound, concept-based rep-
resentation of this kind of method dispatch. However, our approach
shall not be seen as a mechanism to implement method dispatch in role-
oriented languages in order to allow for better performance. It shall serve
as a design aid with whose help role modelers can check their models for
correctness and may receive design advices to improve their models.

The rest of the paper is organized as follows: In Section 2 we present
the basics of Formal Concept Analysis (Section 2.1) as well as a short
introduction to the concept of roles (Section 2.2.1) and its application to
software modeling (Section 2.2.2). We construct our model for represent-
ing role models in Section 3 in order to determine the method dispatch.
It is necessary to construct a static model first (Section 3.1) which will
then be extended towards a dynamic model (Section 3.2). Concluding
this section we present a combined model that includes both – base and
role – type hierarchies (Section 3.3). The next section (Section 4) is used
to present our dispatch algorithm as well as an example for clarification.
Concluding this paper, Section 5 summarizes our results and Section 6
gives an outlook towards future work.

2 Preliminaries

2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) establishes a connection between binary
relations and complete lattices [3]. Its basic elements are formal contexts,
i. e. triplets (G,M, I) where G is a set of objects, M is a set of attributes
and I ⊆ G×M describes whether an object has an attribute. Introducing
two derivation operators for A ⊆ G resp. B ⊆M

AI ∶= {m ∈M ∣ ∀ g ∈ A ∶ gIm} ⊆M
BI ∶= {g ∈ G ∣ ∀ m ∈ B ∶ gIm} ⊆ G

2



2 Preliminaries

one can create formal concepts of a formal context (G,M, I) as pairs
(A,B) with A ⊆ G,B ⊆M,AI = B,BI = A. A is then called extent, B is
called intent of the concept (A,B). With introducing an order relation
on the set B(G,M, I) of concepts via

(A1,B1) ≤ (A2,B2) ∶⇔ A1 ⊆ A2 (⇔ B1 ⊆ B2)

the basic theorem of Formal Concept Analysis [3, p. 20] states that the
concept lattice

B(G,M, I) ∶= (B(G,M, I),≤)

is indeed a complete lattice. We will simply write gI instead of the
lengthty notation {g}I if we consider one-element sets.

An interesting way to combine two contexts is done via so-called bonds.
Given two contexts Ks ∶= (Gs,Ms, Is),Kt ∶= (Gt,Mt, It), a relation Jst ⊆
Gs ×Mt is called bond, iff gJst is an intent of Kt for each object g ∈ Gs
and mJst is an extent of Ks for each attribute m ∈Mt.

As stated in [2, p. 15] each bond Jst induces two morphisms

ϕst ∶B(Gs,Ms, Is)→B(Gt,Mt, It), ψst ∶B(Gt,Mt, It)→B(Gs,Ms, Is)

by

ϕst(A,AIs) ∶= (AJstIt ,AJst), ψst(BIt ,B) ∶= (BJst ,BJstIs)

2.2 Role-Oriented Software Modeling

2.2.1 The Concept of a Role

The notion of roles was already introduced in the late 1970s by Bachman
and Daya [1]. Though being contrary to the principle of database that
each record should represent all aspects of one entity of the world, this
notion helped solving a common problem of the usual network model
[10]. Since the network model allows the members of a set to be records
of various types, it is necessary to write the same redundant piece of

3



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

code for each of these types. By encapsulating the respective piece of
code into a separate module, the role, redundancy of the code can be
decreased enormously. [12]

Nevertheless, Bachman and Daya’s work did not influence common mod-
eling techniques that much. However, by looking at this concept from a
software point of view, we notice that encapsulating pieces of code into
separate modules and later accessing and using these if necessary appears
as a special form of polymorphism [12]. Thus, the concept of roles should
be thoroughly analyzed from an object-oriented point of view. A very ex-
tensive and general description of the role concept was given by Steimann
[12]. He uniformly described the different approaches towards role mod-
eling that evolved during the 1990s in a formal modeling language called
Lodwick.

Today, the role-oriented modeling paradigm extends the object-oriented
modeling paradigm by the role concept. Such roles are modules that
encapsulate certain behaviour. According to Steimann, roles are place-
holders in special relationships that can be filled by actors [12, p. 5]. A
concept in conjunction with (software) models is a relevant entity of the
real world that is represented by the according model1. It is necessary
to distinguish whether a modeling concept describes a role type or not.
Steimann states that Guarino identified two basic properties to separate
modeling concepts that describe role types from such modeling concepts
that describe natural or (as we will call them) base types: semantic rigid-
ity and foundation [5].

Semantic rigidity means that a modeling concept determines the identity
of its instances, i. e. an instance can not leave the extension of this
modeling concept without losing its identity [12, p. 3]. E. g. a person is a
semantically rigid modeling concept, since noone can stop being a person
without giving up its identity. A student, however, is no semantically
rigid modeling concept. One can stop being a student at any time without
necessarily giving up the own identity.

Foundation means that a modeling concept needs to interact with some

1We will call such concepts modeling concepts to avoid confusion with formal concepts
in FCA.

4



2 Preliminaries

other modeling concept, i. e. no instance of this modeling concept can
exist on its own [12, p. 3]. E. g. a student is a founded modeling concept,
since it is necessary to be registered for a course of studies to be a student.
A person, however, is not founded, since there is no interaction with other
modeling concepts necessary to be a person.

Guarino concludes that role types are such modeling concepts that are
not semantically rigid and founded, while base types are such modeling
concepts that are semantically rigid and not founded [5]. This means,
that a student is a role type, while a person is a base type.

2.2.2 Extending Object-Oriented Software Models by the Concept
of a Role

With introducing roles as modeling concept, the modeler will obtain sev-
eral advantages, such as stricter encapsulation or less redundancy. Roles
encapsulate special behavior and provide it to type instances when nec-
essary. This property reminds in a certain way of type polymorphism in
object-oriented software modeling. Thus it is obvious to extend object-
oriented software modeling towards role-oriented software modeling by
introducing role types and related modeling concepts.

Steimann outlines some basic properties of role types [12, p. 4] that are
also important for our modeling approach:

1. Role types always need a specific situation in which they are appro-
priate. E. g. a student is a role type in a real (open) world scenario,
but if we assume the university as a closed world, a student would
be a base type, being able to play role types such as participant in
lectures, examinee, etc.

2. Roles come with their own behavior, i. e. role types provide at-
tributes and methods that define the behavior encapsulated in this
role.

3. Role types do not provide their own instances. Role types are
filled by base types, i. e. base type instances are enriched by the

5



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

properties and the behavior specified in the role type.

4. Role types may be acquired and abandoned dynamically by base
type instances, i. e. role types have a highly dynamic character.

As a practical example, the programming language ObjectTeams/Java
[6] includes these modeling concepts and allows for role-oriented software
modeling. Thus it can be used as an orientation to determine which
technical difficulties appear in realizing Steimanns formal model. Par-
ticularly Property 2 is of crucial interest in realizing role models. This
basically says, that role types encapsulate certain behavior. In combina-
tion with Property 1 and Property 4 it turns out that this behavior is
situational and needs to be dynamically accessible. This is nothing more
than following the idea of Bachman and Daya’s role concept to avoid
code duplication, which somehow reminds of type polymorphism. And
indeed, ObjectTeams/Java introduces a so-called translation polymor-
phism [7] as a pendant for type polymorphism as well as instance dispatch
as a pendant for method dispatch.

While type polymorphism in standard object-orientation describes that
instances of a certain type can always be regarded as instances of a su-
pertype (and in some cases as instances of a subtype), translation poly-
morphism in role-orientation describes that instances of base types can
always be adressed via the role types that the according base type can
play.

Method dispatch is a technique to realize message sending in object-
oriented models. Due to late binding (which assesses the types of software
objects not until runtime) and type polymorphism the proper target of a
message call needs to be determined at runtime as well. Since type meth-
ods can be redefined in subtypes the target of a message call is directly
dependent of the runtime type of the according type instance. Instance
dispatch is the equivalent technique in role-orientation to determine of
which role type a certain instance is.

Note that instance dispatch and translation polymorphism extend the
object-oriented features and do not replace them. This means that e. g.
classical method dispatch along the inheritance hierachy is extended by

6



3 Model Construction

another dimension: method dispatch along the role-play relation. This
extension of method dispatch is closely related to instance dispatch, nev-
ertheless has another quality. In this report we will present a represen-
tation of this kind of method dispatch with formal contexts in order to
provide a means for model checking or design aid.

3 Model Construction

3.1 Static Models for the Hierarchies

We have already provided a concept-based representation for describing
role models and the role-play relation in [9]. Thus it appears consequent
to construct a concept-based formalization of the role-oriented method
dispatch in order to create a sound and extensive formalization apparatus
which could support software designers in their work.

In [9] we used the type names as formal objects, the type attributes as
formal attributes as well as the type-attribute-incidence as context inci-
dence to construct formal contexts that represented the role-play relation
and allowed for checking consistency of the model as well as dynamically
representing and visualizing the runtime state of the role model.

In this report, however, we use the type methods as formal attributes.
This approach was proposed in [4] for standard object-oriented models
with the goal to restructure and factorize the base type hierarchy. Since
base type and role type hierarchy are according to [12] in a sense orthog-
onal we first describe the hierarchies each and later combine them into a
single context. The first step in this process is to construct a very simple
context that models only the base resp. role type hierarchies.

Definition 1. Let B be a set of base types, MB an appropriate set of
methods and let IB describe the type-method-incidence. Thus, the con-
text B ∶= (B,MB , IB) is called (method-based) base type context.
Let us assume that each method m ∈MB is declared in at least one base
type, i. e.

∀ m ∈MB ∶mIB ≠ ∅ (1)

7



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

Analogously R ∶= (R,MR, IR) is called (method-based) role type con-
text.

For better understanding of the presented constructions, we will refer to
a small running example of a lecture. The role model2 of this lecture is
shown in Figure 1, the base and role type contexts are shown in Figure 2.

Lecture

<<played by>>

Professor

name:String
faculty:StringLecturer y g

explain():void
write():void

material:Collection

explainClearly():void
writeNeatly():void

AssistantProfessor

evaluation:Date

Student

Participant

material:Collection

<<played by>>

Student

name:String
studID:int
chatter():void

i () id

grade:int

chatterQuietly():void
writeNeatly():void

write():void

Figure 1: An example role model Lecture

IB

w
ri
te
()

e
x
p
la
in
()

ch
a
tt
e
r(
)

Professor × ×

AssistantProfessor × ×

Student × ×

IR

w
ri
te
N
e
a
tl
y
()

e
x
p
la
in
C
le
a
rl
y
()

ch
a
tt
e
rQ

u
ie
tl
y
()

Lecturer × ×

Participant × ×

Figure 2: The method-based base type and role type contexts of the role
model Lecture in Figure 1

2We defined a role model in [9] as a formal context (B,R,P ), where B is a set of
base types, R is a set of role types and P ⊆ B ×R describes the role-play relation.

8



3 Model Construction

For describing the method dispatch, we need to adress the single methods
of each base or role type unambiguously. Therefore we have to extend
the objects of base and role type contexts by representatives of these
methods. We call these representatives virtual objects. They basically
encode the incidence relation in the object set of the base resp. role type
context, because for each base resp. role type we only need to introduce
such virtual objects representing a method that is possessed by this type.

Definition 2. Let (B,MB , IB) be a base type context. Introducing a
set VB of virtual objects, the extended base type context B̂ ∶=
(B̂,MB , ÎB) is defined as follows:

B̂ ∶= B ∪ VB
ÎB ∶= IB ∪NB

with

VB ∶= {(b,m) ∣ ∃ b ∈ B,m ∈MB ∶ bIBm}
NB ∶= {(v,m) ∣ ∃ v ∈ VB ∶ v = (b,m)}

The extended role type context R̂ ∶= (R̂,MR, ÎR) is defined analo-
gously.

For reasons of readability we will denote the virtual objects in VB (VR)
with the first two letters of the respective base (role) type, followed by
the column number of the base (role) type method this virtual object
refers to. Figure 3 shows the extended base and role type contexts of
Figure 1. Note that each of the method-based contexts is a subcontext
of the respective extended type context.

Since the virtual objects in a sense represent the type methods, the fol-
lowing lemma holds for each extended type context.

Lemma 1. Let K̂ = (Ĝ,M, Î) be a extended type context in the sense of
Definition 2. Then, K̂ is co-atomistic, i. e.

∀ m1,m2 ∈M ∶mÎ
1 ⊆mÎ

2 ⇒m1 =m2

Proof. Let m1,m2 ∈M . By definition of Î and Assumption 1 there must

9



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

ÎB

w
ri
te
()

e
x
p
la
in
()

ch
a
tt
e
r(
)

Professor × ×

Pr1 ×

Pr2 ×

AssistantProfessor × ×

As1 ×

As2 ×

Student × ×

St1 ×

St3 ×

ÎR

w
ri
te
N
e
a
tl
y
()

e
x
p
la
in
C
le
a
rl
y
()

ch
a
tt
e
rQ

u
ie
tl
y
()

Lecturer × ×

Le1 ×

Le2 ×

Participant × ×

Pa1 ×

Pa3 ×

Figure 3: The extended base type and role type contexts of Figure 1

exist virtual objects v1, v2 ∈ V ⊆ Ĝ with vÎ1 = {m1} and vÎ2 = {m2}. Thus

{m1} and {m2} are intents of K̂.

Now we can easily show the desired property:

{m1}Î ⊆ {m2}Î ⇔ {m1}Î Î ⊇ {m2}Î Î ⇔ {m1} ⊇ {m2}⇔m1 =m2

3.2 Dynamic Models for the Base Type Hierarchy

Since we want to describe the method dispatch during runtime it is nec-
essary to describe the runtime instances as a formal context as well.
According to Property 3 role types do not provide their own instances,
but are played by base type instances.

For describing instances we will introduce the following notation: the
runtime of the system will be denoted by T ⊆ N. It is the set of all active
instances at the point of (run)time t ∈ T . We further have Itb ⊆ It as the
set of all active instances of base type b ∈ B and Itr ⊆ It as the set of all
active instances playing a role type r ∈ R. We will additionally introduce
Itb,r ∶= Itb ∩ Itr. Obviously holds:

⋃
b∈B

Itb = It, ⋃
r∈R

Itr ⊆ It

10



3 Model Construction

The following context describes the instances which receive certain method
calls.

Definition 3. Let B̂ = (B̂,MB , ÎB) be an extended base type context.
We will introduce the method call context B̂t ∶= (B̂t,MB , Î

t
B) as fol-

lows:

B̂t ∶= B̂ ∪ It
ÎtB ∶= ÎB ∪Ct

where

Ct ∶= {(i,m) ∣ ∃ i ∈ Itb,m ∈MB ∶ i receives a call from m}

It has to be said that we assume a sequential execution of our role model
which means that each instance can only receive calls from one single
method at a time. This is sufficient since one can easily map parallel
activities to a sequential execution plan.

To assign the co-atomicity of the extended base type context to the
method call context, we need to prove that the concept lattices of ei-
ther contexts are isomorphic.

Lemma 2. Let B̂ = (B̂,MB , ÎB) be an extended base type context and
B̂t = (B̂t,MB , Î

t
B) the respective method call context. Then it is B(B̂) ≅

B(B̂t).

Proof. According to the basic theorem of FCA [3, p. 20] we need to find

mappings γ̂ ∶ B̂t →B(B̂), µ̂ ∶MB →B(B̂), s. t. γ̂(B̂t) is supremum-dense
in B(B̂), µ̂(MB) is infimum-dense in B(B̂) and bÎtBm⇔ γ̂b ≤ µ̂m.

Since the attribute sets of both contexts agree µ̂ ∶ MB → B(B̂),m ↦
µB̂(m) will serve as the attribute mapping. For the object mapping we

introduce an equivalence relation θt ∶= {(b1, b2) ∣ bÎ
t
B

1 = bÎ
t
B

2 } on B̂t that
identifies all virtual objects that describe the same method with each
other and with all instances that call this method. If we reduce the
contexts (B̂t/θt,MB , Î

t
B) and (B̂,MB , ÎB) the respective sets of objects

are obviously isomorphic. (The reduction is necessary, since θt removes

11



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

duplicate and empty rows from B̂t.) Let jt ∶ B̂t/θt → B̂ denote this

isomorphism. Thus, γ̂ ∶ B̂t → B(B̂), b̂ ↦ γB̂(jt[b̂]θt) has the desired
properties.

The condition bÎtBm⇔ γ̂b ≤ µ̂m is immediately satisfied for b ∈ B̂. Thus,
we only have to check the condition for b ∈ It. Since we assumed a

sequential execution of the role model, we know that ∣bÎtB ∣ = 1. By con-

struction of B̂ there needs to exist v ∈ VB having bÎ
t
B = vÎtB . Thus it

is bθtv. Reducing the context (B̂t/θt,MB , Î
t
B) means, that there exists

exactly one object having the same intent as b (and v). W. l. o. g. let
jt([b]θt) = v. Thus we have

γ̂b ≤ µ̂m⇔ γB̂(j
t[b]θt) ≤ µB̂(m)

⇔ γB̂(v) ≤ µB̂(m)
⇔ vÎBm

⇔ vÎtBm

⇔ bÎtBm

Thus the method call context is co-atomistic as well. This enables us to
show the following lemma.

Lemma 3. Let B̂t = (B̂t,MB , Î
t
B) be a method call context. For each

(C,D) ∈B(B̂t) with C ∩ It ≠ ∅ follows that ∣D∣ ≤ 1.

Proof. Obvious, since we assumed a sequential execution, i. e. each in-
stance can only call at most one method at a time, and B̂t is co-atomistic.
We have ∣D∣ = 0, iff the instances in C ∩ It do not call any methods at
all.

3.3 Combining both Hierarchies

Since the kind of method dispatch that shall be described by our approach
redirects calls from base type methods towards role type methods, it is

12



3 Model Construction

necessary to establish a connection between base and role type hierar-
chies. This means that we need to establish a connection between the
attribute sets of either contexts. This connection is constructed in terms
of a mapping between the concepts of either contexts. Such a mapping
can be constructed in a natural way by a so-called bond between both
contexts (cf. Section 2.1).

We will first explain our construction and then, in the next section,
present an algorithm for describing the dispatch.

Definition 4. Let C = (B,R,P ) be a role model and B̂ = (B̂,MB , ÎB)
resp. R̂ = (R̂,MR, ÎR) be the extended base resp. role type contexts.
The formal context (G,M,J) with

G ∶= B̂ ⊍ R̂
M ∶= MB ⊍ MR

J ∶= ÎB ∪ ÎR ∪ JBR

such that JBR ⊆ B̂ ×MR is called binding context of C.

If JBR forms a bond between (B̂,MB , ÎB) and (R̂,MR, ÎR) and fulfills
the following conditions

∀ b ∈ B ⊆ B̂,m ∈MR ∶ (b,m) ∈ JBR⇔ ∃ r ∈mÎR ∶ bPr (2)

∀ v = (b,m) ∈ VB ⊆ B̂ ∶ vJ ⊆ bJ (3)

∀ v ∈ VB ∶ ∣vJBR ∣ = 1 (4)

∀ m ∈MR ∶mJBR ≠ ∅ (5)

(G,M,J) is called proper binding context.

The first two conditions describe that the bond combines only such base
types (and their respective virtual objects) with role methods if the ac-
cording base type can play the according role type. The third condi-
tion says that each virtual object needs to be bound to exactly one role
method. This is a comprehensible claim, since virtual objects in a sense
represent base type methods and we assumed that each base type method
is bound to exactly one role type method. And lastly, the fourth condi-
tion says that for each role type method there needs to exist at least one

13



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

virtual object (and thus at least one base type method) that is bound to
this role type method.

4 Performing the Method Dispatch

It is essential for role modeling to determine the method dispatch between
base types and the according role types they play at runtime. At modeling
time (i. e. when setting up the role model) each method mb ∈ bIB of a
base type b ∈ B is assigned to a method mr ∈ rIR of a respective role type
r ∈ R that is played by b in order to alter the behavior of the base type
when playing this role. At runtime it is necessary to correctly dispatch
method calls from the base type method to the appropriate role type
method to guarantee correct altering of the behavior.

For resolving the method dispatch, we will use the bond-induced mor-
phisms ϕBR and ψBR of the proper binding context as recalled in Section
1.

Let t ∈ T be a point of runtime and i ∈ It a certain instance calling a
method m ∈MB . Algorithm 1 shows how the role method m̃ ∈MR that
is bound to m can be determined.

Algorithm 1 An algorithm for method dispatch

Require: method call context Bt = (B̂t,MB , Î
t
B),

proper binding context (G,M,J),
instance i ∈ It,
method m ∈MB

Ensure: m ∈ iÎtB
1: c ∶= (mÎB ,mÎB ÎB)
2: c̃ ∶= ϕBR(c)
3: m̃ ∶= int(c̃)
4: return m̃

The algorithm requires the appropriate method call context as well as
the proper binding context and gets an active instance i ∈ It as well as a

14



4 Performing the Method Dispatch

base type method m ∈MB as inputs. It needs to be ensured that i indeed
calls m. Applying the bond-induced morphism ϕBR from the base type
context to the role type context to the attribute concept of m we receive
a concept having only role methods in its intent (Line 2). We now have to
show that the intent of this concept indeed consists of only one attribute
to state that the method dispatch can be performed uniquely (Line 3).

Lemma 4. Let (G,M,J) be a proper binding context, (C,D) ∈B(G,M,J)
with ∣D ∩MB ∣ = 1. Then for the concept (C̃, D̃) ∶= ϕBR(C,D) holds
∣D̃∣ = 1.

Proof. Let (C,D) ∈ B(G,M,J) be as desired and m ∈ MB . W. l. o. g.
m ∈D. By construction of (G,M,J) holds that R×MB = ∅. Thus, C ⊆ B̂.

Since m ∈ MB it is mJ = mÎB ⊆ B̂. By construction of (B̂,MB , ÎB)
there exists v ∈ VB with m ∈ vÎB . It follows from Assumption 4 from
Definition 4 that ∃! m̃ ∈MR with {m̃} = vJBR . Since m = {D ∩MB}, we

have D = {m,m̃}. Furthermore we have C ⊆mÎB due to m ∈D.

Assume, that ∃ b ∈ B ∶ b ∈ mÎB ∧ b ∉ C. This can then only be the

case, if mÎB ≠ m̃JBR . Since JBR is a bond, m̃JBR has to be an intent

of (B̂,MB , ÎB). mÎB can not be this intent, thus there has to be an

attribute m ∈MB with mÎB = m̃JBR . Thus, m ∈ D with m ≠ m. This is
in contradiction to the assumption ∣MB ∩D∣ = 1.

Thus it follows that C = mÎB . By definition of ϕBR we know that for

(C̃, D̃) ∶= ϕBR(C,D) holds D̃ = CJBR = D/C ÎB = {m,m̃}/{m} = {m̃}.

Example 1. A proper binding context for our running example is shown
in Figure 4. Let us assume a set I ∶= IProfessor ∪ IStudent of instances
with IProfessor ∶= {Aßmann,Ganter} and IStudent ∶= {Mühle,Wende}. If
we further assume a point of runtime where Professor Aßmann holds a
lecture and explains a situation, Student Wende writes down some notes
and Student Mühle tries to chatter with his neighbor, we receive a method
call context as depicted in Figure 5.

We will now explain the algorithm in more detail, by applying it step-

15



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

J

w
ri
te
()

e
x
p
la
in
()

ch
a
tt
e
r(
)

w
rN

e
a
tl
y
()

e
x
C
le
a
rl
y
()

ch
Q
u
ie
tl
y
()

Professor × × × ×

Pr1 × ×

Pr2 × ×

AssistantProfessor × × × ×

As1 × ×

As2 × ×

Student × × × ×

St1 × ×

St3 × ×

Lecturer × ×

Le1 ×

Le2 ×

Participant × ×

Pa1 ×

Pa3 ×

Figure 4: A proper binding context of the Lecture from Figure 1. The
attribute concept of the attribute write() is marked lightgray,
while the mapping of this concept under ϕBR is marked in a
darker gray. The crosses marked both lightgray and darker gray
represent the relevant part of the bond that helps mapping the
respective attributes towards each other.

by-step to the example in Figure 5.

16



4 Performing the Method Dispatch

ÎtB

w
ri
te
()

e
x
p
la
in
()

ch
a
tt
e
r(
)

Professor × ×

Pr1 ×

Pr2 ×

Aßmann ×

Ganter

AssistantProfessor × ×

As1 ×

As2 ×

Student × ×

St1 ×

St3 ×

Mühle ×

Wende ×

Figure 5: The method call context of a specific situation

Input: Wende ∈ IStudent,write() ∈MB

Ensure: write() ∈ WendeÎB

Line 1: c ∶= (C,D) = (write()
ÎB ,write()

ÎB ÎB)
C = {Professor,Pr1,AssistantProfessor,As1,Student,St1}
D = {write()}

Line 2: c̃ ∶= (C̃, D̃) = ϕBR(c)

C̃ = CJBRÎR = {Lecturer,Le1,Participant,Pa1}
D̃ =DJBR = {writeNeatly()}

Line 3: m̃ ∶= int(c̃) = writeNeatly()

Return: writeNeatly()

For determining the dispatch targets of the other methods that are in-
volved in the presented runtime state of Figure 5 we apply the algorithm
analogously. Thus, we receive the following mapping results which are

17



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

exactly the intended method bindings.

explain()↦ explainClearly()

write()↦ writeNeatly()

chatter()↦ chatterQuietly()

5 Summary and Conclusion

Role-oriented software modeling is an approach towards object-oriented
software engineering, gaining a higher encapsulation and modularisation
of software models by separating the behavior from the object. The
behavior is encapsulated in special modules, roles, and is woven into the
software model during runtime.

The crucial point in role modeling is the so-called method dispatch, which
redirects method calls to base methods towards appropriate role methods
and thus enables the intended change of type behavior. Since the model
designer determines at modeling time which base methods can be altered
by which role methods when playing the respective role, it has to be
guaranteed that performing the method dispatch during runtime strictly
follows these assignments.

Our approach uses a context construction via so-called bonds to create
special formal contexts which uniquely represent the assignment between
base and role type methods. We then presented an algorithm using these
contexts to determine the role type method that is assigned to a given
base type method. Our construction can thus be used to assist the process
of role-oriented software modeling.

6 Outlook

Together with the results from [9], where we introduced a basic context
representation for base and role type hierarchy, as well as for the role-

18



References

play relation, this paper can be seen as a basic fundament for a formal,
concept-based description language for role-oriented software modeling.

However, there are still a lot of open fields of research to completely cover
role modeling with concept-based constructions. Among others, it is on
the one hand necessary to describe composition and decomposition of
large role models, e. g. to build kind of a design advisor for role models
that helps to identify redundancy or inconsistencies of the model. On
the other hand, it is necessary to provide an extensive framework to
represent role-play constraints or special characteristics of role-oriented
software design, like multiple role play. Since we have already applied
FCA successfully towards the foundations of role modeling, a further
research in this direction will be very promising.

Acknowledgements

The author would like to thank Christian Wende who supported this
work with helpful comments and valuable suggestions.

References

[1] Charles W. Bachman and Manilal Daya. The Role Concept in Data
Models. In VLDB. IEEE Computer Society, 1977.

[2] Bernhard Ganter. Relational Galois Connections. In ICFCA 2007
Proceedings, pages 1–17. Springer, 2007.

[3] Bernhard Ganter and Rudolf Wille. Formale Begriffsanalyse: Math-
ematische Grundlagen. Springer, Heidelberg, 1996.

[4] Robert Godin and Petko Valtchev. Formal Concept Analysis-based
Class Hierarchy Design in Object-Oriented Software Development.
In Formal Concept Analysis: Foundations and Applications, pages
304–323. Springer, 2005.

19



Using Bonds for Describing Method Dispatch in Role-Oriented Software
Models

[5] Nicola Guarino. Concepts, Attributes and Arbitrary Relations. Data
and Knowledge Engineering, 8:249–261, 1992.

[6] Stephan Herrmann. A Precise Model for Contextual Roles: The
Programming Language ObjectTeams/Java. Applied Ontology, 2(2),
2007.

[7] Stephan Herrmann, Christine Hundt, and Katharina Mehner. Trans-
lation Polymorphism in Object Teams. Bericht 14369915, 2005.

[8] Wade Holst and Duane Szafron. A General Framework for Inheri-
tance Management and Method Dispatch in Object-Oriented Lan-
guages. In ECOOP 1997 Proceedings, pages 276–301, 1997.

[9] Henri Mühle and Christian Wende. Describing Role Models in Terms
of Formal Concept Analysis. In ICFCA 2010 Proceedings, pages
241–255. Springer, 2010.

[10] T. William Olle. The Codasyl Approach to Data Base Management.
John Wiley & Sons, Inc., New York, NY, USA, 1978.

[11] T. Reenskaug, P. Wold, and O. A. Lehne. Working with Objects:
The OOram Software Engineering Method. Manning Publications,
Greenwich, CT, 1996.

[12] Friedrich Steimann. On the Representation of Roles in Object-
Oriented and Conceptual Modelling. Data Knowledge Engineering,
35:83–106, 2000.

20


	Introduction
	Preliminaries
	Formal Concept Analysis
	Role-Oriented Software Modeling
	The Concept of a Role
	Extending Object-Oriented Software Models by the Concept of a Role


	Model Construction
	Static Models for the Hierarchies
	Dynamic Models for the Base Type Hierarchy
	Combining both Hierarchies

	Performing the Method Dispatch
	Summary and Conclusion
	Outlook

