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BACKGROUND

Combinatorial families hardly ever arise as plain sets. Usually, they are naturally equipped with
some sort of partial order that allows for comparison of its members. To name a few, words can be
ordered lexicographically, integer partitions can be ordered by comparing components, and permu-
tations can be ordered by inclusion of their inversion sets. More often than not, these partial orders
help to understand the combinatorial objects, their intrinsic structure, and their relations to other
combinatorial families.

Quite frequently it happens that these partial orders have a lattice structure, that is, for every two
elements there exists a unique maximal element that is smaller than the two, and a unique minimal
element that is greater than the two. This extra structure is helpful, because it enables us to approach
these combinatorial families from an algebraic point of view so that we may form quotients or con-
sider homomorphisms and substructures.

I like to describe my research area as combinatorial lattice theory, since most of the lattices arising
in my work can be defined combinatorially, and many of their structural, topological and combinato-
rial properties can be obtained through certain suitable edge labelings. Most of the posets that I have
worked with in the past years, arise from one of the following two constructions.

POSETS FROM GENERATED GROUPS

The first source has a very group-theoretic flavor. If G is a group that is generated by a (finite) set
A ⊆ G, then we may use the word length (with respect to A) `A to define two partial orders on G:

• the A-postfix order: g ≤post h if and only if `A(hg−1) + `A(g) = `A(h);
• the A-prefix order: g ≤pre h if and only if `A(g) + `A(g−1h) = `A(h).

These partial orders recover orientations of the Cayley graph of G with respect to A.
From now on, we focus on the case, where A is closed under taking inverses and under conjuga-

tion. In this case, the A-postfix order and the A-prefix order actually agree and can be understood as a
subword order on G. The identity of G is the unique minimal element in this order, and the maximal
chains from the identity to some g ∈ G are in bijection with the set of A-reduced words for g. We call
the restriction of this order to the interval from the identity to g the factorization poset of g, denoted by
P(g).

If `A(g) = n, then the ith generator σi of the n-strand braid group Bn acts on a word g = a1a2 · · · an
by a Hurwitz move:

σi · (a1, a2, . . . , ai−1, ai, ai+1, ai+2, ai+3, . . . , an)

def
= (a1, a2, . . . , ai−1, ai+1, a−1

i+1aiai+1, ai+2, ai+3, . . . , an).



It is straightforward to verify that this action extends to an action of Bn on the set RedA(g) of A-
reduced words for g. An important question, that goes back to Hurwitz’ study of branched coverings
of a Riemann surface [23] is whether this action is transitive, i.e. whether all A-reduced words for g lie
in the same orbit of this action. Viewing this from the poset perspective, the number of Hurwitz orbits
gives a “connectivity coefficient” for the element g. Indeed, if the Hurwitz action is transitive for g,
then poset diagram of P(g) is connected (as a graph).

The prototypical example of a factorization poset comes from the setting where G is the symmetric
group, A is the set of transpositions and g is a long cycle [8]. A natural extension of this setting
considers a well-generated complex reflection group G, with A being the set of all reflections of G and
g a Coxeter element. In this situation, it turns out that the factorization poset is always a lattice [6, 9]
and that the Hurwitz action is indeed transitive [6, 19]. Moreover, these lattices have other beautiful
topological and structural properties [1, 30, 31, 47, 48, 52].

In [40], V. Ripoll and I have further studied the connectivity aspect of factorization posets by re-
lating it to the topological concept of shellability. We have investigated the interaction of these two
notions of connectivity, and we have given necessary graph-theoretical and combinatorial conditions.

The Hurwitz-transitivity of factorization posets arising from reflection groups for g not necessarily
a Coxeter element was studied for instance in [4, 5, 29, 54]. In my articles [38, 39], I have extended this
construction to subgroups of the symmetric group generated by k-cycles. With my collaborators, we
have explicitly counted Hurwitz orbits for k = 3. We have combinatorially realized the factorization
posets coming from a long cycle in terms of certain noncrossing set partitions.

Classically, a set partition of [n] def
= {1, 2, . . . , n} is noncrossing if there do not exist indices 1 ≤

a < b < c < d ≤ n such that a and c belong to one part and b and d belong to another. Ordering
noncrossing set partitions by refinement yields a lattice; the noncrossing partition lattice Nonc(n) [27].
It turns out that Nonc(n) is isomorphic to the factorization poset P(g) arising from the long cycle
g = (1 2 . . . n) in the symmetric group generated by all transpositions [7,8]. This is illustrated in the
right poset in Figure 1.

Remarkably, if we drop the condition that the generating set is closed under conjugation, then we
obtain another fascinating partial order when G is a reflection group; the weak (Bruhat) order. This
brings us directly to the next source of examples.

POSETS FROM POLYTOPES

We may associate a partial order with a polytope by assigning a cost function to the vertices that
is not constant along edges. This yields an acyclic graph on the vertices of the polytope. My interest
lies in the case where this graph is the poset diagram of some poset [22], and even more so if this
poset is a lattice. From a very general point of view I am interested in lattice properties shared by
all lattices arising in this manner, or at least in geometric properties of polytopes that ensure certain
lattice properties.

For instance, all the lattices I am aware of that arise in this manner are semidistributive, i.e. for every
three elements p, q, r it holds that

p ∨ q = p ∨ r implies (p ∨ q) ∧ (p ∨ r) = p ∨ (q ∧ r),

p ∧ q = p ∧ r implies (p ∧ q) ∨ (p ∧ r) = p ∧ (q ∨ r).

A prototypical example of this construction is the weak (Bruhat) order on the symmetric group aris-
ing from a certain orientation of the permutohedron. Somewhat surprisingly, the weak order arises



as a factorization poset, too, where G is the symmetric group, A is the set of adjacent transpositions
and g is the reverse permutation.

The weak order on the symmetric group has an important quotient lattice: the Tamari lattice Tam(n).
The Tamari lattice arises from a certain orientation of the associahedron, and can be defined via a ro-
tation operation on binary trees. This construction generalizes nicely to real reflection groups. The
resulting polytopes are generalized associahedra and are related (by duality) to the cluster complexes
introduced in [21], and the resulting lattices are the Cambrian lattices of [43]. I have studied topological
and structural properties of Cambrian lattices in [25, 32], and other publications investigating these
lattices are for instance [24, 44, 46].

Other families of polytopes, exhibiting a behavior similar to the associahedra, are the freehedra [17,
49, 50], the ν-associahedra [12, 13], the grid-associahedra [28], Stokes polytopes [3, 16], Grassmann-
associahedra [51] or graph associahedra [2]. The lattices arising from freehedra are called Hochschild
lattices, and I have studied enumerative and structural aspects of them in [36]. In the following
months, I plan to investigate lattices of shuffles and lattices of synchronized Tamari intervals which
arise in an analogous fashion.

Another family of lattices arising as quotients of the weak order appear in the context of parabolic
quotients of Coxeter groups. I am very active in the exploration of this area [10, 20, 26, 34, 37, 41], and
pursuing these constructions is one of my main research objectives in the near future.

CONNECTIONS AMONG THESE POSETS

N. Reading explained in [45] that the noncrossing partition lattice arises via a certain geometrically
defined reordering of the Tamari lattice. This construction can be abstracted in purely lattice-theoretic
terms. We consider a finite lattice P = (P,≤) together with an edge labeling λ, and for any lattice
element p ∈ P we define its nucleus by

p↓
def
= p ∧

∧
p′lp

p′.

The core of p is the interval [p↓, p] and the core label set associated with p is the set Ψ(p) of labels
appearing in the core of p. If λ has the property that the assignment p 7→ Ψ(p) is injective, then

we may define the core label order on P by CLO(P) def
= (P,≤clo), where p ≤clo q if and only if

Ψ(p) ⊆ Ψ(q). In particular, when P is a semidistributive lattice, there exists a natural edge labeling
which allows for a definition of a core label order. In many cases, when P is a combinatorially defined
lattice, the core label order has remarkable combinatorial properties, see for instance [36, 37, 45].

The definition of the nucleus was independently discovered in [18] in the context of dynamical
systems, and has its origins in Reading’s geometric construction of shard intersections [45]. I have
studied the core label order for congruence-uniform and meet-distributive lattices [33, 35]. Figure 1
shows the core label order of Tam(3) and how it realizes Nonc(3).

In recent work with C. Ceballos [11], we have given an elementary explanation of a relationship
between two bivariate polynomials, the F- and the H-triangle, arising on ν-associahedra. Originally,
such polynomials were first considered by F. Chapoton in the context of cluster complexes, root posets
and noncrossing partition lattices [14, 15]. The corresponding relation, which is some sort of combina-
torial reciprocity, was proven by M. Thiel by means of differential equations and essentially generalizes
the well-known relation between the f - and the h-polynomial of a polytopal complex [53].

Our proof is completely combinatorial and has the advantage that it explains this relation. In
essence, the polynomials in question depend on a marking of the edges of the ν-associahedron and
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Figure 1. A labeled Tamari lattice, the corresponding core label order, and a non-
crossing partition lattice.

constitute a refined face enumeration in two different ways. This construction extends straightfor-
wardly to arbitrary edge labelings of finite posets, and was for instance applied to the Hochschild
lattices [36]. It is a challenging task to exhibit natural edge labelings for other posets arising from
polytopes which have a similar combinatorial impact. The underlying combinatorial reciprocity gen-
eralizes the famous Dehn–Sommerville relations.

For a northeast path ν, the ν-Tamari lattice Tam(ν) is a semidistributive lattice arising from an ori-
entation of the ν-associahedron. Its core label order is a generalization of the noncrossing partition
lattice, which arises when ν is a staircase path. Once again, motivated by a construction of Chapo-
ton’s, we may consider a bivariate variant of the characteristic polynomial of CLO

(
Tam(ν)

)
. For

some paths ν, this polynomial can be obtained from the corresponding F- and H-triangles. I am
currently investigating this connection which is conjecturally closely related to the pureness of the
ν-associahedra. This adds a geometric flavor to the core label construction, and may impact applica-
tions of ν-associahedra, for instance in the context of diagonal harmonics [42].
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binatoire 81 (2020), Research paper B81d, 23 pages.
[40] Henri Mühle and Vivien Ripoll, Connectivity Properties of Factorization Posets in Generated Groups, Order 37 (2020), 115–149.
[41] Henri Mühle and Nathan Williams, Tamari Lattices for Parabolic Quotients of the Symmetric Group, The Electronic Journal of

Combinatorics 26 (2019), Research paper P4.34, 28 pages.
[42] Cesar Ceballos Nantel Bergeron and Vincent Pilaud, Hopf Dreams and Diagonal Harmonics, arXiv:1807.03044 (2019).
[43] Nathan Reading, Cambrian Lattices, Advances in Mathematics 205 (2006), 313–353.
[44] Nathan Reading, Sortable Elements and Cambrian Lattices, Algebra Universalis 56 (2007), 411–437.
[45] Nathan Reading, Noncrossing Partitions and the Shard Intersection Order, Journal of Algebraic Combinatorics 33 (2011), 483–

530.

arXiv:2007.00048
http://homepage.rub.de/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf
http://homepage.rub.de/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf
arXiv:1910.13244


[46] Nathan Reading and David E. Speyer, Sortable Elements in Infinite Coxeter Groups, Transactions of the American Mathe-
matical Society 363 (2011), 699–761.

[47] Victor Reiner, Non-Crossing Partitions for Classical Reflection Groups, Discrete Mathematics 177 (1997), 195–222.
[48] Victor Reiner, Vivien Ripoll, and Christian Stump, On Non-Conjugate Coxeter Elements in Well-Generated Reflection Groups,

Mathematische Zeitschrift 285 (2017), 1041–1062.
[49] Manuel Rivera and Samson Saneblidze, A Combinatorial Model for the Free Loop Fibration, Bulletin of the London Mathe-

matical Society 50 (2018), 1085–1101.
[50] Samson Saneblidze, The bitwisted Cartesian Model for the Free Loop Fibration, Topology and its Applications 156 (2009), 897–

910.
[51] Francisco Santos, Christian Stump, and Volkmar Welker, Noncrossing Sets and a Graßmann Associahedron, Forum of Mathe-

matics, Sigma 5 (2017).
[52] Rodica Simion and Daniel Ullman, On the Structure of the Lattice of Noncrossing Partitions, Discrete Mathematics 98 (1991),

193–206.
[53] Marko Thiel, On the H-Triangle of Generalised Nonnesting Partitions, European Journal of Combinatorics 39 (2014), 244–255.
[54] Patrick Wegener, On the Hurwitz Action in Affine Coxeter Groups, Journal of Pure and Applied Algebra 224 (2020), Article

106308.


	Background
	Posets from Generated Groups
	Posets from Polytopes
	Connections among these Posets
	References

