
NONCROSSING SET PARTITIONS

HENRI MÜHLE

We assume the reader to be familiar with partially ordered sets (or posets for short) and lattices.
The notions used here are fairly standard. We recommend [7] for more background on posets
and lattices, and hopefully as a source to answer all questions regarding notation or concepts that
appear unclear. For a motivation and some historical background on the study of noncrossing
partitions, we recommend Section 4.1 in [2].

Some exercises are scattered throughout the text, but can be recognized by the red box.

1. SET PARTITIONS

1.1. Definition and Representation. In this section we start with a basic combinatorial treatment
of all set partitions. The results presented here are well known, and should probably be considered
folklore. The interested reader may consult [19, Chapter 1] for an exposition on the history of set
partitions.

For simplicity, we use the abbreviation [n] = {1, 2, . . . , n} for any nonnegative integer n.

DEFINITION 1.1

Let M be a finite set. A SET PARTITION of M is a family x = {B1, B2, . . . , Bm} of non-empty
subsets of M with the property that M = B1 ∪ B2 ∪ · · · ∪ Bm and Bi ∩ Bj = ∅ for i, j ∈ [m]
with i 6= j. The members of x are its BLOCKS, and we denote by bl(x) = m the number of
blocks of x.

Since M is a finite set we can without loss of generality assume that M = [n] for some nonneg-
ative integer n. In order to avoid writing multiple set parentheses we use the following reduced
notation: we order the blocks according to the value of their smallest element, and we list them
one after another, separated by a vertical line. The elements in each block are also ordered linearly.
Let us denote the family of all set partitions of an n-element set by Πn. If the ground set matters,
we also write ΠM.

Now let x ∈ Πn, and assume that there is a block B ∈ x. If there are integers i, j ∈ [n] with
i, j ∈ B, then we write i ∼x j as a shorthand.

There are several ways to graphically represent set partitions, and we want to emphasize two of
them.

DEFINITION 1.2
Let n ≥ 0 and consider x ∈ Πn. The ARC DIAGRAM of x is constructed as follows: write the
numbers 1, 2, . . . , n from left to right on a horizontal line. Two integers i and j are connected
by an arc (rising above this line) if and only if i ∼x j and there is no k ∈ [n] with i < k < j
and i ∼x k.
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(B) A circle diagram.

FIGURE 1. Graphical representations of the set partition from Example 1.4.

In other words, we connect consecutive entries in a block by an arc. The connected components
of the resulting graph are precisely the blocks of x. Let us write A (x) for the arc diagram associated
with x.

DEFINITION 1.3
Let n ≥ 0 and consider x ∈ Πn. The CIRCLE DIAGRAM of x is constructed as follows: write
the numbers 1, 2, . . . , n in clockwise order on a circle. For each B ∈ x, draw the convex hull
of B on this circle.

Let us write C (x) for the circle diagram of x. Observe that if we remove in C (x) the circle and
the edge connecting the smallest and the largest element of each block, then we obtain A (x) by
straightening the vertices.

EXAMPLE 1.4

Consider x =
{
{1, 6, 7}, {2, 8, 14}, {3, 4, 5}, {9, 10, 12, 13}, {11}, {15}, {16}

}
∈ Π16. In re-

duced notation this would be x = 1 6 7 | 2 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16. The arc
diagram and the circle diagram of x are shown in Figure 1.

EXERCISE 1

Let x ∈ Πn. Show that∼x is an equivalence relation on [n]. In other words, the set partitions
of [n] are in bijection with equivalence relations on [n].

1.2. Enumeration. Let us now enumerate the set partitions of an n-element set.
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PROPOSITION 1.5

For n ≥ 0 the cardinality of Πn is given by the nth Bell number, which is recursively defined
by

B(n) =
n−1

∑
k=0

(
n− 1

k

)
B(k).

The initial condition is B(0) = 1.

Proof. Consider a set partition x ∈ Πn and let B denote its (unique) block containing 1. Let
∣∣B∣∣ = k

for k ∈ [n]. Then x \ B is a set partition of the (n− k)-element set [n] \ B. By induction, there are
B(n− k) possible set partitions having B as a block. Since 1 ∈ B, there are k− 1 vacant positions in
B that could be filled with any of the n− 1 elements, hence there are (n−1

k−1) ways to choose a block
of size k containing 1. By summing over k we obtain the desired recurrence

B(n) =
n

∑
k=1

(
n− 1
k− 1

)
B(n− k)

=
n−1

∑
k=0

(
n− 1

n− 1− k

)
B(k)

=
n−1

∑
k=0

(
n− 1

k

)
B(k).

The last equality follows from the symmetry (n
k) = ( n

n−k) of the binomial coefficients.
We finish the proof by observing that there is a unique partition of the empty set. �

As it turns out the strategy of removing the block containg the number 1 from a set partition
in order to set up a recursion will come in handy several times. We can in fact enumerate the set
partitions of [n] in a more refined way.

PROPOSITION 1.6

For n ≥ 0 and k ∈ [n] the number of set partitions of [n] with exactly k blocks is given by
the kth Stirling number of the second kind, which is recursively defined by{

n
k

}
= k

{
n− 1

k

}
+

{
n− 1
k− 1

}
.

The initial conditions are {0
0} = 1 and {n

0} = {
0
n} = 0 for n > 0.

Proof. There are two possibilities for a set partition of [n] with k blocks: it either contains {n} as a
block, or it does not.

There are {n−1
k−1} possibilities for the first case, since any set partition of [n− 1] into k− 1 blocks

can be extended to a set partition of [n] into k blocks by adding the singleton block {n}.
In the second case, we can briefly forget about n and obtain a set partition of [n− 1] into k blocks.

By induction, there are {n−1
k } of these. There are k ways to reinsert n into one of the present blocks,

which yields the result. �
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COROLLARY 1.7
For n ≥ 0 we have

B(n) =
n

∑
k=0

{
n
k

}
.

The Stirling numbers of the second kind have the following explicit formula, which we will not
derive here: {

n
k

}
=

1
k!

k

∑
j=0

(−1)k−j
(

k
j

)
jn.

1.3. Lattice Property. Given a set partition of [n] we may wonder how fine it is. Clearly the finest
way to partition [n] is by putting each element of [n] in a single block. We call this the DISCRETE
PARTITION, and denote it by 0. On the contrary, the coarsest partition of [n] only has a single block,
namely [n] itself. We call this the FULL PARTITION, and denote it by 1. But where in this spectrum
does an arbitrary set partition of [n] sit?

DEFINITION 1.8

Let n ≥ 0 and let x, x′ ∈ Πn have x = {B1, B2, . . . , Bk} and x′ = {B′1, B′2, . . . , B′k′}. The set
partition x REFINES x′ if for each i ∈ [k] there exists some i′ ∈ [k′] such that Bi ⊆ B′i′ . We also
say that x′ IS REFINED BY x, and we write x ≤dref x′.

The relation defined in Definition 1.8 is the DUAL REFINEMENT ORDER of Πn. The attribute
“dual” relates to the fact that the finest set partition of [n] is minimal with respect to this order,
meaning that we coarsen set partitions when going up in that order. Figure 2 shows the poset
(Π4,≤dref).

EXERCISE 2
Show that the relation ≤dref is a partial order on Πn, in which the trivial partition 0 is the
least element and the full partition 1 is the greatest.
Show further that the function rk(x) = n − bl(x) is a rank function of (Πn,≤dref), i.e. it
satisfies rk(0) = 0 and rk(y) = rk(x) + 1 for every cover relation x ldref y.

PROPOSITION 1.9

For n ≥ 0 the poset (Πn,≤dref) is in fact a lattice.

Proof. This follows immediately from the fact that Πn is a finite poset with a greatest element, and
for any two set partitions x, x′ ∈ Πn the intersection

(1) x ∧Π x′ = {B ∩ B′ | B ∈ x, B′ ∈ x′, and B ∩ B′ 6= ∅}
is the greatest set partition that at the same time refines both x and x′.

On the other hand, the supremum of x and x′ is given by

(2) x ∨Π x′ =
{

C | C is a connected component of A (x) ∪A (x′)
}

.

�



NONCROSSING SET PARTITIONS 5

1|2|3|4

1|23|4 1|2|34 13|2|4 1|24|3 12|3|4 14|2|3

1|234 123|4 12|34 13|24 14|23 134|2 124|3

1234

FIGURE 2. The poset (Π4,≤dref).

EXAMPLE 1.10

Let x = 1 | 2 | 3 5 7 8 | 4 | 6, and x′ = 1 3 | 2 4 | 5 6 8 | 7 be two set partitions of [8]. Their
meet is x ∧Π x′ = 1 | 2 | 3 | 4 | 5 8 | 6 | 7. The graph Px,x′ is

1 2 3 4 5 6 7 8

where the green edges make up the arc diagram of x, and the blue edges make up the arc
diagram of x′. We see that x ∨Π x′ = 1 3 5 6 7 8 | 2 4.

EXERCISE 3
Work out the details of the proof of Proposition 1.9.

1.4. Möbius Function. In this section we want to compute the values of the Möbius function on
the poset (Πn,≤dref), and we approach this problem in a very combinatorial way. In fact, we use
the following result of R. Stanley that relates the value of the Möbius function in a poset to the
number of some particular maximal chains. Recall that an EDGE-LABELING is simply a function
from the cover relations of a poset to the integers. This result was first stated for supersolvable lat-
tices in [30, Theorem 1.2], and later for “admissible” lattices in [31, Corollary 3.3], but it essentially
works already for arbitrary graded posets.

PROPOSITION 1.11: [6, Theorem 2.7]

Let P be a finite graded poset with least element 0̂ and greatest element 1̂. Assume that
there exists an edge-labeling λ of P with the property that in each interval exists a unique
rising maximal chain, and let f (P ; λ) denote the number of falling maximal chains of P



6 HENRI MÜHLE

with respect to λ. Then we have

µP (0̂, 1̂) = (−1)rk(P) f (P ; λ).

Proof. In fact we prove a much stronger statement. Let n = rk(P) and let S ⊆ [n− 1]. Define

PS = {x ∈ P | rk(x) ∈ S} ∪ {0̂, 1̂},

and let PS = (PS,≤). Let M denote the set of all maximal chains of P , and let MS denote the set
of all maximal chains of PS. Now let C = {x0, x1, . . . , xn} ∈M , and define

Des(C) =
{

i | λ(xi−1, xi) > λ(xi, xi+1)
}
⊆ [n− 1].

The existence of a unique rising maximal chain Cx,y in each interval [x, y] gives rise to a map from
θ : MS → M . Let S = {i1, i2, . . . , is}, and let C = {xi1 , xi2 , . . . , xis} ∈ MS with rk(xij) = ij. Define
θ(C) = C0̂,xi1

] Cxi1
,xi2
] · · · ] Cxis ,1̂ ∈ M . By definition we have Des

(
θ(C)

)
⊆ S. Moreover, since

C = θ(C) ∩ PS we conclude that θ is injective. If C ∈M satisfies Des(C) ⊆ S, then θ(C ∩ PS) = C,
which implies that θ is a bijection from MS to {C ∈M | Des(C) ⊆ S}.

If f (PS; λ) denotes the number of maximal chains in M with descent set equal to S, then the
reasoning in the previous paragraph implies∣∣MS

∣∣ = ∑
T⊆S

f (PT ; λ).

Recall that Philip Hall’s Theorem, see for instance [32, Proposition 3.8.5], implies

µP (0̂, 1̂) = ∑
S⊆[n−1]

(−1)|S|+1∣∣MS
∣∣.

We therefore conclude using the Principle of Inclusion-Exclusion that

f (PS; λ) = ∑
T⊆S

(−1)|S\T|
∣∣MT

∣∣ = (−1)|S|+1 ∑
T⊆S

(−1)|T|+1∣∣MT
∣∣ = (−1)|S|+1µPS(0̂, 1̂).

If we plug in S = [n− 1], we obtain the claimed result. �

To simplify the task of computing the Möbius function of (Πn,≤dref), we recall that the Möbius
function is multiplicative, and we observe that intervals in (Πn,≤dref) admit a nice decomposition
as direct products of smaller partition lattices. For X ⊆ [n] and x ∈ Πn, define the RESTRICTION of
x to X by

x|X = {B ∩ X | B ∈ x}.

LEMMA 1.12

Let n ≥ 0 and let x, y ∈ Πn with x ≤dref y. If bl(y) = l and the ith block of y is composed of
ki blocks of x for i ∈ [l], then

[x, y]Π ∼=
l

∏
i=1

(Πki
,≤dref).
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Proof. Since x ≤dref y every block of x is contained in some block of y. This means in particular
that every block of y is the disjoint union of some blocks of x. Let us write x = {B1, B2, . . . , Bk} and
y = {C1, C2, . . . , Cl}. Assume that Ci = Bi1 ] Bi2 ] · · · ] Biki

. Since the blocks of y are mutually

disjoint, it suffices to focus on
[
x|Ci

, y|Ci

]
Π, where we have y|Ci

= Ci, since Ci ∈ y. This interval,
however, is canonically isomorphic to (Πki

,≤dref), via the map Bij 7→ j. �

Let µΠn denote the Möbius function of the lattice (Πn,≤dref). We abbreviate µ(Πn) = µΠn(0, 1).

PROPOSITION 1.13
For n ≥ 1 we have

µ(Πn) = (−1)n−1(n− 1)!.

COROLLARY 1.14

Let n ≥ 1 and let x, y ∈ Πn with x ≤dref y. If bl(y) = k and the ith block of y is composed of
ki blocks of x for i ∈ [l], then

µΠn

(
x, y
)
= (−1)rk(y)−rk(x)(k1 − 1)!(k2 − 1)! · · · (kl − 1)!.

Proof. This follows immediately from Lemma 1.12 and Proposition 1.13. Observe that bl(x) =
l1 + l2 + · · ·+ lk and bl(y) = k. �

It remains to prove Proposition 1.13, and we prove this result with the help of a certain edge-
labeling of (Πn,≤dref). By construction, if x ldref y, then there exist two blocks B, B′ ∈ x such that
y =

(
x \ {B, B′}

)
∪ (B ∪ B′). Let us label this cover relation by

λ(x, y) = max{min B, min B′}.(3)

This labeling was first considered by I. Gessel, see [6, Example 2.9]. The following results are due
to him.

A MAXIMAL CHAIN of (Πn,≤dref) is a sequence C = (x0, x1, . . . , xn−2) of n − 1 set partitions
with the property that x0 = 0, xn−2 = 1, and xi−1 ldref xi for i ∈ [n− 2]. We say that C is RISING if
its label sequence λ(C) =

(
λ(x0, x1), λ(x1, x2), . . . , λ(xn−3, xn−2)

)
is strictly increasing. Conversely,

we say that C is FALLING if λ(C) is weakly decreasing.

EXERCISE 4

Let x, y ∈ Πn with x ≤dref y. Define Mx = {min B | B ∈ x} and My = {min B | B ∈ y}.
Show that for every maximal chain in [x, y]Π its label sequence is a permutation of Mx \My.

The next two statements should be understood with respect to the labeling in (3).

LEMMA 1.15

For n ≥ 1 there exists a unique rising maximal chain in every interval of (Πn,≤dref).

Proof. The statement is clearly true for n ≤ 2. Now let n > 2. Let x, y ∈ Πn with x ≤dref y. Let X be
the set of labels of [x, y]Π as defined in Exercise 4. A chain is rising in [x, y]Π if and only if its label
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sequence is the identity permutation of X. Let c = min X. We are done if we can show that there is
a unique upper cover of x in [x, y]Π, say x′, with λ(x, x′) = c. By construction x′ exists.

Say that there is another upper cover x′′ of x in [x, y]Π with λ(x, x′′) = c. This means that there
is a block B ∈ x with c ∈ B, and two other blocks B′, B′′ ∈ x such that max{min B, min B′} =
c = max{min B, min B′′}. It follows further that there is some C ∈ y with B ∪ B′ ∪ B′′ ⊆ C. Then,
however, we have d = max{min B′, min B′′} < c and d ∈ X, which contradicts the minimality of c.

By induction, there is a unique rising maximal chain in [x′, y]Π which can be extended to a
maximal chain of [x, y]Π, and we are done. �

EXAMPLE 1.16
Let

x = 1 | 2 14 | 3 4 | 5 | 6 7 | 8 | 9 13 | 10 12 | 11 | 15 | 16,

y = 1 6 7 | 2 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16.

It is quickly verified that x ≤dref y, and that Mx = {1, 2, 3, 5, 6, 8, 9, 10, 11, 15, 16} and My =
{1, 2, 3, 9, 11, 15, 16}. Therefore

Mx \My = {5, 6, 8, 10}.
The unique rising maximal chain in [x, y]Π is {x0, x1, x2, x3, x4} with

x0 = 1 | 2 14 | 3 4 | 5 | 6 7 | 8 | 9 13 | 10 12 | 11 | 15 | 16,

x1 = 1 | 2 14 | 3 4 5 | 6 7 | 8 | 9 13 | 10 12 | 11 | 15 | 16,

x2 = 1 6 7 | 2 14 | 3 4 5 | 8 | 9 13 | 10 12 | 11 | 15 | 16,

x3 = 1 6 7 | 2 8 14 | 3 4 5 | 9 13 | 10 12 | 11 | 15 | 16,

x4 = 1 6 7 | 2 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16.

Let ai,j denote the set partition whose only non-singleton block is {i, j}. The set {ai,j | 1 ≤ i <
j ≤ n} is the set of ATOMS of (Πn,≤dref), i.e. all elements of rank 1.

LEMMA 1.17

For n ≥ 1 there exist (n− 1)! falling maximal chains in (Πn,≤dref).

Proof. The statement is clearly true for n ≤ 2. Now let n > 2. In view of Exercise 4 a maximal chain
can only be falling if its first cover relation is labeled by n. This is by construction only satisfied
for maximal chains containing an atom ai,n for i ∈ [n− 1]. The interval [ai,n, 1]Π is isomorphic to
(Πn−1,≤dref) by virtue of Lemma 1.12. As in the proof of Lemma 1.15, any falling chain of [ai,n, 1]Π
can be extended to a falling chain of (Πn,≤dref), so that the claim follows by induction. �

Proof of Proposition 1.13. Lemma 1.15 implies that the edge-labeling λ from (3) has the properties
required by Proposition 1.11, and Lemma 1.17 implies that there are (n− 1)! falling maximal chains
in the whole partition lattice (Πn,≤dref). This concludes the proof. �

We conclude this section with the enumeration of all maximal chains in (Πn,≤dref).
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1|2|3|4

1|23|4 1|2|34 13|2|4 1|24|3 12|3|4 14|2|3

1|234 123|4 12|34 13|24 14|23 134|2 124|3

1234
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FIGURE 3. The poset (Π4,≤dref) with the edge-labeling λ. The unique rising max-
imal chain is marked in green, and the five falling maximal chains are marked in
blue.

LEMMA 1.18

For n ≥ 1 the number of maximal chains in (Πn,≤dref) is n!(n−1)!
2n−1 .

Proof. We proceed by induction on n. Observe that each maximal chain needs to pass through
exactly one partition of the form ai,j. It is quickly verified that there are (n

2) atoms, and for any
atom x, the interval [x, 1]Π is isomorphic to (Πn−1,≤dref) by virtue of Lemma 1.12. Let cn denote
the number of maximal chains of (Πn,≤dref). It is quickly verified that c1 = 1, and the previous
reasoning yields

cn =

(
n
2

)
cn−1 =

(
n
2

)
(n− 1)!(n− 2)!

2n−2 =
n!(n− 1)!

2n−1 .

�

2. NONCROSSING SET PARTITIONS

2.1. Definition. In this section we want to restrict our attention to a particular subset of all set
partitions, namely those that are noncrossing. Most (if not all) of the results stated in this section
were obtained first in the seminal paper by G. Kreweras [16].

DEFINITION 2.1
For n ≥ 0 a set partition x ∈ Πn is NONCROSSING if it does not contain four elements
i < j < k < l such that i ∼x k and j ∼x l, but i 6∼x j.

The attribute “noncrossing” comes from the fact that we can graphically represent such a set
partition without crossings in the respective diagram. In a noncrossing set partition, no two arcs
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in its arc diagram cross, and equivalently, no two polygons in its circle diagram intersect. Let us
denote the family of all noncrossing set partitions of [n] by NCn.

An easy consequence of Definition 2.1 is the fact that for n ≤ 3 every set partition of [n] is
noncrossing. The smallest crossing set partition is 1 3 | 2 4, which is also the only crossing set
partition of [4].

2.2. Enumeration. Analogously to Section 1.2, we want to enumerate noncrossing set partitions
in two ways. First we count all of them.

PROPOSITION 2.2

For n ≥ 0 the cardinality of NCn is given by the nth Catalan number, which is recursively
defined by

Cat(n) =
n−1

∑
k=0

Cat(k)Cat(n− k− 1).(4)

The initial condition is Cat(0) = 1.

Proof. Let x ∈ NCn. If n = 0, then there is a unique noncrossing set partition, namely the empty
one. Otherwise there are two cases: either {1} is a singleton block, or 1 is connected by an arc to
some k ∈ {2, 3, . . . , n}.

In the first case, we can remove the block {1} and obtain a noncrossing set partition on an
(n− 1)-element set, of which by induction there exist Cat(n− 1)-many. In the second case, the arc
between 1 and k breaks x into two pieces, one piece involving only the integers {2, 3, . . . , k − 1}
and another piece involving only the integers {k, k + 1, . . . , n}. (Note that the block containing 1
might have more elements than just 1 and k. However, any other element in this block must be
larger than k.)

Since x is noncrossing these pieces are themselves (mutually disjoint) noncrossing set partitions
on a (k− 2)- and an (n− k + 1)-element set, respectively. By induction the number of possibilities
of these pieces is Cat(k− 2)Cat(n− k + 1). We therefore obtain

Cat(n) = Cat(n− 1) +
n

∑
k=2

Cat(k− 2)Cat(n− k + 1)

= Cat(n− 1) +
n−2

∑
k=0

Cat(k)Cat(n− k− 1)

=
n−1

∑
k=0

Cat(k)Cat(n− k− 1),

since Cat(0) = 1. �

We will show bijectively in Section 2.6 that the Catalan numbers admit the following explicit
form:

Cat(n) =
1

n + 1

(
2n
n

)
.

Let us now count the noncrossing set partitions that have a fixed number of blocks.
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PROPOSITION 2.3

For n ≥ 0 and k ∈ [n] the number of noncrossing set partitions of [n] with exactly k blocks
is given by the kth Narayana number, which is recursively defined by

Nar(n, k) = Nar(n− 1, k− 1) +
n−2

∑
i=0

k−1

∑
j=0

Nar(i, j)Nar(n− i− 1, k− j).

The initial conditions are Nar(0, 0) = 1 and Nar(n, 0) = 0 for n > 0. Moreover, we have
Nar(n, k) = 0 for k > n.

Proof. Let x ∈ NCn with bl(x) = k. If n = 0, then the empty partition is the only noncrossing set
partition, which consists of zero blocks. For n > 0, we quickly observe that every noncrossing set
partition has at least one and at most n blocks. We now proceed analogously to Proposition 2.2,
and observe that there are two cases: either {1} is a singleton block, or 1 is connected by an arc to
some i ∈ {2, 3, . . . , n}.

In the first case, we can remove the block {1} and obtain a noncrossing set partition on an
(n− 1)-element set with k− 1 blocks, of which by induction exist Nar(n− 1, k− 1)-many. In the
second case, the arc between 1 and i breaks x into two pieces, one piece involving only the integers
{2, 3, . . . , i− 1} and another piece involving only the integers {i, i + 1, . . . , n}.

Since x is noncrossing these pieces are themselves (mutually disjoint) noncrossing set partitions
on a i − 2- and an n − i + 1-element set, respectively. This first piece has j blocks for some j ∈
{0, 1, . . . , k− 1}. (Observe that j = 0 is only relevant in the case i = 2.) Since x has k blocks in total,
it follows that the second piece needs to have exactly k− j blocks. We therefore obtain

Nar(n, k) = Nar(n− 1, k− 1) +
n

∑
i=2

k−1

∑
j=0

Nar(i− 2, j)Nar(n− i + 1, k− j)

= Nar(n− 1, k− 1) +
n−2

∑
i=0

k−1

∑
j=0

Nar(i, j)Nar(n− i− 1, k− j).

�

EXERCISE 5

Verify Proposition 2.3 for n = 5 and k = 3. Draw the 20 noncrossing set partitions of [5]
with three blocks.

COROLLARY 2.4
For n ≥ 0 we have

Cat(n) =
n

∑
k=0

Nar(n, k).

We will prove bijectively in Section 2.6 that the Narayana numbers admit the following explicit
form:

Nar(n, k) =
1
n

(
n
k

)(
n

k− 1

)
.



12 HENRI MÜHLE

2.3. Lattice Property. Since noncrossing set partitions are in particular set partitions, we can con-
sider them under dual refinement order. More precisely, we may wonder what the subposet of
(Πn,≤dref) induced by NCn looks like. Figure 4 shows this poset for n = 4. We will see that it in
fact inherits many nice properties. To that end let us define a map on Πn that sends a set partition
to the smallest noncrossing set partition that it refines.

DEFINITION 2.5
Let x ∈ Πn. Consider the graph whose vertices are the blocks of x, and where there exists
an edge between two blocks if and only if they are crossing. Let x be the set partition whose
blocks are given by the union over the elements of the connected components of this graph.

LEMMA 2.6
For x ∈ Πn we have x ∈ NCn.

Proof. Let C, C′ ∈ x with i, k ∈ C and j, l ∈ C′ for some i < j < k < l. Observe that neither C nor
C′ can be blocks of x, because they would have been joined in the process of creating x. It follows
that either C or C′ consists of a union of blocks of x.

We present the case where C ∈ x and C′ = B′1 ] B′2 ] · · · ] B′s, where B′r ∈ x for r ∈ [s], and s > 1.
(The other cases are analogous.) Without loss of generality we may assume that j ∈ B′1 and l ∈ B′2.
Since B′1 and B′2 are crossing in x, we have a, c ∈ B′1 and b, d ∈ B′2 with a < b < c < d. In particular
we may assume that a = j and d = l. There are three cases: (i) b < c < k, (ii) b < k < c, and (iii)
k < b < c, but in each case we find that B′1 or B′2 crosses with C. �

EXAMPLE 2.7

Consider the set partition x = 1 6 7 | 2 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16 from
Example 1.4 again. The associated graph is

{1, 6, 7}

{2, 8, 14}

{3, 4, 5}

{9, 10, 12, 13}

{11}

{16}

{15}

As a consequence, we obtain x = 1 2 6 7 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16.

EXERCISE 6
Show that the map · : Πn → Πn is a closure operator with respect to ≤dref, i.e. it satisfies

(i) x ≤dref x, (EXTENSITIVITY)
(ii) x ≤dref y implies x ≤dref y, (MONOTONICITY)

(iii) x = x. (IDEMPOTENCE)

PROPOSITION 2.8

For n ≥ 0 the poset (NCn,≤dref) is in fact a lattice.
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1|2|3|4

1|23|4 1|2|34 13|2|4 1|24|3 12|3|4 14|2|3

1|234 123|4 12|34 14|23 134|2 124|3

1234

FIGURE 4. The poset (NC4,≤dref).

Proof. The proof works along the same lines as the proof of Proposition 1.9. The key observation is
that the intersection of two noncrossing set partitions defined in (1) is again noncrossing. �

Proposition 2.8 suggests that x ∧Π y = x ∧NC y. In light of Exercise 6 it follows that

x ∨NC y = x ∨Π y.

Consider for instance x = 1 3 | 2 | 4 and y = 1 | 2 4 | 3. We have x ∨Π y = 1 3 | 2 4 and
x ∨NC y = 1 2 3 4 = 1 3 | 2 4.

COROLLARY 2.9

For n ≥ 0 the lattice (NCn,≤dref) is a meet-sublattice of (Πn,≤dref).

2.4. Self-Duality. In contrast to (Πn,≤dref) the noncrossing partition lattice has a striking prop-
erty: it is (locally) self-dual. This means that every interval of (NCn,≤dref) is isomorphic to its dual.
One way to observe the duality works by exhibiting a particular anti-automomorphism. In fact,
we find a whole family of (anti)-automorphisms.

For X ⊆ Z and a ∈ Z \ {0} define the DILATION of X by aX = {ax | x ∈ X}, and define the
TRANSLATION of X by X + a = {x + a | x ∈ X}. It is straightforward to generalize these definitions
to families of sets, and therefore to set partitions.

DEFINITION 2.10
Let x ∈ NCn. The KREWERAS COMPLEMENT of x is the coarsest y ∈ NCn such that the union
2x− 1∪ 2y is a noncrossing set partition of [2n]. We usually write K(x) instead of y.
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EXAMPLE 2.11

Let x = 1 2 6 7 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16 ∈ NC16. Its circle diagram is
shown in Figure 5a. Figure 5c shows the circle diagram of K(x), and Figure 5b shows the
superposition of both diagrams, i.e. 2x− 1∪ 2K(x).

LEMMA 2.12

For x ∈ NCn we have x ∧NC K(x) = 0 and x ∨NC K(x) = 1. Moreover, for x, y ∈ NCn we
have x ≤dref y if and only if K(y) ≤dref K(x).

Proof. The claim on join and meet is straightforward from the construction. So is the claim that the
map K reverses order. Intuitively this is clear, because the smaller x is, the more space is there for
the parts of K(x). �

It is also straightforward from the construction that for each block {i1, i2, . . . , is} ∈ x the block
{i1 − 1, i2 − 1, . . . , is − 1} belongs to K2(x). (Addition is considered modulo n.) In other words,
the circle diagram of K2(x) is a counterclockwise rotation of the circle diagram of x by an angle of
2π/n. As a consequence the map K2n is the identity, which implies that each of the maps Ki for
i ∈ [2n] is a bijection.

PROPOSITION 2.13

For n ≥ 0 the lattice (NCn,≤dref) is self-dual.

Proof. This follows from the fact that K is a order-reversing bijection. �

We can use the Kreweras complement to describe the structure of the intervals in (NCn,≤dref),
and obtain a result analogous to Lemma 1.12. For a finite set M, let KM denote the Kreweras
complement in (NCM,≤dref)

LEMMA 2.14
Let n ≥ 0 and let x, y ∈ NCn with x ≤dref y. We have

[x, y]NC ∼= ∏
B∈y

∏
X∈KB(x|B)

(
NCX ,≤dref

)
.

Proof. It follows analogously to Lemma 1.12 that

[x, y]NC ∼= ∏
B∈y

[
x|B, 1|B

]
NC.

Since the Kreweras complement is an anti-automorphism, we obtain

[x|B, 1|B
]

NC
∼=
[
0|B, KB(x|B)

]
NC.

We can once more decompose this as follows[
0|B, KB(x|B)

]
NC
∼= ∏

X∈KB(x|B)

[
0|X , 1|X

]
NC
∼= ∏

X∈KB(x|B)
(NCX ,≤dref).

�
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(A) A noncrossing set partition.
1

3

5

7

9

11

13

15
17
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23
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29

31 2
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(B) The superposition of the diagrams in Figures 5a and 5c.
1

2

3

4

5

6

7
89

10

11

12

13

14

15
16

(C) The Kreweras complement of the noncrossing set partition in Figure 5a.
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2.5. Möbius Function. It is immediate that the labeling of the set partition lattice defined in (3)
restricts to a labeling of (NCn,≤dref). But it does more than that: it also inherits the property that
there is a unique rising maximal chain in each interval.

LEMMA 2.15

For n ≥ 1 there exists a unique rising maximal chain in every interval of (NCn,≤dref).

Proof. Let x, y ∈ NCn, and let M be a maximal chain in [x, y]Π that does not belong to [x, y]NC.
There then exists a maximal consecutive sequence {z1, z2, . . . , zs} ⊆ M of crossing set partitions.
In other words, zi /∈ NCn for i ∈ [s] and zi ldref zi+1 for i ∈ [s− 1] and there are x′, y′ ∈ M ∩ NCn
with x′ ldref z1 and zs ldref y′.

We can thus find two crossing blocks B, B′ ∈ z1, and one of the blocks is also present in x′.
Without loss of generality we have i, k ∈ B and j, l ∈ B′ with i < j < k < l, and we can assume that
i = min B and j = min B′. If B ∈ x′, then there must be two blocks C, C′ ∈ x′ with B′ = C ] C′ such
that j = min C and l = min C′ without loss of generality. If B′ ∈ x′, then there must be two blocks
C, C′ with B = C ] C′ such that i = min C and k = min C′ without loss of generality. In any case
we have λ(x′, z1) ≥ k.

Since y′ ∈ NCn there must be j ∈ [k] and two blocks D, D′ ∈ zj with B ⊆ D and B′ ⊆ D′ such
that zj+1 = zj \ {D, D′} ∪ (D ∪ D′). (If j = k, then we understand zj+1 = y′.) It follows that
min D ≤ i and min D′ ≤ j, which implies

λ(xj, xj+1) ≤ j < k ≤ λ(x, x1).

It follows that M is not rising in [x, y]Π.
As a consequence every rising chain in every interval of (Πn,≤dref) belongs to the correspond-

ing interval in (NCn,≤dref). Lemma 1.15 implies that every interval of (Πn,≤dref) has exactly one
rising maximal chain, which concludes the proof. �

LEMMA 2.16

For n ≥ 1 there exist Cat(n− 1) falling maximal chains in (NC,≤dref).

Proof. For a maximal chain in (NCn,≤dref) to be falling its last label needs to be 2, which can only
be obtained if it contains a noncrossing set partition consisting of two blocks B1 and B2 with 1 ∈ B1
and 2 ∈ B2. Since B1 and B2 are noncrossing we conclude that B1 = {1, k+ 1, k+ 2, . . . , n} and B2 =
{2, 3, . . . , k} for some k ∈ {2, 3, . . . , n}, and we write xk for the resulting set partition. Lemma 2.14
implies that [0, xk]NC ∼= (NCk−1,≤dref)× (NCn−k+1,≤dref).

Let fn denote the number of falling maximal chains in (NCn,≤dref). It is quickly checked by
induction that the number of falling maximal chains in (NCk−1,≤dref) × (NCn−k+1,≤dref) equals
fk−1 fn−k+1. (As in the proof of Proposition 1.13 we can relate the number of falling maximal chains
to the value of the Möbius function between least and greatest element, and since the Möbius
function on a direct product of posets equals the product of the Möbius functions on the factors,
the claim follows.)

We thus obtain by induction and (4) that

fn =
n

∑
k=2

fk−1 fn−k+1 =
n−2

∑
k=0

fk+1 fn−k−1 =
n−2

∑
k=0

Cat(k)Cat
(
(n− 1)− k− 1

)
= Cat(n− 1)
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1|2|3|4

1|23|4 1|2|34 13|2|4 1|24|3 12|3|4 14|2|3

1|234 123|4 12|34 14|23 134|2 124|3

1234
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3

2
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FIGURE 6. The lattice (NC4,≤dref) with the edge-labeling λ. The unique rising
maximal chain is marked in green, and the five falling maximal chains are marked
in blue.

as desired. �

We conclude this section with the computation of particular values of the Möbius function of
(NCn,≤dref). Let us abbreviate µ(NCn) = µNCn(0, 1).

PROPOSITION 2.17

For n ≥ 1 we have µ(NCn) = (−1)n−1 Cat(n− 1).

Proof. This follows from Lemmas 2.15 and 2.16 analogously to the proof of Proposition 1.13. �

COROLLARY 2.18
Let n ≥ 1 and let x, y ∈ NCn with x ≤dref y. Then

µNCn(x, y) = (−1)rk(x)−rk(y) ∏
B∈y

∏
X∈K|B(x|B)

Cat(|X| − 1).

Figure 6 shows the lattice (NC4,≤dref) together with the labeling λ from (3). The unique rising
maximal chain is highlighted in green, and the five falling maximal chains are highlighted in blue.

2.6. Chain Enumeration. Let us now count the number of chains in (NCn,≤dref) whose elements
have given ranks. This result (and its corollaries) are due to P. Edelman [10], and they are purely
combinatorial in nature.

A central result for this computation is the following Cycle Lemma. It was rediscovered several
times in varying degrees of generality; see [8] for a historical account.
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LEMMA 2.19: THE CYCLE LEMMA

Let k, m, n ∈ N with m ≥ kn. For any sequence of p1 p2 · · · pm+n of m boxes and n circles,
exactly m − kn out of the m + n cyclic permutations pj pj+1 · · · pm+n p1 p2 · · · pj−1 have the
property that in every prefix the number of boxes is more than k times the number of circles.

Proof. Let us call a sequence k-DOMINATING if it has the property that in every prefix the number
of boxes is more than k times the number of circles. Now arrange p1 p2 · · · pm+n on a cycle. If we
remove a sequence of k boxes followed by a circle from this cycle, then this process does not change
the number of k-dominating sequences. This is because no k-dominating sequence can start with
one of the removed figures, and removing this part from a sequence does not affect whether it is
k-dominating or not. Since m ≥ kn we can always find such a sequence. The reduced sequence has
m− k boxes and n− 1 circles, and we conclude that m− k ≥ k(n− 1). We can therefore repeat this
procedure until we are left with a sequence of m− kn boxes. The positions of these boxes in the
original sequence indicate the beginning of a k-dominating sequence. �

EXAMPLE 2.20
Let k = 2, m = 5, and n = 2. A sequence of five boxes and two circles is 2-dominating if
there are at least three boxes before the first circle, and at least five boxes before the second
circle. Consider the sequence . We can remove twice the sequence

, and after doing so we are left with the fourth box (i.e. the second-to-last entry
of the sequence). It follows that the cyclic permutation is the only
2-dominating rearrangement of the sequence.

EXERCISE 7
Find the three cyclic permutations of the above sequence that are 1-dominating.

Let us now apply the Cycle Lemma in the case m = n + 1. For b, n ∈N define

σb(n) = b b+1 b+2 . . . n 1 2 . . . b−1.

We want to insert left and right parentheses (or boxes and circles) into this word, and the way this
is done shall be determined by a k + 1-tuple (L; R1, R2, . . . , Rk) of non-empty subsets of [n] with∣∣L∣∣ = 1 +

k

∑
i=1

∣∣Ri
∣∣.

Given such a k + 1-tuple we proceed as follows: for every l ∈ L we put a left parenthesis to the
left of l, and for each appearance of r in the sets Ri we put a right parenthesis to the right of r. Let
us denote the resulting parenthesized string by σ̂b(n). In view of the Cycle Lemma 2.19 there is a
unique b such that σ̂b(n) is WELL-PARENTHESIZED, i.e. it begins with a left parenthesis and every
other left parenthesis closes properly.

As the last ingredient we consider a different representation of x = {B1, B2, . . . , Bk} ∈ NCn,
where we order the blocks (and their entries) with respect to a given string σb(n) as follows: B1 is
the block containing b, and for i > 1 the block Bi is the block that contains the leftmost number in
σb(n) that is not contained in

⋃i−1
j=1 Bj.
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The basic idea of [10], which explains the combinatorics behind the chain enumeration in the
noncrossing partition lattice, is the correspondence established in the following proposition, which
at the same time provides an explicit form of the Narayana numbers defined earlier.

PROPOSITION 2.21

For n ≥ 1 and k ∈ [n] the number of noncrossing set partitions of [n] with exactly k blocks
is

Nar(n, k) =
1
n

(
n
k

)(
n

k− 1

)
.

Proof. Let (L, R) be a pair of subsets of [n] such that
∣∣L∣∣ = ∣∣R∣∣ + 1 = k. The Cycle Lemma 2.19

implies that there is a unique number b ∈ [n] such that σ̂b(n) is well-parenthesized.
We now construct a noncrossing set partition of [n] from this string as follows. First we add a

right parenthesis at the end of σ̂b(n). Then we look for pairs of closing parentheses, and if the in-
duced substring does not contain parentheses, then we take the elements of this induced substring
and put them in a block. We now remove these elements together with their enclosing parentheses.
Repeat until all parentheses are removed. Since σ̂b(n) is well-parenthesized the resulting family of
sets is a partition of [n], and the construction ensures that this partition is noncrossing.

Conversely, let x ∈ NCn with bl(x) = k, and fix b ∈ [n]. Order the blocks of x with respect to
σb(n). Let L be the set of the first numbers in each block, and let R be the set of last numbers in
each block except B1.

This establishes a bijection between the set of pairs (L, R) with L, R ⊆ [n] and
∣∣L∣∣ = ∣∣R∣∣+1 = k

and the set of pairs (x, b) for x ∈ NCn with bl(x) = k and b ∈ [n]. We thus obtain the equality(
n
k

)(
n

k− 1

)
= n ·Nar(n, k),

which proves the proposition. �

EXAMPLE 2.22

Consider once more x = 1 2 6 7 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16 ∈ NC16, and pick
b = 12. The reordering of x with respect to σ12(16) looks as follows

x = 12 13 9 10 | 14 1 2 6 7 8 | 15 | 16 | 3 4 5 | 11,

and we obtain L = {3, 11, 12, 14, 15, 16} and R = {5, 8, 11, 15, 16}. The corresponding well-
parenthesized string is

σ̂12(16) = (12 13(14(15)(16)1 2(3 4 5)6 7 8)9 10(11),

and we reobtain x.

The next step is to enumerate chains in (NCn,≤dref) whose elements have given ranks. More
precisely, let (t1, t2, . . . , tk) be a tuple of integers with 0 < t1 < t2 < · · · < tk < n − 1. Let
Nn(t1, t2, . . . , tk) denote the number of chains {x1, x2, . . . , xk} in (NCn,≤dref) with rk(xi) = ti for
i ∈ k.
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PROPOSITION 2.23

Let t0 = 0 and tk+1 = n− 1, and define si = ti − ti−1 for i ∈ [k + 1]. Then

Nn(t1, t2, . . . , tk) =
1
n

(
n
s1

)(
n
s2

)
· · ·
(

n
sk+1

)
.

Proof. The proof uses the bijective idea introduced in Proposition 2.21. This time, however, we
consider k + 1-tuples of subsets of [n] instead of pairs.

Indeed, let (L; R1, R2, . . . , Rk) be such a k + 1-tuple of subsets of [n] with the property that
∣∣L∣∣ =

n− s1 and
∣∣Ri
∣∣ = si+1 for i ∈ [k]. Note that

k

∑
i=1

∣∣Ri
∣∣ = k

∑
i=1

si+1 =
k

∑
i=1

(ti+1 − ti) = tk+1 − t1 = n− 1− t1 =
∣∣L∣∣− 1.

The Cycle Lemma 2.19 implies that there is a unique b ∈ [n] such that the parenthesized string σ̂b(n)
coming from (L; R1, R2, . . . , Rk) is well-parenthesized. Let x1 denote the noncrossing set partition
that is constructed from σ̂b(n). We then have bl(x1) =

∣∣L∣∣, and therefore rk(x1) = t1. Now for
every r ∈ R1 we remove the first right parenthesis to the right of r and the corresponding left
parenthesis. The resulting string is still well-parenthesized, and we thus obtain a noncrossing set
partition x2, which has

∣∣L∣∣− ∣∣R1
∣∣ blocks, and thus rk(x2) = t2. It is also guaranteed by construction

that x1 ≤dref x2. If we continue this process until all parentheses are removed we have obtained a
chain {x1, x2, . . . , xk} with rk(xi) = ti for i ∈ [k].

Conversely, let {x1, x2, . . . , xk} be a chain of noncrossing set partitions with rk(xi) = ti for i ∈ [k]
and fix some b ∈ [n]. As in Proposition 2.21 the pair (xk, b) has an associated pair (Lk, Rk) with∣∣Rk

∣∣+ 1 =
∣∣Lk
∣∣ = bl(xk) = n− tk.

Now we construct a triple (Lk−1; Rk−1, Rk) from (Lk, Rk) as follows. For each block Bi ∈ xk suppose
that it is broken into the blocks Bi1 , Bi2 , . . . , Bis of xk−1, where the order suggested by the indices
comes from the ordering of xk−1 with respect to σb(n). Let Fi consist of the first elements of the
blocks Bi2 , Bi3 , . . . , Bis , and let Ei consist of the last elements of these blocks. Let

Rk−1 =
bl(xk)⋃

i=1

Ei and Lk−1 = Lk ∪
bl(xk)⋃

i=1

Fi.

It follows that ∣∣Rk−1
∣∣ = bl(xk−1)− bl(xk) = rk(xk)− rk(xk−1) = tk − tk−1 = sk,

and
∣∣Lk−1

∣∣ = ∣∣Lk
∣∣+ sk. It is clear that (Lk−1; Rk−1, Rk) corresponds exactly to xk−1. We repeat this

process until we have reached x1, and we obtain a k + 1-tuple (L1; R1, R2, . . . , Rk) with the desired
properties.

This bijective correspondence proves the following equality:(
n
s1

)(
n
s2

)
· · ·
(

n
sk+1

)
= n ·Nn(t1, t2, . . . , tk),

since the left side enumerates precisely the possible k + 1-tuples (L; R1, R2, . . . , Rk). (Note that
( n

n−s1
) = ( n

s1
).) This concludes the proof. �
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EXAMPLE 2.24
Consider the following four noncrossing set partitions:

x1 = 1 | 2 | 3 5 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16,

x2 = 1 14 | 2 8 | 3 5 | 4 | 6 7 | 9 12 13 | 10 | 11 | 15 | 16,

x3 = 1 2 8 14 | 3 5 | 4 | 6 7 | 9 10 12 13 | 11 | 15 | 16,

x4 = 1 2 6 7 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16,

and fix b = 12. The reordering of x1, x2, x3, x4 with respect to σ12(16) looks as follows:

x1 = 12 | 13 | 14 | 15 | 16 | 1 | 2 | 3 5 | 4 | 6 | 7 | 8 | 9 | 10 | 11,

x2 = 12 13 9 | 14 1 | 15 | 16 | 2 8 | 3 5 | 4 | 6 7 | 10 | 11,

x3 = 12 13 9 10 | 14 1 2 8 | 15 | 16 | 3 5 | 4 | 6 7 | 11,

x4 = 12 13 9 10 | 14 1 2 6 7 8 | 15 | 16 | 3 4 5 | 11,

We have seen in Example 2.22 that L4 = {3, 11, 12, 14, 15, 16} and R4 = {5, 8, 11, 15, 16}.
The first block of x4 is also contained in x3, and thus E(3)

1 = F(3)
1 = ∅. The second block

{14, 1, 2, 6, 7, 8} of x4 is broken into two blocks in x3, namely {14, 1, 2, 8} and {6, 7}. We get
E(3)

2 = {7} and F(3)
2 = {6}. The third, fourth and sixth block of x4 are singletons and thus

left intact, which yields E(3)
3 = E(3)

4 = E(3)
6 = F(3)

3 = F(3)
4 = F(3)

6 = ∅. The fifth block

{3, 4, 5} is broken again in two blocks {3, 5} and {4}. We obtain E(3)
5 = F(3)

5 = {4}. We thus
obtain L3 = {3, 4, 6, 11, 12, 14, 15, 16} and R3 = {4, 7}.
In the same manner we obtain L2 = {2, 3, 4, 6, 10, 11, 12, 14, 15, 16} and R2 = {8, 10}, as well
as L1 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} and R1 = {1, 7, 8, 9, 13}.
The resulting 5-tuple is (L1; R1, R2, R3, R4), which induces the parenthesization

σ̂12(16) = (12(13)(14(15)(16)(1)(2(3(4)5)(6(7))(8)))(9)(10)(11),

which corresponds to x1. If we now remove the parentheses indicated by R1, we obtain

σ̂12(16) = (12 13(14(15)(16)1(2(3(4)5)(6 7)8))9(10)(11),

which corresponds to x2. If we remove the parentheses indicated by R2, we obtain

σ̂12(16) = (12 13(14(15)(16)1 2(3(4)5)(6 7)8)9 10(11),

which corresponds to x3. Finally, we remove the parentheses indicated by R3, and we obtain

σ̂12(16) = (12 13(14(15)(16)1 2(3 4 5)6 7 8)9 10(11),

which corresponds to x4.

As an immediate corollary we obtain the number of maximal chains in (NCn,≤dref).

COROLLARY 2.25

For n ≥ 1 the number of maximal chains in (NCn,≤dref) is nn−2.
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Proof. The desired quantity is precisely Nn(1, 2, . . . , n− 2), so that by Proposition 2.23 we obtain

Nn(1, 2, . . . , n− 2) =
1
n

(
n
1

)(
n
1

)
· · ·
(

n
1

)
︸ ︷︷ ︸

n−1 times

=
1
n

nn−1

= nn−2.

�

We can also use the construction from Proposition 2.23 to count the number Zn(m) of multi-
chains of length m− 1 in (NCn,≤dref).

PROPOSITION 2.26
For m, n ≥ 1 we have

Zn(m) =
1
n

(
mn

n− 1

)
.

Proof. Let us start with an n− 1-element set D ⊆ [mn]. We write D = S1 ] S2 ] · · · ] Sm, where

Sj =
{

i | i ∈ D and (j− 1)n + 1 ≤ i ≤ jn
}

.

We can turn each of these sets into subsets of [n] by considering

S′j =
{

i | (j− 1)n + i ∈ Sj
}

.

Let S̄1 = [n] \ S1. We then have ∣∣S̄1
∣∣ = n−

∣∣S1
∣∣ = 1 +

m

∑
i=2

∣∣S′i∣∣.
Then the m-tuple (S̄1; S′2, S′3, . . . , S′m) then induces a chain (x1, x2, . . . , xm−1) together with some
b ∈ [n] via the construction from Proposition 2.23. (Note that if S′i+1 = ∅ for i ∈ [m − 2], then
xi = xi+1.)

Conversely pick m − 1 noncrossing set partitions satisfying x1 ≤dref x2 ≤dref · · · ≤dref xm−1
and b ∈ [n]. Consider the chain {xi1 , xi2 , . . . , xik}, where ij is the first occurrence of xij in the given
multichain. Via the construction of Proposition 2.23 we obtain a k + 1-tuple (L; R1, R2, . . . , Rk) of
subsets of [n]. From this we obtain an m-tuple (S̄1; S′2, S′3, . . . , S′m) of subsets of [n] by setting S̄1 = L
and S′ij+1 = Rj and S′j = ∅ for the remaining j ∈ [m]. Let D be the set constructed from this m-tuple
as in the beginning of this proof. We have∣∣D∣∣ = m

∑
i=1

∣∣Si
∣∣ = n−

∣∣S̄1
∣∣+ m

∑
i=2

∣∣S′i∣∣ = n−
∣∣L∣∣+ k

∑
i=1

∣∣Ri
∣∣ = n−

∣∣L∣∣+ ∣∣L∣∣− 1 = n− 1.

We have thus found a bijection between the (n − 1)-element subsets of [mn] and pairs (X, b)
where X is a multichain of (NCn,≤dref) with m − 1 elements and some b ∈ [n]. We obtain the
equality (

mn
n− 1

)
= n ·Zn(m),
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which concludes the proof. �

EXAMPLE 2.27

Let us compute multichain of length 3 in (NC6,≤dref) given by the set D = {4, 8, 10, 12, 23}.
We obtain the partition

S1 = {4}, S2 = {8, 10, 12}, S3 = ∅, S4 = {23}.
We further obtain

S′1 = {4}, S′2 = {2, 4, 6}, S′3 = ∅, S′4 = {5},
and S̄1 = {1, 2, 3, 5, 6}. The parenthesization σb(6) induced by (S̄1; S′2, S′3, S′4) is well-
parenthesized for b = 1, and we obtain

σ̂1(6) = (1(2)(3 4)(5)(6).

The construction from the proof of Proposition 2.23 yields the elements

x1 = 1 | 2 | 3 4 | 5 | 6,

x2 = x3 = 1 2 3 4 6 | 5.

Since every element of NCn itself constitutes a multichain consisting of one element, the car-
dinality of (NCn,≤dref) thus equals Zn(2). We therefore obtain an explicit form for the Catalan
numbers from Proposition 2.26.

COROLLARY 2.28
For n ≥ 1 the cardinality of NCn is given by

Cat(n) =
1

n + 1

(
2n
n

)
.

Proof. We have seen in Proposition 2.2 that the cardinality of NCn is given by Cat(n), and Proposi-
tion 2.26 implies that this number equals

Zn(2) =
1
n

(
2n

n− 1

)
=

1
n + 1

(
2n
n

)
.

�
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3. APPLICATIONS

In this section we present a few situations, where noncrossing set partitions pop up sort of
unexpectedly.

3.1. The Moment-Cumulant Formula. In probability theory moments and cumulants of a random
variable X are two very basic concepts. While the nth moment is simply the expectation of Xn, the
cumulants are the coefficients of the logarithmic transform of the moment generating function of
X. More precisely, if X is a random variable with probability distribution µX , then we define the
nTH MOMENT of X by

mn(X) = E(Xn) =
∫

tndµX(t).

The (EXPONENTIAL) MOMENT GENERATING FUNCTION of X is simply

MX(t) = ∑
n≥0

mn(X)
tn

n!
= E(exptX).

Observe that MX(t) is essentially the Fourier transform of µX . The CUMULANTS of X are now the
coefficients of the logarithmic transform of MX(t), i.e.

CX(t) = log MX(t) = ∑
n≥0

cn(X)
tn

n!
.

The relation between moments and cumulants is given by the Moment-Cumulant Formula.

THEOREM 3.1: [27]

For a random variable X and n ≥ 1 we have

(5) mn(X) = ∑
x∈Πn

∏
B∈x

c|b|(X).

Two observations are imminent. Firstly, moments and cumulants determine each other, i.e. if
two random variables have the same moments, then they also have the same cumulants and vice
versa. Secondly, we can easily compute the first moments in terms of the first cumulants. We
obtain:

m1(X) = c1(X),

m2(X) = c2
1(X) + c2(X),

m3(X) = c3
1(X) + 3c1(X)c2(X) + c3(X).

Now we can of course recursively compute the cumulants in terms of the moments. One of the
crucial insights of [27] is that this can be done much more convenient with the help of the Möbius
Inversion Formula, see [26, Proposition 2], on the partition lattice so that we obtain

cn(X) = ∑
x∈Πn

µΠ(x, 1) ∏
B∈x

m|B|(X)

= ∑
x∈Πn

(−1)bl(x)−1(bl(x)− 1
)
! ∏

B∈x
m|B|,(6)

where the last equality follows from Corollary 1.14. We can therefore immediately compute

c3(X) = 2m3
1(X)− 3m1(X)m2(X) + m3(X)
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without explicitly knowing c1(X) and c2(X).
Cumulants have another nice property: they are linear on independent random variables. Re-

call that if X and Y are independent random variables their joint expectation equals the prod-
uct of the single expectiations, i.e. E(XY) = E(X)E(Y), and this relation extends to the moment
generating function: MXY(t) = MX(t)MY(t). Since CXY(t) = log MXY(t), we conclude that
cn(XY) = cn(X) + cn(Y) whenever X and Y are independent.

Now let us lift this setting to something more algebraic. It is well known that we can formally
add and scale random variables, which motivates the following setup. Let A be a unital R-vector
space, i.e. a R-vector space with a unit element 1. Fix a linear functional ϕ onAwith ϕ(1) = 1, and
call the pair (A, ϕ) a (FORMAL) PROBABILITY SPACE. The elements of A are then called (FORMAL)
RANDOM VARIABLES. We then define moments and cumulants as before, by setting mn(x) = ϕ(xn)
for x ∈ A, and by defining cn(x) via (5). If we want to model classical random variables, then the
formula for the expectation of two independent random variables essentially requires A to be a
commutative vector space.

This algebraic approach, however, also makes sense for A noncommutative, and is essentially
the starting point for the theory of free probability due to D. Voiculescu [36]. In that case, we need a
substitute for the concept of independent random variables, since the old definition relies crucially
on the commutativity of A. This is done as follows. Two (formal) random variables x, y ∈ A are
FREELY INDEPENDENT (or simply FREE) if ϕ(xy) = 0 whenever ϕ(x) = 0 = ϕ(y). It then requires
some work to show that there is a family of quantities associated with x ∈ A, the FREE CUMULANTS
of x, which behave linearly on free random variables. In other words, for x ∈ A we can define its
free cumulants κn(x) such that the implication

if x and y are free, then κn(xy) = κn(x) + κn(y)

holds. The exact details of this construction are, however, beyond the scope of this manuscript. For
our purposes, the most interesting connection is the following result due to R. Speicher.

THEOREM 3.2: [28]

For a (non-commutative) random variable x and n ≥ 1 we have

(7) mn(x) = ∑
x∈NCn

∏
B∈x

κ|B|(x).

In particular, we can once more compute the free cumulants from the moments by means of
the Möbius Inversion Formula, which we apply this time on the lattice of noncrossing partitions
instead on the lattice of all set partitions:

κn(x) = ∑
x∈NCn

µNC(x, 1) ∏
B∈x

m|B|(x)

= ∑
x∈NCn

∏
B∈K(x)

(−1)|B|−1 Cat
(
|B| − 1

)
∏
B∈x

m|B|(x),(8)

where the last equality follows from Corollary 2.18.
In fact, for any number sequence mn, we can define (free) cumulants cn (resp. κn) via (6) (resp.

(8)). A very surprising example of free cumulants appears in the representation theory of the sym-
metric group [5], where they can be used to express the asymptotic behavior of certain characters.
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EXERCISE 8

What is the number of labeled simple graphs on [n], and what is the number of labeled trees
on [n]? Compute the number ḡc(4) of connected labeled simple graphs on [4] via (6), and
the number f̄ (4) of labeled forests on [4] via (5).

3.2. Connected Components of Positroids. Another instance of (free) cumulants can be encoun-
tered in matroid theory.

Let E be a finite set, and let B ⊆ ℘(E) be a non-empty family of subsets of E. The pair M =
(E,B) is a MATROID on E if it satisfies the following BASIS EXCHANGE AXIOM: if B1, B2 ∈ B and
b1 ∈ B1 \ B2, then there exists b2 ∈ B2 \ B1 such that B1 \ {b1} ∪ {b2} ∈ B.

The elements of B are the BASES of M, and it can be shown that they all have the same size. A
subset X ⊆ E is INDEPENDENT if there is some B ∈ B with X ⊆ B, otherwise it is DEPENDENT.

For two matroids M = (E,B) and M′ = (E′,B′) we define the DIRECT SUM of M and M′ to be
the matroid M⊕M′ = (E ] E′,B ] B′), where B ] B′ = {B ] B′ | B ∈ B and B′ ∈ B′}. A matroid
is CONNECTED if it cannot be written as a direct sum of two smaller matroids. Otherwise, we can
write M =

⊕s
i=1 Mi for connected matroids Mi; the CONNECTED COMPONENTS of M.

We have the following relation between matroids and set partitions, which is due to H. Whit-
ney [37, Theorem 19].

PROPOSITION 3.3

Let M = (E,B) be a matroid, and define a relation ∼ on E by setting a ∼ b whenever there
are two bases B, B′ ∈ B such that B′ = B \ {a} ∪ {b}. This relation is an equivalence relation
on E, and its equivalence classes are the connected components of M.

In order to prove Proposition 3.3 we need some more notation. A dependent set X ⊆ E for
which every proper subset is independent is a CIRCUIT. Let us denote the set of circuits of M by
C(M). It is well known that the set of circuits satisfy the following axioms [21, Section 1.1]:

∅ /∈ C(M);(C1)

if X, Y ∈ C(M) and X ⊆ Y, then X = Y;(C2)

if X1, X2 ∈ C(M) and e ∈ X1 ∩ X2, then there exists(C3)

f ∈ X2 \ X1 and Y ∈ C(M) such that f ∈ Y ⊆ (X1 ∪ X2) \ {e}.

Moreover, every family of subsets of E satisfying (C1)–(C3) is the set of circuits of some matroid.
We need the following simple observation.

LEMMA 3.4: [21, Proposition 1.1.6]

Let X ⊆ E be independent, and let e ∈ E \ X be such that X ∪ {e} is dependent. Then there
exists a unique circuit C ⊆ X ∪ {e} containing e.

Proof. Let C be a circuit in X ∪ {e}, which must exist since this set is dependent. If e /∈ C, then
C ⊆ X contradicting the assumption that X was independent. It follows that any circuit in X ∪ {e}
needs to contain e. Suppose there is another circuit C′ ⊆ X ∪ {e}. Then C ∩ C′ 6= ∅, and with (C3)
we can find a circuit D ⊆ (C ∪ C′) \ {e}. But then, D ⊆ X, which is a contradiction. �
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Define a map γ : E→ ℘(E) by

γ(e) = {e} ∪
{

f ∈ E | there is C ∈ C(M) such that e, f ∈ C
}

.

LEMMA 3.5: [1, Proposition 7.2]

For a, b ∈ E holds a ∼ b if and only if a ∈ γ(b).

Proof. Assume first that a ∼ b. By definition there are bases B, B′ ∈ B such that B′ = B \ {a} ∪ {b}.
Since b /∈ B Lemma 3.4 implies that there exists a unique circuit C ⊆ B ∪ {b} with b ∈ B. If a /∈ C,
then C ⊆ B′, which contradicts the assumption that B′ is a basis. Hence a ∈ C and thus a ∈ γ(b).

Conversely let a ∈ γ(b) and let C ∈ C(M) with a, b ∈ C. Consider the contraction M/C, which
is the matroid on E \C given by the bases

{
B \C | B ∈ B such that |B∩C| is maximal

}
. Let D be a

basis of M/C. Then by definition D∪C is a circuit of M, and B = D∪C \ {a} and B′ = D∪C \ {b}
are both bases of M with B = B′ \ {a} ∪ {b}, which implies a ∼ b. �

Proof of Proposition 3.3. In view of Lemma 3.5 it suffices to show that γ is reflexive, symmetric and
transitive. The first two properties are immediate from the definition. Suppose that a, b, c ∈ E with
a ∈ γ(b) and b ∈ γ(c). There exist circuits C1, C2 ∈ C (M) with a ∈ C1 and c ∈ C2 such that
C1 ∩ C2 6= ∅. Moreover, choose C1 and C2 among all such circuits with the property that

∣∣C1 ∪ C2
∣∣

is minimal.
Assume that there is no circuit in M containing both a and c. Thus C1 6= C2, and in particular

a ∈ C1 \ C2. If we pick d ∈ C1 ∩ C2, then (C3) yields a circuit C3 ⊆ (C1 ∪ C2) \ {d} with a ∈ C3. By
assumption C3 cannot contain c. If C3 ⊆ C1, then (C2) implies C3 = C1, which contradicts d /∈ C3.
We can thus find an element e ∈ C2 \C1 with e ∈ C3. If we apply (C3) once more, we obtain a circuit
C4 ⊆ (C2 ∪ C3) \ {e} with c ∈ C4. Again we see that C4 6⊆ C2 so that the intersection C4 ∩ (C3 \ C2)
is non-empty. It follows that C4 ∩C1 6= ∅, and we recall that a ∈ C1 and c ∈ C4. We have, however,
that C1 ∪ C4 ⊆ (C1 ∪ C2) \ {e}, and thus

∣∣C1 ∪ C4
∣∣ < ∣∣C1 ∪ C2

∣∣, which contradicts the choice of C1
and C2. We have thus shown that a circuit containing a and c must exist, and therefore a ∈ γ(c).

Moreover, we have seen that for any a, b ∈ E with a 6∼ b there does not exist a circuit containing
both a and b. If E1, E2, . . . , Es are the equivalence classes of ∼, we conclude that C(M) can be
partitioned into sets C1, C2, . . . , Cs such that for all i ∈ [s] the set Ci is a family of subsets of Ei
satisfying (C1)–(C3), and therefore defines a matroid Mi = (Ei,Bi) such that C(Mi) = Ci. It
follows further that Mi is connected and M = M1 ⊕M2 ⊕ · · · ⊕Ms. �

Recall for instance from Exercise 1 that equivalence relations correspond bijectively to set par-
titions. Therefore, any matroid has a canonically associated set partition. In other words, if m(n)
denotes the number of matroids on [n] and mc(n) denotes the number of connected matroids on [n],
then the numbers m(n) and mc(n) satisfy (5). In fact, as described in [1] we can find a meaningful
subclass of matroids such that we recover (7).

A major source of matroids arise in the following way. Fix a field K, and let A ∈ MatK(d, n) be
a d× n matrix of rank d over K. If we denote the columns of A by a1, a2, . . . , an, then the subsets
B ⊆ [n] for which {ai | i ∈ B} is a linear basis of Kd are the bases of the REPRESENTABLE matroid
M(A).

Recall that a MINOR of A is the determinant of some k × k submatrix of A. From now on, let
K = R, and choose A in such a way that all its maximal minors are nonnegative. We call such
matrices TOTALLY NONNEGATIVE. The matroid associated with a totally nonnegative matrix is a
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POSITROID. This class of matroids was introduced by A. Postnikov in [23] and further studied for
instance in [20]. A key observation is that the property of being a positroid depends on the order
of the columns of A (or equivalently on the order of the ground set).

EXAMPLE 3.6

Fix a1 ≤ a2 ≤ · · · ≤ an, and define aj = (1, aj, a2
j , . . . , ad−1

j )⊥ for j ∈ [n]. The matrix
A = (a1, a2, . . . , an) is totally nonnegative, since every maximal minor is a Vandermonde
determinant. More precisely, if I = {i1, i2, . . . , id}, then the maximal minor ∆I(A) induced
by the columns in I is given by

∆I(A) = ∏
1≤s<t≤d

(ait − ais),

which is nonnegative by assumption.

Here are a few basic observations on positroids. For k, l ∈ [n] define the CYCLIC INTERVAL [k, l]
by

[k, l] =

{
{k, k + 1, . . . , l}, if k ≤ l,
{k, k + 1, . . . , n, 1, . . . , l}, if k > l.

LEMMA 3.7: [1, Lemma 3.3]

Let M be a positroid on [n]. For any a ∈ [n] we have that M is also a positroid on the cyclic
interval [a, a− 1].

Proof. Let A be the underlying d × n matrix of M, and suppose its columns are a1, a2, . . . , an in
that order. Consider the matrix A′ given by the column vectors a2, . . . , an, (−1)d−1a1. Let I =
{i1, i2, . . . , id} be a d-element subset of [n], and denote by

∆I(A) = det(ai1 , ai2 , . . . , aid)

the d × d minor of A induced by I, and define I′ = {i1 − 1, i2 − 1, . . . , id − 1}. If i1 = 1, then
i1 − 1 = n. We then see that ∆I(A) = ∆I′(A′) whenever 1 /∈ I. Otherwise we can assume that
i1 = 1, and Laplace’s Determinant Formula lets us compute ∆I(A) by expanding along the first
column:

∆I(A) =
d

∑
j=1

(−1)1+ja1,j det(ai2 , . . . , aid),

where a1,j is the jth entry of a1. Analogously we obtain ∆I′(A′) by expanding along the last column:

∆I′(A′) =
d

∑
j=1

(−1)d+ja′1,j det(ai2 , . . . , aid),

where a′1,j is the jth entry of the last column of A′, which by construction equals (−1)d−1a1,j. Since

(−1)d+ja′1,j = (−1)d+j+d−1a1,j = (−1)j+1a1,j, we obtain ∆I(A) = ∆I′(A′). Consequently, M(A′) is
a positroid, which coincides with M after cyclically shifting the ground set. Thus M is a positroid
on the cyclic interval [2, 1], and the claim follows by iterating this argument. �
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PROPOSITION 3.8: [1, Proposition 3.4]

Let k, l ∈ [n] and suppose that M1 is a positroid on the cyclic interval [k + 1, l] and M2 is a
positroid on the cyclic interval [l + 1, k]. Then M1 ⊕M2 is a positroid on [n].

Proof. In view of Lemma 3.7 it suffices to consider the case l = n and k < l. Let M1 be a positroid
on [k] given by the totally nonnegative matrix A1, and let M2 be positroid on [k + 1, n] given by the

totally nonnegative matrix A2. The block diagonal matrix A =

(
A1 0
0 A2

)
is by construction to-

tally nonnegative, since every maximal minor of A is a block diagonal matrix, and the determinant
of a block diagonal matrix is the product of the determinants of the blocks. Moreover, A represents
the matroid M1 ⊕M2, which is thus a positroid. �

We also have the converse of Proposition 3.8. The proof of this statement, however, requires a
few too many new notions, so we omit here.

PROPOSITION 3.9: [1, Proposition 7.4]

Let M = M1 ⊕M2 be a positroid on [n], where M1 and M2 are connected positroids. Then
the ground sets of M1 and M2 are cyclic intervals of [n].

The main result of this section is the following.

THEOREM 3.10: [1, Theorem 7.6]

Let M be a positroid on [n] and let E1, E2, . . . , Es be the ground sets of the connected com-
ponents of M. Then xM = {E1, E2, . . . , Es} is a noncrossing set partition of [n].
Conversely, let x = {E1, E2, . . . , Es} ∈ NCn, and let Mi be a connected positroid on Ei for
every i ∈ [s]. Then M =

⊕s
i=1 Mi is a positroid.

Proof. Let M =
⊕s

i=1 Mi be a positroid. Proposition 3.3 implies that xM = {E1, E2, . . . , Es} ∈ Πn.
If xM is crossing, then there are two parts Ea and Eb and i < j < k < l such that i, k ∈ Ea and
j, l ∈ Eb. It follows that neither Ea nor Eb is a connected interval of [n]. If we restrict M to Ea ] Eb
we obtain a positroid M′ = Ma ⊕Mb, see [1, Proposition 3.5], which contradicts Proposition 3.9.

Conversely, let x = {E1, E2, . . . , Es} ∈ NCn. We proceed by induction on s, where the induction
base s = 1 holds trivially. The assumption that x is noncrossing ensures that there is some block
which is a cyclic interval of [n]. Without loss of generality we can put Es = [k, l]. Then x \ {Es} ∈
NC[l+1,k−1], and the induction hypothesis ensures that M′ =

⊕s−1
i=1 Mi is a positroid on the cyclic

interval [l + 1, k − 1]. Moreover, we have assumed that Ms is a connected positroid on the cyclic
interval [k, l]. Proposition 3.8 now implies that M′ ⊕Ms is a positroid. �

In particular, if p(n) denotes the number of positroids on [n], and pc(n) denotes the number of
connected positroids on [n], then the numbers p(n) and pc(n) satisfy (7).

EXERCISE 9

According to [1, Theorem 10.4] we have p(n) = ∑n
k=0

n!
k! . Use this and (8) to compute pc(4).
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3.3. Exceptional Sequences in the Category of Representations of a Path. In this section we out-
line how the lattice of noncrossing set partitions arises as a poset on certain families of representa-
tions of a path. Our exposition follows [35] and [25, Section 4].

Let Q be a directed graph on vertex set [n] and fix a field K. A Q-REPRESENTATION V is an
assignment of a finite-dimensional K-vector space Vi to each vertex i together with a linear map
Vα : Vi → Vj for every oriented edge α : i → j in Q. For two Q-representations V and W we define
a MORPHISM from V to W to be a collection of linear maps fi : Vi → Wi for all i ∈ [n] such that for
all edges α : i→ j we have Wα ◦ fi = fi ◦Vα. Let Hom(V, W) denote the set of all morphisms from
V to W. In fact, Hom(V, W) is itself a K-vector space. These definitions give rise to the CATEGORY
OF Q-REPRESENTATIONS denoted by rep Q.

For two Q-representations V and W their DIRECT SUM V⊕W is defined via (V⊕W)i = Vi ⊕Wi
and (V ⊕W)α = Vα ⊕Wα. We call V INDECOMPOSABLE if it is not isomorphic to the direct sum of
two non-zero representations of Q. Let ind rep Q denote the set indecomposable Q-representations.
Two Q-representations V and W are ORTHOGONAL if dim Hom(V, W) = 0. An EXCEPTIONAL
SEQUENCE is a family of pairwise orthogonal, indecomposable Q-representation, and we denote
the set of exceptional sequences of rep Q by Exc(rep Q).

Let V, W be Q-representations. We say that V is a SUBREPRESENTATION of W if Vi is a subspace
of Wi for each i ∈ [n] and for α : i → j the map Vα is induced from the inclusions of Vi and Vj into
Wi and Wj, respectively. The inclusion maps form an injective morphism from V to W.

If V is a subrepresentation of W, then we define the QUOTIENT REPRESENTATION W/V by
(W/V)i = Wi/Vi and (W/V)α = Wα/Vα. The quotient maps form a surjective morphism from W
to W/V. Consequently 0→ V →W →W/V → 0 is a short exact sequence.

For three Q-representations U, V, W we say that W is an EXTENSION of U by V if there is a sub-
representation of W which is isomorphic to V such that the corresponding quotient representation
W/V is isomorphic to U. Let Ext(U, V) denote the set of extensions of U by V (up to equivalence).
An extension is TRIVIAL if there is a morphism from W to V which is the identity on V.

LEMMA 3.11: [35, Lemma 3.1]

If W is a trivial extension of U by V, then W ∼= U ⊕ V. In other words, the short exact
sequence 0→ V →W → U → 0 is split.

Proof. Let s ∈ Hom(W, V) which is the identity on V, and let g be the quotient map from W to U.
Then s ⊕ g ∈ Hom(W, V ⊕U), and it acts as an isomorphism on every vertex. It therefore is an
isomorphism of Q-representations. �

If X is a set of Q-representations, let Ext(X) be the smallest set of Q-representations that contains
X and is closed under extensions. Define a partial order on ℘(rep Q) by X v Y if and only if
Ext(X) ⊆ Ext(Y).

For the remainder of this section, let Q be the directed path with n vertices, i.e. the directed
graph on [n] with directed edges (i, j) whenever j = i + 1. We then write An instead of Q. Our
goal is to prove the following result, which is a special case of [12, Theorem 1.1].

THEOREM 3.12

For n ≥ 1 there is an explicit bijection τ : NCn → Exc
(
rep An−1

)
. Moreover, for x, y ∈ NCn

we have x ≤dref y if and only of τ(x) v τ(y).
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Since the exceptional sequences of An consist of indecomposable representations, we need to
understand what these look like. For i, j ∈ [n] with i ≤ j define Eij to be the An-representation
which assigns a one-dimensional vector space to each p ∈ [n] with i ≤ p ≤ j, and where we put
identity maps between successive one-dimensional vector spaces, and zero maps elsewhere. For
simplicity, we denote the identity maps by “1”, and the zero maps by “0”.

PROPOSITION 3.13: [35, Proposition 5.1]

An An-representation is indecomposable if and only if it is isomorphic to Eij for some i, j ∈
[n] with i ≤ j.

Proof. We first show that Eij is indecomposable. Indeed assume that Eij = U⊕V for some non-zero
An-representations U, V. Let p ∈ [n] with i ≤ p ≤ j. By construction (Eij)p is one-dimensional,
which implies that either Up or Vp is zero. Moreover, since U and V are non-zero we can choose
p < j in such a way that either Up and Vp+1 are zero, or Vp and Up+1 are zero. If α : p→ p+ 1, then
in both cases Uα and Vα are zero, which implies that (U ⊕ V)α is zero. By construction, however,
we have that (Eij)α is non-zero, which is a contradiction.

Conversely, let V be an indecomposable An-representation, and write fp instead of Vp→p+1 for
p ∈ [n − 1]. Let i be minimal such that Vi 6= 0, and pick t ∈ Vi. Let j be maximal such that
f j−1 · · · fi+1 fi(t) 6= 0. If T denotes the subrepresentation of V generated by t, then we see that Tp is
one-dimensional for i ≤ p ≤ j and zero otherwise. In particular, T is isomorphic to Eij.

Let ιp : Tp → Vp denote the inclusion map, and define a map sj : Vj → Tj such that sj ◦ ιj
is the identity. For p ∈ [n] with i ≤ p < j define sp inductively such that sp ◦ ιp is the identity
and fp ◦ sp = sp+1 ◦ fp. Moreover, if i > 1, then Vi−1 = 0 by the minimality of i. We conclude
fi−1 = 0 which implies fi−1 ◦ si−1 = si ◦ fi−1. If j < n, then the maximality of j implies that
f j f j−1 · · · fi(t) = 0. Hence the restriction of f j to Tj is zero, which implies f j ◦ sj = sj+1 ◦ f j.
Consequently s ∈ Hom(V, T), and V ∈ Ext(V/T, T). Lemma 3.11 implies that V ∼= T ⊕ V/T.
Since V is indecomposable and T is non-zero, we conclude V ∼= T ∼= Eij. �

We thus have
ind rep An =

{
Eij | 1 ≤ i ≤ j ≤ n

}
.

A consequence of Proposition 3.13 is that any exceptional sequence of rep An−1 consists of Eij’s. It
remains to determine when two indecomposables of rep An−1 are orthogonal.

PROPOSITION 3.14: [35, Proposition 6.1]

For i, j, k, l ∈ [n] the space Hom(Eij, Ekl) is either zero- or one-dimensional. It is one-
dimensional if and only if k ≤ i ≤ l ≤ j.

Proof. Let Vp = (Eij)p and Wp = (Ekl)p for p ∈ [n], and let fp : Vp → Vp+1 and gp : Wp → Wp+1

for p ∈ [n− 1]. Assume that there is a morphism s ∈ Hom(Eij, Ekl), and let sp : Vp → Wp denote
the restrictions.

By construction, Vi generates the whole An-representation Eij, so that s is determined by si. If
i < k or i > l, then dim Wi = 0, so that si must be zero, which forces s to be zero. We thus have
dim Hom(Eij, Ekl) = 0 in that case.
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Therefore let k ≤ i ≤ l. We can then choose si to be one-dimensional, since it is a map between
one-dimensional vector spaces.

If j < l we have f j = 0 and gj = 1, and dim Vj+1 = 0 and dim Wj+1 = 1, and hence sj+1 = 0.
Consequently f j ◦ sj+1 = 0, and since s is a morphism we need to have sj ◦ gj = 0, which can
only happen if sj = 0. If we repeat this process, we see that s needs to be zero, which implies
dim Hom(Eij, Ekl) = 0 in that case as well.

Finally, if l ≤ j, we can construct s in such a way that it is non-zero, which yields dim Hom(Eij, Ekl) =
1. �

We obtain the first part of Theorem 3.12 as a corollary. Let x ∈ Πn, and define its ARC SET by

Arc(x) =
{
(i, j) | i < j and i ∼x j and for all i < k < j we have i 6∼x k

}
.

LEMMA 3.15

For x ∈ Πn we have
∣∣Arc(x)

∣∣ = rk(x).

Proof. Let x = {B1, B2, . . . , Bk} with |Bi| = bi for i ∈ [k]. By definition, the block Bi contributes
bi − 1 arcs to Arc(x), and we obtain

∣∣Arc(x)
∣∣ = k

∑
i=1

(bi − 1) = n− k = rk(x).

�

Let us consider the map τ : Πn → ℘
(
ind rep An−1

)
that sends (i, j) ∈ Arc(x) to Eij−1.

COROLLARY 3.16

Let n ≥ 1 and x ∈ Πn. Then τ(x) ∈ Exc
(
rep An−1

)
if and only if x ∈ NCn.

Proof. By construction τ(x) is a set of Eij’s. Proposition 3.14 implies that dim Hom(Eij, Ekl) = 1 if
and only if k ≤ i ≤ l ≤ j which is by definition the case if and only if x is crossing. �

EXAMPLE 3.17
Let n = 4. The directed graph A3 is

1 2 3

and in view of Proposition 3.13 its indecomposable representations are

E11, E12, E13, E22, E23, E33.
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Proposition 3.14 tells us that

dim Hom(E12, E11) = dim Hom(E13, E11) = 1,

dim Hom(E12, E22) = dim Hom(E22, E23) = 1,

dim Hom(E33, E13) = dim Hom(E33, E23) = 1,

dim Hom(E23, E12) = dim Hom(E13, E12) = dim Hom(E23, E13) = 1.

It follows that any exceptional sequence of A3-representations can have at most three ele-
ments. Clearly, the empty set and any one-element set of indecomposable representations is
an exceptional sequence. We have excluded nine of the 15 two-element sets of indecompos-
able representations above, and we can check that there is a unique exceptional sequence of
size three, namely

{
E11, E22, E33}, which yields Cat(4) = 14 exceptional sequences.

More precisely, the map τ is given by:

τ
(
1 | 2 | 3 | 4

)
= ∅, τ

(
1 2 | 3 | 4

)
=
{

E11}, τ
(
1 3 | 2 | 4

)
=
{

E12}
τ
(
1 4 | 2 | 3

)
=
{

E13}, τ
(
1 | 2 3 | 4

)
=
{

E22}, τ
(
1 | 2 4 | 3

)
=
{

E23}
τ
(
1 | 2 | 3 4

)
=
{

E33}, τ
(
1 2 3 | 4

)
=
{

E11, E22}, τ
(
1 2 4 | 3

)
=
{

E11, E23}
τ
(
1 3 4 | 2

)
=
{

E12, E33}, τ
(
1 | 2 3 4

)
=
{

E22, E33}, τ
(
1 2 | 3 4

)
=
{

E11, E33}
τ
(
1 4 | 2 3

)
=
{

E13, E22}, τ
(
1 2 3 4

)
=
{

E11, E22, E33}.

In order to prove the second part of Theorem 3.12, we need to understand the potential exten-
sions of the Eij’s.

PROPOSITION 3.18: [35, Proposition 6.2]

There exists a non-trivial extension of Eij by Ekl if and only if i + 1 ≤ k ≤ j + 1 ≤ l. In
that case, any such non-trivial extension is isomorphic to Eil ⊕ Ekj, where Ekj is zero when
k = j + 1.

Proof. Let W ∈ Ext(Eij, Ekl), which by definition means that we have a short exact sequence

0 −→ Ekl f−→W
g−→ Eij −→ 0,

where f is injective and g is surjective, and Im( f ) = ker(g). We have the following picture.

(Ekl)i−1

Wi−1

0

fi−1

gi−1

(Ekl)i

Wi

(Eij)i

fi

gi

· · ·

· · ·

· · ·

(Ekl)j

Wj

(Eij)j

f j

gj

(Ekl)j+1

Wj+1

0

f j+1

gj+1

vi−1 vi vj−1 vj

wi−1 wi wj−1 wj

ui−1 ui uj−1 uj

Pick t ∈ Wi such that g(t) 6= 0, and let T be the subrepresentation of W generated by t, and let
ι : T → W be the inclusion map. It follows that the image of t in (Eij)p is non-zero for i ≤ p ≤ j,
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which implies that dim Tp = 1 for these p. If dim Tj+1 = 0, then T ∼= Eij, and we conclude ι ◦ g = 1.
It follows that W is trivial, and Lemma 3.11 implies W = Eij ⊕ Ekl .

Thus W can be non-trivial only if dim Tj+1 = 1, which requires k ≤ j + 1 ≤ l. Assume in
addition that k ≤ i. Since dim Wj+1 6= 0, we can find a non-zero r ∈ Wj+1 with r = wj · · ·wi(t).
Since dim(Eij)j+1 = 0, we conclude that r ∈ ker(gj+1) = Im( f j+1). Since k ≤ i we can find
x ∈ (Ekl)i such that f j+1 ◦ (vj · · · vi)(x) = r. Since fi(x) ∈ Im( fi) = ker(gi), and t /∈ ker(gi), we
have that t′ = t− fi(x) 6= 0. Since the arrows in the above diagram commute, we obtain

wj · · ·wi(t′) = wj · · ·wi(t)− wj · · ·wi
(

fi(x)
)
= r− f j+1 ◦ (vj · · · vi)(x) = r− r = 0.

Consequently, the subrepresentation of W generated by t′ is isomorphic to Eij, and we conclude as
in the first part of the proof that W is trivial.

Finally, let i + 1 ≤ k ≤ j + 1 ≤ l. If we pick some t ∈ Wi such that wj · · ·wi(t) 6= 0, then the
representation generated by t is isomorphic to Eil . Analogously to the proof of Proposition 3.13
we conclude that W = Eil ⊕ Z for some representation Z. It is then straightforward to verify that

Z ∼=
{

Ekj, if k < j + 1,
0, if k = j + 1.

�

EXAMPLE 3.19
Let us continue Example 3.17. We conclude from Proposition 3.18 that non-trivial extensions
exist only in the following cases:

E12 ∈ Ext(E11, E22), E13 ∈ Ext(E11, E23), E13 ⊕ E22 ∈ Ext(E12, E23),

E13 ∈ Ext(E12, E33), E23 ∈ Ext(E22, E33).

Let us now conclude the proof of Theorem 3.12.

Proof of Theorem 3.12. We have seen in Corollary 3.16 that τ : NCn → Exc
(
rep An−1

)
is a bijection.

It thus remains to show that τ sends ≤dref to v.
Let x, y ∈ NCn with x ≤dref y. If Arc(x) ⊆ Arc(y), then τ(x) ⊆ τ(y), and consequently

Ext
(
τ(x)

)
⊆ Ext

(
τ(y)

)
. Otherwise there is an arc (i, l) ∈ Arc(x) which is broken into a sequence

of arcs (j0, j1), (j1, j2), . . . , (js−1, js) ∈ Arc(y) for s ≥ 2, where j0 = i and js = l. For any i ∈ [s− 1]
we thus have Eji ji+1−1, Eji+1 ji+2−1 ∈ τ(y). Since j0 < j1 < · · · < js we have ji + 1 ≤ ji+1 ≤
ji+1 ≤ ji+2 − 1, and Proposition 3.18 implies Eji ji+2−1 ∈ Ext

(
τ(y)

)
. Repeated application yields

Eil−1 ∈ Ext
(
τ(y)

)
, and we conclude τ(x) ⊆ Ext

(
τ(y)

)
, which implies Ext

(
τ(x)

)
⊆ Ext

(
τ(y)

)
.

Conversely suppose that Ext
(
τ(x)

)
⊆ Ext

(
τ(y)

)
, and assume that (i, l) ∈ Arc(x). We thus have

Eil−1 ∈ Ext
(
τ(y)

)
. If Eil−1 ∈ τ(y), then (i, l) ∈ Arc(x). Otherwise Eil−1 arises as an extension

of two An−1-representations, in which case Proposition 3.18 forces Eij1−1, Ej1l ∈ Ext
(
τ(y)

)
. (Since

Eil−1 is indecomposable, it needs to arise as an extension of two indecomposable representations.)
We repeat this process until we find a sequence Eij1−1, Ej1,j2−1, . . . , Ejs l−1 ∈ τ(y), which by con-
struction yields (i, j1), (j1, j2), . . . , (js, l) ∈ Arc(y). We conclude that i ∼y l, and thus x ≤dref y. �

Figure 7 shows
(

Exc
(
rep An−1

)
,v
)

.
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∅

{E22} {E33} {E12} {E23} {E11} {E13}

{E22, E33} {E11, E22} {E11, E33} {E13, E22} {E12, E33} {E11, E23}

{E11, E22, E33}

FIGURE 7. The lattice
(

Exc
(
rep An−1

)
,v
)

.
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7

1 8

6

2

3

5

4

FIGURE 8. A full binary tree with 17 nodes. The right-edges are labeled according
to when they are first encountered in depth-first search.

4. BIJECTIVE COMBINATORICS OF NCn

In this section we introduce some other CATALAN OBJECTS, i.e. families of combinatorial objects
that are counted by the Catalan numbers. To date more than 200 such Catalan objects have been
found. A comprehensive exposition on the history of the Catalan numbers, and an extensive list
of Catalan objects and their interactions is [33]. We also refer to [29] for an early draft of this book
and [22] for a historical account on Catalan numbers.

It is the purpose of this section to describe bijections between noncrossing set partitions and five
popular families of Catalan objects. For most of the objects under consideration the fact that they
are enumerated by the Catalan numbers can be easily established using the recurrence relation
from Proposition 2.2. We therefore present a bijection between these objects and noncrossing set
partitions. Each of these bijections has appeared in the literature before, and we give the appropri-
ate references in the appropriate place.

4.1. Binary Trees. The first family of Catalan objects that we investigate are full binary trees.

DEFINITION 4.1
Let n ≥ 0. A FULL BINARY TREE on 2n + 1 nodes is a tree in which every internal node has
two children.

Denote by Tn the set of all full binary trees with 2n + 1 nodes. Observe that any τ ∈ Tn has
2n edges, n internal nodes, and n + 1 leaves. Moreover, since every inner node has exactly two
children, one of them is the LEFT CHILD, and the other the RIGHT CHILD. In a natural way, these
children are connected by a LEFT and a RIGHT edge, and induce a LEFT and a RIGHT SUBTREE.
Figure 8 shows a full binary tree with 17 nodes.

PROPOSITION 4.2

For n ≥ 0 we have
∣∣Tn
∣∣ = Cat(n).

We prove Proposition 4.2 bijectively by exhibiting an explicit bijection from Tn to NCn.
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THEOREM 4.3
For n ≥ 0 there is an explicit bijection from Tn to NCn.

Proof. Let τ ∈ Tn. Let us walk around τ depth-first, i.e. at every node we first visit the left subtree,
and then the right subtree. We label the right-edges of τ in the order we encounter them. Every
inner node of τ that does not have a left parent starts a run of right-edges, and the labels along
these runs in τ are blocks of a partition xτ ∈ Πn. If there are integers i < j < k < l such that i
and k belong to the same block of xτ , then the run containing j must lie strictly to the left of the
run containing i (and k), while the run containing l lies strictly to the right. It follows that j and l
belong to different blocks of xτ , and thus xτ ∈ NCn. The map τ 7→ xτ is clearly injective.

Conversely let x ∈ NCn. We order the blocks of x increasingly. Let B ∈ x have B = {i1, i2, . . . , ik}
for some k > 0. Construct a sequence of k edges labeled by i1, i2, . . . , ik, and add a left-child to each
but the last node. This is certainly a full binary tree. For every j ∈ [k] with ij+1 − ij > 1 there must
be a block of x containing ij + 1. Attach the tree corresponding this block to the left-child of the
vertex whose right-edge is labeled ij+1. If this construction at some point produces a tree whose
right-edges are labeled by 1, 2, . . . , s for some s < n, then we append this tree to the left-child of
the root of the tree constructed from the block containing s + 1. Since all the trees coming from the
blocks of x are full binary trees, we eventually reach a full binary tree τx ∈ Tn. It is straightforward
to verify that the map x 7→ τx is injective.

Moreover, it follows from the construction that the two maps are mutual inverses, which con-
cludes the proof. �

The full binary trees with 2n + 1 nodes are clearly in bijection with binary trees on n nodes,
by simply cutting off the leaves. If we move the label on a right edge to the corresponding inner
node, then the bijection described in Theorem 4.3 has for instance appeared in [25, Theorem 4.4.3.1]
before.

EXAMPLE 4.4

Consider x = 1 6 | 2 3 5 | 4 | 7 8. The full binary trees corresponding to the blocks of x are
the following.

1

6

2

3

5

4 7

8

If we assemble these trees as described in the bijective proof of Theorem 4.3 we obtain the
full binary tree in Figure 8.

EXERCISE 10

Construct the full binary tree with 33 nodes that is the image of x = 1 2 6 7 8 14 | 3 4 5 |
9 10 12 13 | 11 | 15 | 16 under the bijection from Theorem 4.3.

4.2. Dyck Paths. Another well-known example of a family of combinatorial objects counted by
the Catalan numbers is the set of Dyck paths.
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1
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4

5

6

7

8

4

5 3 2

6 1

8 7

FIGURE 9. A Dyck path of semilength 8. Here we have labeled the up-steps, and
matched them with their corresponding right-steps.

DEFINITION 4.5

Let n ≥ 0. A lattice path in Z×Z from (0, 0) to (n, n) is a DYCK PATH of semilength n
if it consists of 2n steps which are either of the form (0, 1) (so-called UP-STEPS) or (1, 0)
(so-called RIGHT-STEPS), and if it stays weakly above the diagonal x = y.

Let us denote the set of all Dyck paths of semilength n by Dn. Figure 9 shows a Dyck path of
semilength 16.

PROPOSITION 4.6

For n ≥ 0 we have
∣∣Dn

∣∣ = Cat(n).

Our proof of Proposition 4.6 establishes an explicit bijection between NCn and Dn, which prob-
ably first appeared in [9, Appendix E.6].

THEOREM 4.7: [9, Appendix E.6]

For n ≥ 0 there is an explicit bijection from Dn to NCn.

Proof. Let p ∈ Dn. Label the up-steps of p by 1, 2, . . . , n in the order they occur. Now, from the ith

upstep, we shoot a laser with slope 1, and we label the first right-step that we hit with this beam
by i. The labels of consecutive runs of right-steps of p certainly form a partition xp of [n]. Fix
i < j < k < l such that i and k are labels of the same consecutive run of right-steps, and say that
j and l belong to some other consecutive runs of right-steps. By construction the y-coordinate of
the run containing j must be smaller than the y-coordinate of the run containing i (and k), and the
y-coordinate of the run containing l must be larger. Therefore, j and l cannot belong to the same
run of right-steps, and must lie in different blocks of xp, which thus satisfies xp ∈ NCn. Moreover,
the map p 7→ xp is clearly injective.

Conversely let x ∈ NCn. Order the blocks of x reversely, i.e. starting with the largest element,
and proceeding down to the smallest element. Now order the blocks of x according to their largest
elements in order. Suppose that x = {B1, B2, . . . , Bk} with ij = max Bj for j ∈ [k]. We thus have
i1 < i2 < · · · < ik = n. Let i0 = 0, and construct a lattice path px of semilength n by drawing
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ij − ij−1 up-steps followed by
∣∣Bj
∣∣ right-steps for every j ∈ [k]. In px the number of right-steps is

∑k
j=1
∣∣Bj
∣∣ = n, and the number of up-steps is ∑k

j=0 (ij − ij−1) = ik = n. Moreover, ∑s
j=1
∣∣Bj
∣∣ ≤ is

for every s ∈ [k]. (If we use more than is numbers to compose the first s blocks, one of the blocks
must contain a number bigger than is, so that one of the values i1, i2, . . . , is−1 must be bigger than
is, contradicting the way we have ordered the blocks of x.) It follows that px ∈ Dn, and the map
x 7→ px is injective.

It is easily seen that the two maps described here are mutual inverses, which concludes the
proof. �

The bijective proof of Proposition 4.6 is illustrated in Figure 9. There are many nice proofs of
Proposition 4.6. Let us close this section with a proof that uses the Cycle Lemma 2.19.

Cyclic Proof of Proposition 4.6. Let p ∈ Dn. We can represent p by a word wp on the alphabet {U, R},
where we follow the path from (0, 0) to (n, n) and record a U whenever we see an up-step, and
we record an R whenever we see a right-step. The word wp clearly has length 2n, and it contains
n-times the letter U and n-times the letter R. Moreover, every prefix of wp has the property that
it contains at least as many letters U as it contains letters R. Append an additional letter U to the
front of wp to obtain a word w̄p with the property that every prefix of w̄p contains more letters U
than it contains letters R. Record for later that p is uniquely determined by w̄p.

Now consider all words of length 2n + 1 with n + 1 letters U and n letters R. Declare two such
words equivalent if one can be obtained by cyclically shifting the letters of the other. Since each
word has 2n + 1 letters, every equivalence class has 2n + 1 elements, and the total number of such
words is (2n+1

n+1 ).
The Cycle Lemma 2.19 implies that in each equivalence class there exists a unique 1-dominating

word, and in view of the first part of this proof the Dyck paths of semilength n correspond bijec-
tively to these 1-dominating words. We have just shown that∣∣Dn

∣∣ = 1
2n + 1

(
2n + 1
n + 1

)
=

(2n + 1)!
(2n + 1)(n + 1)!n!

=
(2n)!

(n + 1)!n!
=

1
n + 1

(
2n
n

)
= Cat(n).

�

EXERCISE 11

Construct the Dyck path of semilength 16 that is the image of x = 1 2 6 7 8 14 | 3 4 5 |
9 10 12 13 | 11 | 15 | 16 under the bijection from Theorem 4.7.

4.3. Nonnesting Set Partitions. There is in fact a second family of set partitions that is enumerated
by the Catalan numbers. Instead of crossings, however, we now forbid nestings.

DEFINITION 4.8
For n ≥ 0 a set partition x ∈ Πn is NONNESTING if it does not contain four elements i < j <
k < l such that i ∼x l and j ∼x k but i 6∼x j.

The justification for this name comes from the fact that a set partition is nonnesting if and only
if in its arc diagram no two arcs nest. Let us denote the set of all nonnesting set partitions of [n] by
NNn.
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Analogously to the crossing case, all set partitions of [n] for n ≤ 3 are nonnesting. The smallest
nesting set partition is 1 4 | 2 3, which is also the only nesting set partition of [4].

The following bijection from NCn to NNn was first described in [4], and later refined and ex-
tended in [13] and [11]. Other bijections were for instance given in [18] or [3].

Let x ∈ Πn with x = {B1, B2, . . . , Bk}. As usual, suppose that min Bi < min Bj whenever i < j.
For i ∈ [k] define mi = min Bi and bi =

∣∣Bi
∣∣. Let Mx = {m1, m2, . . . , mk} as in Exercise 4, and let

b(x) = (b1, b2, . . . , bk). Observe that m1 = 1.

THEOREM 4.9: [4, Theorem 3.1]

For x ∈ NNn there exists a unique x′ ∈ NCn with Mx = Mx′ and b(x) = b(x′).

Proof. For the proof we explicitly construct the noncrossing set partition x′ from Mx and b(x). We
start with a collection of k chains, whose lengths are given by b(x). Here a chain of length b is a
sequence of b− 1 consecutive arcs, where the labels of the start and end points of these arcs are not
yet determined.

The construction then works inductively as follows. We first place the chain of length b1, and
label its first vertex by 1. In fact we may label the first m2 − 1 vertices by 1, 2, . . . , m2 − 1. Then
we place the chain of length b2 such that its first vertex becomes the mnd

2 total vertex, and we do
not introduce crossings. In particular, this chain is placed entirely below the arc of the first chain
starting with the (m2 − 1)st vertex. We proceed in the same way with the remaining chains, until
all vertices are labeled. Observe that this procedure is uniquely determined.

The inverse map starts with a noncrossing set partition x′ and creates a nonnesting set partition
x from Mx′ and bx′ . It works verbatim, except that we try to avoid nestings instead of crossings.
Again, the steps in this procedure are uniquely determined. �

EXAMPLE 4.10

Consider x = 1 6 | 2 3 5 | 4 | 7 8 ∈ NC8. We have

Mx = {1, 2, 4, 7} and b(x) = (2, 3, 1, 2).

We now successively place the four chains of lengths 2, 3, 1, and 2 while avoiding nestings.

1

1 2

1 2 3 4

1 2 3 4 5 6 7 8

We thus obtain the nonnesting set partition x′ = 1 3 | 2 5 6 | 4 | 7 8 as the image of x under
the bijection from Theorem 4.9.

There is yet another perspective on nonnesting set partitions: these can in fact be viewed as
antichains in a particular poset.
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(1 2) (2 3) (3 4) (4 5)

(1 3) (2 4) (3 5)

(1 4) (2 5)

(1 5)

FIGURE 10. The triangular poset ∆5.

DEFINITION 4.11

Let n ≥ 1, and define Tn =
{
(i, j) | 1 ≤ i < j ≤ n

}
. Consider the partial order on Tn, where

(i, j) ≤ (k, l) if and only if i ≥ k and j ≤ l. We call the resulting poset ∆n = (Tn,≤) the
TRIANGULAR POSET of order n.

Figure 10 shows the triangular poset of order 5.

THEOREM 4.12
For n ≥ 0, the collection of arcs of x ∈ NNn is an antichain of ∆n, and every antichain of ∆n
arises in this fashion.

Proof. Let X ⊆ Tn be a collection of pairs of the form (i, j) for 1 ≤ i < j ≤ n. If
∣∣X∣∣ ≤ 1, then X

is certainly an antichain in ∆n, and the set partition whose arcs are determined by X is certainly
nonnesting.

Now suppose that
∣∣X∣∣ ≥ 2. Then we can find (i, j), (k, l) ∈ X. Observe that if i = k or j = l,

then (i, j) and (k, l) are comparable in ∆n, and in that case they do not correspond to arcs of a set
partition. Let us therefore without loss of generality assume that i < k. There are two possibilities:

(i) i < j, k < l. It follows that (i, j) and (k, l) are not comparable in ∆n, and the arcs in the
corresponding set partition do not nest. (In this case, the relation between j and k does not matter.)

(ii) i < k < l < j. It follows that (k, l) ≤ (i, j) and the arc corresponding to (k, l) nests in the arc
corresponding to (i, j). �

PROPOSITION 4.13

For n ≥ 0 we have
∣∣NNn

∣∣ = Cat(n). Moreover, the number of antichains of ∆n is given by
Cat(n).

Proof. This follows from Proposition 2.2 and Theorems 4.9 and 4.12 �

It turns out that the nonnesting set partitions share quite some enumerative features with the
noncrossing set partitions. On a structural level, however, the posets (NCn,≤dref) and (NNn,≤dref)
are quite different. In fact, for n ≥ 5 the poset (NN5,≤dref) is not self-dual and no longer a lattice;
for n ≥ 6 it is not even graded anymore.
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The reason for the failure of the lattice property is that the intersection of two nonnesting set
partitions need not be nonnesting anymore. Take for instance x = 1 2 4 5 | 3 and x′ = 1 3 5 | 2 4.
Both set partitions are nonnesting, but x ∧Π x′ = 1 5 | 2 4 | 3, which is unfortunately nesting.
Also there are two nonnesting, mutually incomparable set partitions that refine x ∧Π x′, namely
y = 1 5 | 2 | 3 | 4 and y′ = 1 | 2 4 | 3 | 5.

If we on the other hand consider the nonnesting set partition x = 1 4 | 2 5 | 3 6, then all its
upper covers in (Πn,≤dref) are nesting. These set partitions are x1 = 1 2 4 5 | 3 6, x2 = 1 3 4 6 | 2 5
and x3 = 1 4 | 2 3 5 6.

It is an intriguing open question whether some other properties of (NCn,≤dref), for instance the
existence of an edge-labeling which has a unique rising chain per interval is true in (NNn,≤dref).

EXERCISE 12

Construct the nonnesting partition of [16] that is the image of x = 1 2 6 7 8 14 | 3 4 5 |
9 10 12 13 | 11 | 15 | 16 under the bijection from Theorem 4.9.

Let us conclude this section with an intriguing observation. Let ri denote the number elements
of rank i on ∆n, and let ei = n− ri. We then see that ei = i for i ∈ [n− 1].

PROPOSITION 4.14
For n ≥ 0 we have

Cat(n + 1) =
n

∏
i=1

ei + en + 2
ei + 1

.

Proof. This is a simple computation:
n

∏
i=1

ei + en + 2
ei + 1

=
n + 3

2
· n + 4

3
· · · · · 2n + 2

n + 1

=
(2n + 2)!

(n + 2)!(n + 1)!

=
1

n + 2

(
2n + 2
n + 1

)
= Cat(n + 1).

�

The numbers ei defined above are the EXPONENTS of the symmetric group Sn+1, and the con-
nection between these exponents and the rank-numbers in ∆n was first observed by A. Shapiro,
R. Steinberg, and B. Kostant, see [15], (in a much more general framework).

4.4. 312-Avoiding Permutations. Now we turn our attention to permutations avoiding the pattern
312. For this recall that Sn is the symmetric group of degree n, i.e. the group of all permutations of
[n].

DEFINITION 4.15
Let n ≥ 0. A permutation π ∈ Sn AVOIDS the pattern 312 if there exist no three integers
i < j < k such that π(j) < π(k) < π(i).
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Let Sn(312) denote the set of all 312-avoiding permutations of Sn. The number of 312-avoiding
permutations was first determined by D. Knuth, see [14, Exercise 2.2.1.4].

PROPOSITION 4.16: [14, Exercise 2.2.1.4]

For n ≥ 0 we have
∣∣Sn(312)

∣∣ = Cat(n).

We want to prove Proposition 4.16 bijectively, and therefore need to establish a few more con-
cepts. A DESCENT of a permutation π ∈ Sn is an integer i ∈ [n] such that π(i) > π(i + 1). Let
Des(π) denote the set of descents of π, and let des(π) =

∣∣Des(π)
∣∣. Moreover, for a finite set X we

denote by ℘(X) its power set.

LEMMA 4.17

For n ≥ 0 the map Des : Sn → ℘
(
[n]
)

is injective.

Proof. We prove this result by induction on the number of descents. If des(π) = 0, then π must be
the identity. Now consider π, π′ ∈ Sn with Des(π) = X = Des(π′) and suppose that des(π) =
des(π′) = k > 0. Let i = min X, and consider the permutations σ, σ′ that arise from π and π′,
respectively, by exchanging the ith and the (i + 1)st letter. We have des(σ) = des(σ′) = k− 1 < k,
and Des(σ) = X \ {i} = Des(σ′). By induction we find σ = σ′, and thus π = π′. �

Following [24] we define a NONCROSSING ARC DIAGRAM as follows: we write n points in order
on a vertical line with 1 at the bottom, and we may connect two vertices i and j with i < j by an
arc, which is a monotone curve that passes either to the left or to the right of every point strictly
between i and j. No two arcs of the same diagram may intersect except perhaps at their endpoints,
and no two arcs of the same diagram may have the same lower or upper endpoints. Let Arc(n)
denote the set of all noncrossing arc diagrams with n points.

Each permutation π ∈ Sn has a PERMUTATION DIAGRAM defined by drawing n dots in an
n× n-box, where the ith dot is placed at coordinate

(
i, π(i)

)
. Now we connect the ith dot with the

(i + 1)st dot if and only if i ∈ Des(π). If we now move the dots to the left on a vertical line, where
we allow lines to bend, but not to pass through dots or other lines, then we obtain a noncrossing
arc diagram, which we denote by δ(π).

THEOREM 4.18: [24, Theorem 3.1]

For n ≥ 0 the map δ : Sn → Arc(n) is a bijection.

Proof. It follows from Lemma 4.17 that δ is injective. Let us now describe the inverse map. Given
an arc diagram D ∈ Arc(n), denote its connected components by C1, C2, . . . , Ck. These connected
components are either single dots or sequences of dots connected by a single curve. Then Ci is a
LEFT COMPONENT if there is no component that is strictly to its left in the drawing of D. Since D is
noncrossing, we can always find a left component of D. (See the proof of [24, Proposition 3.2] for
a detailed explanation. If we have two arcs, we can say one of them is LEFT OF the other, when it
is drawn further to the left than the other. It then remains to show that this relation is acyclic.) We
now inductively construct a permutation from D. We order the left components by their minimal
elements, and we remove the left component which comes first in this order, and write down its
entries in reverse order. Then we remove this left component from D, and repeat the process, until
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(A) The permutation diagram of
π = 46153287 with marked de-
scents.

1

2

3

4

5

6

7

8

(B) The noncrossing arc diagram
δ(π) for π = 46153287.

FIGURE 11. The map from permutations to noncrossing arc diagrams.

1

2

3

4

5

6

7

8

→

4
1

2

3

5

6

7

8

→

461

2

3

5

7

8

→

461532

7

8

→

46153287

FIGURE 12. How to construct a permutation from a noncrossing arc diagram. The
available left components at each step are marked in green.

we have no components left. It is thus ensured that we obtain a permutation πD of [n], since each
k ∈ [n] belongs to exactly one connected component of D, and elements that have an outgoing
edge in D are by construction descents of πD. It is then clear that δ(πD) = D, and we are done. �

EXAMPLE 4.19
Let us illustrate the map δ from Theorem 4.18 and its inverse with an example. Consider the
permutation π = 46153287 ∈ S8. We have Des(π) = {2, 4, 5, 7}. Its permutation diagram
with marked descents is displayed in Figure 11a, and the noncrossing arc diagram δ(π) is
shown in Figure 11b. Figure 12 illustrates the inverse map.

We conclude this section with the observation that the map δ establishes a bijection between
Sn(312) and NCn.
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LEMMA 4.20

Let n ≥ 0 and π ∈ Sn. We have π /∈ Sn(312) if and only if there exist integers i, k with
i + 1 < k such that πi+1 < πk < πi.

Proof. If such integers i, k exist, then we clearly have π /∈ Sn(312). Conversely, suppose that
π /∈ Sn(312). By definition there exist integers i < j < k with πj < πk < πi. We proceed by
induction on j− i. If j− i = 1, we are done. Otherwise we can find j′ with i < j′ < j. There are two
possible cases: if πj′ < πk, then we have πj′ < πk < πi and j′ − i < j− i so that we conclude the
claim by induction. Otherwise πj′ > πk, but then we obtain πj < πk < πj′ , and j− j′ < j− i and
we conclude the claim by induction once again. �

THEOREM 4.21

For n ≥ 0 the map δ restricts to a bijection from Sn(312) to NCn.

Proof. This proof relies on two simple observations. Firstly, the set of noncrossing set partitions
are clearly in bijection with the set of noncrossing arc diagrams in which no arc passes to the left
of a dot. (Rotate the diagram by 90 degrees, and reflect horizontally.) Secondly, an arc passes to
the left of a dot in δ(π) if and only if π has a descent at i such that there is some k > i + 1 with
π(i + 1) < π(k) < π(i). Lemma 4.20 implies that this is equivalent to π /∈ Sn(312) so that δ−1 is
in fact surjective. �

EXERCISE 13

Find the permutation π ∈ S16(312) whose image δ(π) is our running example x =
1 2 6 7 8 14 | 3 4 5 | 9 10 12 13 | 11 | 15 | 16.

Proof of Proposition 4.16. This follows from Proposition 2.2 and Theorem 4.21. �

4.5. Triangulations. For n ≥ 3 consider a regular n-gon Pn, whose vertices are labeled clockwise
by 1, 2, . . . , n. A DIAGONAL is an edge between two vertices i and j, where |j − i| > 1. Without
loss of generality we can identify the diagonals of Pn with pairs of integers (i, j) where i < j. It
is quickly verified that Pn admits n(n−3)

2 diagonals. Two diagonals (i, k) and (j, l) are CROSSING if
i < j < k < l.

DEFINITION 4.22
Let n ≥ 3. A TRIANGULATION of Pn is a maximal set of pairwise noncrossing diagonals.

Let ∆(Pn) denote the set of triangulations of Pn. We can quickly check by induction that any
triangulation of Pn consists of n− 3 diagonals.

PROPOSITION 4.23

For n ≥ 1 we have
∣∣∆(Pn+2)

∣∣ = Cat(n).
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3

45

6

7

8

9

FIGURE 13. A colored triangulation of P10.

For our bijective proof of Proposition 4.23 we make use of the coloring method of diagonals
belonging to a given triangulation T ∈ ∆(Pn+2) that was described in [17, Section 6]. Firstly, label
the vertices of Pn+2 by 0, 1, . . . , n + 1, and fix a diagonal (i, j) in T. If we remove this diagonal from
T, then we obtain a quadrilateral Q(T) with vertices i, j, k, l. In particular, (k, l) is the other diagonal
in Q(T). If we traverse the vertices of Q(T) in order, then we color (i, j) green if j is the vertex of
Q(T) with the biggest label, and we color it red otherwise. A colored triangulation of P10 is shown
in Figure 13.

LEMMA 4.24: [17, Section 6]

For n ≥ 1, any set of less than n− 1 diagonals of Pn+2 can be completed in a unique way to
a triangulation of Pn+2 by adding only green diagonals.

Proof. Let D be a set of diagonals of Pn+2 with
∣∣D∣∣ < n− 1. Since any triangulation of Pn+2 consists

of n− 1 diagonals, we can find a polygon P′ with more than three vertices whose interior does not
contain a diagonal of D. Denote the vertices of P′ by i1, i2, . . . , ik in increasing order. Any diagonal
of the form (i1, ij) for j ∈ {3, 4, . . . , k − 1} must be red in any triangulation extending D. This
follows, since the quadrilateral containing (i1, ij) must either contain the vertices i2, ij+1 or ij−1, ik.
In any case, ij is not the biggest vertex in this quadrilateral. Since we only allow D to be completed
by green edges, we conclude that any such triangulation must contain the diagonal (i2, ik). If we
iterate this process, we see that we see that there is a unique way to complete D by green edges. �

A consequence of Lemma 4.24 is that every triangulation of Pn+2 is uniquely determined by its
set of red diagonals. The bijection from ∆(Pn+2) and NCn appears for example in [34, Section 8].

THEOREM 4.25: [34, Section 8]

For n ≥ 1 there is an explicit bijection from ∆(Pn+2) to NCn.

Proof. Let T ∈ ∆(Pn+2). Remove the external edges of T and all green diagonals. For every red
diagonal (i, j) move the vertex i a little bit counterclockwise, and move the vertex j a little bit
clockwise so that i and j sit above the diagonal (i, j). If we now remove the vertices 0 and n + 1,
we are left with a partition xT ∈ Πn. By construction (since the diagonals of T are mutually
noncrossing), we have xT ∈ NCn.
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Conversely, let x ∈ NCn. If n = 1, then x = 1 and we map it to the empty triangulation of P3.
Otherwise, let B be the unique block of x containing 1, and suppose that k = max B. Draw the
vertices 0, 1, . . . , n + 1 clockwise on a circle, and draw a red diagonal from 0 to k + 1. Then x \ B is
(isomorphic to) a noncrossing set partition of [n′] for some n′ < n, and we can inductively insert
the remaining red diagonals. Lemma 4.24 implies that we can complete this set of red diagonals in
a unique way to a triangulation Tx ∈ ∆(Pn+2).

Again we see quickly that the two maps are mutual inverses, which concludes the proof. �

EXAMPLE 4.26

Consider x = 1 6 | 2 3 5 | 4 | 7 8 ∈ NC8. We inductively add the following separating lines
into P10.

0
1

2

3
45

6

7

8
9

→

0
1

2

3
45

6

7

8
9

→

0
1

2

3
45

6

7

8
9

The unique way to complete this partial triangulation to a full triangulation of P10 by green
edges yields the triangulation shown in Figure 13.

EXERCISE 14
Construct the triangulation of P18 that corresponds to the noncrossing partition x =
1 2 6 7 8 14 | 3 4 5 | 9 10 12 13 | 11 15 16.
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