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@ main task: investigate the (topological) structure of the
order complex of a poset
@ in particular:

o determine the homotopy type
e compute the homology
o compute bases for the homology

@ helpful tools: poset labelings
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@ recursive atom order: total ordera; < a, < - -+ < ag
such that
o there exists a recursive atom order of [a;, 1] such that the
first elements of this order are those that cover some
a; < aj
o ifi <janda;, a; <y, then there is some k < j and some
z < y such that gy, aj <z

Theorem (Bjorner & Wachs, 1983)

A bounded poset admits an CL-labeling if and only if it admits a
recursive atom order.




@ lexicographically shellable poset: admits an
EL-labeling or a CL-labeling

@ if P is lexicographically shellable, then

o A(P) is shellable,

o it is homotopic to a wedge of spheres,

o the dimension of its i-th homology group is given by
the number of falling maximal chains of length i — 2
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@ complex reflection: unitary transformation that fixes a
hyperplane pointwise ~ T

@ complex reflection group: group generated by complex
reflections ~ W

o rank: codimension of fixed space

@ irreducible: no nontrivial factors

o well-generated: irreducible, rank equals minimal
number of generators



@ monomial matrix: one non-zero entry per row and per
column

@ G(d,e,n) .. (n x n)-monomial matrices, non-zero entries
are d-th roots of unity, product is g-th root of unity

Theorem (Shephard & Todd, 1954)

A finite group W is a well-generated reflection group if and only if
W = G(d,e,n) ford >1,e € {1,d}, or W is one of 26
exceptional groups.




G(d,d,2) = L(d) = D,
Gos = Hj
Gog = Fy
Gso = Hy
Gss = Eg
Gse = E7
Gs7 = Eg



wdy <o < dy

o Coxeter number: highest degree ~h

@ degrees: certain invariants of W

o regular element: has eigenvector that does not lie in
any reflection hyperplane

@ Coxeter element: regular element of order h ~

Theorem (Lehrer & Springer, 1999)

Coxeter elements exist in well-generated reflection groups.




@ absolute length: length of a minimal T-decomposition
> KT

@ absolute order: u <r v if and only if
lr(v) = Lr(u) + lr(uto)



@ W .. well-generated reflection group

Definition (Brady, 2001; Brady & Watt, 2002; Bessis,

2003; Bessis, 2007)

The lattice of noncrossing partitions of W is defined to be
the interval [e, c|r between the identity e and some Coxeter
element ¢ of W in absolute order. ~> NCw(c)




@ combinatorial definitions
type A: Kreweras, 1971

type B: Reiner, 1997

type D: Athanasiadis & Reiner, 2004
type G(d,d, n): Bessis & Corran, 2006



@ combinatorial definitions
type A: Kreweras, 1971

type B: Reiner, 1997

type D: Athanasiadis & Reiner, 2004
type G(d,d, n): Bessis & Corran, 2006
type G(d, 1,n): essentially type B
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Theorem (Reiner, Ripoll & Stump, 2014)

For any well-generated reflection group W, and any two Coxeter
elements c¢,c’ € W, we have NCy/(c) = NCw(c').




Theorem (Kreweras, 1971; Reiner, 1997; Brady, 2001;
Brady & Watt, 2002; Bessis, 2003; Athanasiadis &

Reiner, 2004; Bessis & Corran, 2006; Bessis, 2007; Brady
& Watt, 2008)

NCyy is indeed a lattice for any well-generated reflection group W.

o uniform proof only for Coxeter groups
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Theorem (Bjorner & Edelman, 1980; Reiner, 1997)

IfW = A, or W = By, then NCyy is EL-shellable for any n > 0.

@ restrict labeling that comes from the semimodularity of
the partition lattice



Theorem (Athanasiadis, Brady & Watt, 2007)
If W is a Coxeter group, then NCyy is EL-shellable.

o label (u,v)byu~tveT
@ use compatible reflection order

@ this is uniform!




(1234)

(34) (23) (13)

_— /// / \ \\\ T~

(123) (234) (134) (124) (12)(34) (14)(23)
N 7

) (3 (12) (12) (14)

(23)

(34) (23) (23) (14) (13)

SN
(13) (24) (12) (23) (34) (14)
\(m\ (20) \IZJ (zs/ (34) /(14J/
(1)

(12) < (13) < (14) < (23) < (24) < (34)



o what about well-generated reflection groups that are no
Coxeter groups?

o can we generalize the proof of Athanasiadis, Brady and
Watt?



o W .. Coxeter group
o ¢ € W .. Coxeter element

o reflection order: either f, < f4,14p < tg OF
tﬁ < tuaerﬁ <ty

Definition (Athanasiadis, Brady & Watt, 2007)

A reflection order is c-compatible if for any rank-2 subgroup
of W, whose simple reflections are s, t, we have s < t
whenever st <r c.




o W .. well-generated reflection group
@ c € W .. Coxeter element

@ T. .. reflections below ¢

Definition (€, 2015)

A total order of T, is c-compatible if for any w <7 c with
{r(w) = 2, there exists a unique rising reduced
T-decomposition of w.
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Theorem (¢, 2015)

IfW = G(d,d, n) or if W is one of the exceptional well-generated
reflection groups that is not a Coxeter group, then NCyy is
EL-shellable.

o label (u,v)byulveT

@ use compatible order for G(d,d, n), and a computer
verification for the exceptional types

@ not uniform!
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o W .. well-generated reflection group
@ c € W .. Coxeter element
@ T. .. reflections below ¢

Theorem (¢, 2014)

Every c-compatible order of T. is a recursive atom order of

NCw(C).

@ proof by induction on rank of W

@ “almost” uniform!



o W .. well-generated reflection group
@ c € W .. Coxeter element
@ T. .. reflections below ¢

Theorem (¢, 2014)

Every c-compatible order of T. is a recursive atom order of

NCw(C).

@ proof by induction on rank of W
o “almeost” uniform!



Proposition (2%, 2014)

c-compatible orders exist in well-generated reflection groups.

@ not uniform!



Theorem (¢, 2014)

If W is a well-generated reflection group, then NCyy is
CL-shellable.

@ “almost” uniform!
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@ braid group: By = (03,...,04_1 |
(010+1)° = (0907)* = ¢, for |j —i| > 1)
@ minimal T-decompositions of w € W ~» Redr(w)
@ By () acts on Redr(w) by
0i - (w1 -+ wi) = w1 -+ - Wiy (Wi W] Wi - - - Wy
~+ Hurwitz move



Theorem (Deligne, 1974; Bessis & Corran, 2006; Bessis,

2007)

For any well-generated reflection group W, and any Coxeter
element c € W, the group By, () acts transitively on Redr(w),
whenever w <7 c.

o uniform proof only for Coxeter groups



o W .. well-generated reflection group

@ ¢ € W .. Coxeter element

Theorem (%, 2015)

If B, acts transitively on Redr(w) for every w <t c with
Or(w) = 2, and NCw(c) is lexicographically shellable, then B,
acts transitively on Redr(c).




@ minimal T-decompositions of ¢ correspond to maximal
chains in MCy(c)

C=Wwy Wi W; 1WjWjy1 - Wy
4

wy Wy

Wy Wi Wi <

Wy - Wip



@ minimal T-decompositions of ¢ correspond to maximal
chains in MCy(c)

o Hurwitz moves correspond to “taking detours”

C=WwWy Wi W; 1WjWjy1 - Wy
c

wy W

Wy e Wi Wi < wy - wi_z(wi_lwiwi’_ll)

Wy Wiy



@ minimal T-decompositions of ¢ correspond to maximal
chains in MCy(c)

o Hurwitz moves correspond to “taking detours”

_ -1
C=wiwy - 'wi—z(wi—lwiwi_1)wi—lwi+l cc o Wn

4

w1
. . \ -1
Wy WiaWiq - wy - Wi (Wi wiw; )



@ non-transitivity can be caused by two scenarios

rank-2 violation large “gaps”




@ non-transitivity can be caused by two scenarios

rank-2 violation large “gaps”

Contradicts rank-2 as- Contradicts shellability
sumption! assumption!



o W .. well-generated reflection group
o ¢ € W .. Coxeter element
@ T. .. reflections below ¢

Proposition (2%, 2015)

If there exists a c-compatible order of T, then B, acts transitively
on Redr(w) for every w <t ¢ with {y(w) = 2.




o W .. well-generated reflection group
o ¢ € W .. Coxeter element
@ T. .. reflections below ¢

Theorem (3%, 2015)

If there exists a c-compatible order of T, then B, acts transitively
on Redr(c).




@ Conclusions
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@ c-compatible reflection orders are good!
o for Coxeter groups, they allow uniform solutions for:

o lattice property of NCpy
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o bases of homology of A(ANCyy)



@ c-compatible reflection orders are good!
o for Coxeter groups, they allow uniform solutions for:

o lattice property of NCpy
e lexicographic shellability of NCyy
o bases of homology of A(ANCyy)

Problem

Give a uniform description of a c-compatible order of the
reflections below c for all well-generated reflection groups, and
some (uniform) choice of Coxeter element c.




Merci Beaucoup.
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@ group blocks into cycles
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@ cover relations correspond to transpositions
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@ cover relations correspond to transpositions
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@ cover relations correspond to transpositions

(1245679) = (1279)(456) - (26)



@ T .. transpositions in &,
@ ¢ .. identity permutation
@ c .. some long cycle

Theorem (Biane, 1997)

For n > 0, the poset NC,, = (NC,,, <) is isomorphic to the
interval [e, c| in the Cayley graph of (S, T).

@ use this connection as a starting point to generalize
NC,, to all well-generated reflection groups



@ generated group: group G with a distinguished
generating set A ~ (G,A)

o define a word length ~ Ly

o partial orders:
u<v ifandonlyif £4(v) = La(u)+Lla(u10)

@ A closed under conjugation ~~ well-defined Hurwitz
action



@ generated group: group G with a distinguished
generating set A ~ (G,A)

o define a word length ~ Ly

o partial orders:
u>v ifandonlyif £a(u) = Ll4(v)+ la(uo?)

@ A closed under conjugation ~~ well-defined Hurwitz
action



@ (G,A) .. generated group, A closed under conjugation
@ x € G .. some element

@ Ay .. generators below x

Theorem (3%, 2015)

Suppose that B, acts transitively on Redy(A)g, whenever
la(g) = 2. If [e, x| is lexicographically shellable, then B,
acts transitively on Redr(A)x.




@ (G,A) .. generated group, A closed under conjugation

@ x € G .. some element

@ Ay .. generators below x

Proposition (2%, 2015)

If there exists a x-compatible order of Ay, then B, acts
transitively on Redr(A)g, whenever £4(g) = 2.




@ (G,A) .. generated group, A closed under conjugation

@ x € G .. some element

@ Ay .. generators below x

Theorem (3%, 2015)

Every x-compatible order of Ay is a recursive atom order of [e, x] 4.




@ (G,A) .. generated group, A closed under conjugation

@ x € G .. some element

@ Ay .. generators below x

Theorem (3%, 2015)

If there exists a x-compatible order of Ay, then By, ) acts
transitively on Redr(A)x.




@ how frequently do generated groups with conjugation
closed generating sets appear?

@ how frequently do x-compatible orders exist in these
groups?



@ braid group: fundamental group of complement of
reflection hyperplanes ~ B(W)

o an — %(An_])
@ group presentation:

W= (T | =¢R)

B(W) = (T | R)
e consider (B(W), <r)



@ braid group: fundamental group of complement of
reflection hyperplanes ~ B(W)

o an — %(An_])
@ group presentation:

W= (T | =¢R)

B(W) = (T | R)
e consider (B(W), <r)

e in particular, intervals [e, '] for some m > 0
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@ elements in I\Cgv"] are m-multichains in NCy

o but: different partial order than Armstrong’s
m-divisible noncrossing partitions!



@ P = (P,<) .. some poset

@ m-multichain: (x1,x2,...,%y,) withx; <xp < -+ < xy
~rs Plm]

@ poset of m-multichains: (P [m], <) ~s Plm]



@ P = (P, <) .. some poset

@ m-multichain: (x1,x2,...,%y,) withx; <xp < -+ < xy
~rs Plm]

@ poset of m-multichains: (P[m], <) ~s Plm]

Theorem (%, 2014)

Let P = (P, <) be a bounded poset, and let Plml denote its poset
of m-multichains, ordered componentwise by <. Then, P is
lexicographically shellable if and only if PU"] is lexicographically
shellable for every m > 0.
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@ rank-2 intervals of [e, |1 in B (W) are of one of the

two forms
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@ rank-2 intervals of [e, |1 in B (W) are of one of the
two forms

@ ~» rank-2 transitivity of the Hurwitz action
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@ rank-2 intervals of [e, |1 in B (W) are of one of the

two forms
@ ~» rank-2 transitivity of the Hurwitz action
o ~ proving lexicographic shellability yields Hurwitz

7

transitivity “for free”!
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