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@ Catalan Combinatorics
© The Symmetric Group
@ Cataland

@ Parabolic Cataland

@ Parabolic Cataland in Type A,



@ let n > 0 be an integer



@ let n > 0 be an integer

@ Catalan number: Cat(n) def nlﬁ(
o Catalan family: family of combinatorial objects

enumerated by Cat(n)
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@ let n > 0 be an integer

e Catalan number: Cat(n) def ,11?(2,;1 )

o Catalan family: family of combinatorial objects
enumerated by Cat(n)

triangulations of an (n + 2)-gon
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@ let n > 0 be an integer

@ Catalan number: Cat(n) def nlﬁ(
o Catalan family: family of combinatorial objects

enumerated by Cat(n)

2
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Dyck paths of length 2n
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@ let n > 0 be an integer; [1] def {1,2,...,n}

e Catalan number: Cat(n) def ,11?(2,;1 )

o Catalan family: family of combinatorial objects
enumerated by Cat(n)

231-avoiding permutations of [n]
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@ let n > 0 be an integer; [1] def {1,2,...,n}

e Catalan number: Cat(n) def ,11?(2,;1 )

o Catalan family: family of combinatorial objects
enumerated by Cat(n)

noncrossing partitions of 1]
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o triangulation: dissection of a convex (1 + 2)-gon into
triangles ~ Ay

@ (diagonal) flip:



o triangulation: dissection of a convex (1 + 2)-gon into
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o triangulation: dissection of a convex (1 + 2)-gon into
triangles ~ Ay
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o triangulation: dissection of a convex (1 + 2)-gon into
triangles ~ Ay
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o triangulation: dissection of a convex (1 + 2)-gon into
triangles ~ Ay

@ (diagonal) flip:




o triangulation: dissection of a convex (1 + 2)-gon into
triangles ~ Ay

@ (diagonal) flip:




o triangulation: dissection of a convex (1 + 2)-gon into
triangles ~ Ay

@ (diagonal) flip:

@ increasing flip: total slope increases ~ <flip




@ Dyck path: positive lattice path using 7 up- and n
down-steps of unit length ~ Dy,

o (valley) rotation:



@ Dyck path: positive lattice path using 7 up- and n
down-steps of unit length ~ Dy,

o (valley) rotation:
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down-steps of unit length ~ Dy,
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@ Dyck path: positive lattice path using 7 up- and n
down-steps of unit length ~ Dy,

o (valley) rotation:




@ Dyck path: positive lattice path using 7 up- and n
down-steps of unit length ~ Dy,

o (valley) rotation:




@ Dyck path: positive lattice path using 7 up- and n
down-steps of unit length ~ Dy,

o (valley) rotation:




@ Dyck path: positive lattice path using 7 up- and n
down-steps of unit length ~ Dy,

o (valley) rotation:

@ increasing rotation: area increases s Zpot




@ &, .. group of permutations of [n]; w € &,



@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)



@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without
231-pattern ~ G,(231)



@ &, .. group of permutations of [n]; w € &,
@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without
231-pattern ~ G,(231)
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without
231-pattern ~ G,(231)

@ inversion: i < jwith w(i) > w(j) ~ Inv(w)

431265



@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without

231-pattern ~ G,(231)
@ inversion: i < jwith w(i) > w(j) ~ Inv(w)
@ weak order: containment of inversion sets ~ <weak
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without
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@ inversion: i < jwith w(i) > w(j) ~ Inv(w)
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without

231-pattern ~ G,(231)
@ inversion: i < jwith w(i) > w(j) ~ Inv(w)
@ weak order: containment of inversion sets ~ <weak
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without

231-pattern ~ G,(231)
@ inversion: i < jwith w(i) > w(j) ~ Inv(w)
@ weak order: containment of inversion sets ~ <weak
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without

231-pattern ~ G,(231)
@ inversion: i < jwith w(i) > w(j) ~ Inv(w)
@ weak order: containment of inversion sets ~ <weak
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without

231-pattern ~ G,(231)
@ inversion: i < jwith w(i) > w(j) ~ Inv(w)
@ weak order: containment of inversion sets ~ <weak
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@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without

231-pattern ~ G,(231)
@ inversion: i < jwith w(i) > w(j) ~ Inv(w)
@ weak order: containment of inversion sets ~ <weak

631254



@ &, .. group of permutations of [n]; w € &,

@ 231-pattern: i < j < k with w(k) < w(i) < w(j)

@ 231-avoiding permutation: permutation without

231-pattern ~ G,(231)
@ inversion: i < jwith w(i) > w(j) ~ Inv(w)
@ weak order: containment of inversion sets ~ <weak

631254



@ Tamari lattice:

7o % (B, Siip) = (Do Sew) = (S0(231), Swvenk)



@ Tamari lattice:

7o % (B, Siip) = (Do Sew) = (S0(231), Swvenk)
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@ Tamari lattice:

7o % (B, Siip) = (Do Sew) = (S0(231), Swvenk)
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@ Tamari lattice:

7o % (B, Siip) = (Do Sew) = (S0(231), Swvenk)
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@ noncrossing partition: set partition of [n] such that if
i<j<k<landi~kandj~ I theni~j ~ NC,

@ refinement order: containment of blocks ~r Zef
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@ noncrossing partition: set partition of [n] such that if
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@ noncrossing partition: set partition of [n] such that if
i<j<k<landi~kandj~ I theni~j ~ NC,

@ refinement order: containment of blocks ~r Zef



def
:e (NCn/ Sref)

@ noncrossing partition lattice: N'C,




def
:e (NCn/ Sref)

@ noncrossing partition lattice: N'C,




@ &, .. group of permutations of [n]; w € &,

@ cover inversion: i < j with w(i) = w(j) + 1



@ &, .. group of permutations of [n]; w € &,

@ cover inversion: i < j with w(i) = w(j) + 1
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@ &, .. group of permutations of [n]; w € &,

@ cover inversion: i < j with w(i) = w(j) + 1
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@ &, .. group of permutations of [n]; w € &,

@ cover inversion: i < j with w(i) = w(j) + 1

e
431265

Theorem (N. Williams, 2013; N. Reading, 2015)

The set of cover inversions of a 231-avoiding permutation forms a
noncrossing partition, and this correspondence is bijective.




© The Symmetric Group



@ symmetric group: group of permutations of [n] ~~ &,



@ symmetric group: group of permutations of [n] ~~ &,

@ X C G, generating set closed under taking inverses



@ symmetric group: group of permutations of [n] ~~ &,

@ X C G, generating set closed under taking inverses
o X-length: word length with respect to alphabet X ~~ x
o X-postfix order: u <x v if and only if

Ox(u) + Ux(ou=t) = lx(0)



@ symmetric group: group of permutations of [n] ~~ &,

@ canonical choices for X:

def

X=5, ¥ {(ii+1)[1<i<n}



@ symmetric group: group of permutations of [n] ~~ &,

@ canonical choices for X:

def

X=5, ¥ {(ii+1)[1<i<n}
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@ symmetric group: group of permutations of [n] ~~ &,

@ canonical choices for X:

X=T, & {(j)|1<i<j<n}



@ symmetric group: group of permutations of [n] ~~ &,

@ canonical choices for X:

X=T, & {(j)|1<i<j<n}
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@ symmetric group: group of permutations of [n] ~~ &,

Theorem (A. Bjorner, 1980)

Foru,v € &, we have u <g v if and only if u <yeax ©.
Consequently, there is an isomorphism of lattices

<6n(231), gs) ~ T




@ symmetric group: group of permutations of [r]

Theorem (P. Biane, 1997; T. Brady, 2001)

There is an isomorphism of lattices

({w€6n|w§T 1z ... n)},§T> >~ NC,.




@ symmetric group: group of permutations of [n] ~~ &,




@ symmetric group: group of permutations of [n] ~~ &,



@ root order: (i,j) < (k,I)ifand only ifi > kand j <

@ root poset: O, o (Tn, =)




@ root order: (i,j) < (k,I)ifand only ifi > kand j <

@ root poset: O, o (Tn, =)
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@ root order: (i,j) < (k,I)ifand only ifi > kand j <

@ root poset: O, o (Tn, =)

o (12) o (23) © (34) o (45) o (56) o

O (0] o O O O O



@ root order: (i,j) < (k,I)ifand only ifi > kand j <

@ root poset: O, o (Tn, =)

(1 2)/ o \(2 3

(0] o



@ root order: (i,j) < (k,I)ifand only ifi > kand j <

@ root poset: O, o (Tn, =)

Theorem (A. Postnikov, 1997)

The set of order ideals in @, is in bijection with D,,.




@ let V=R[x,x2,...,%)/(x1+x+ - +x,=0)
@ &, acts on V by permuting variables




@ let V=R[x,x2,...,%)/(x1+x+ - +x,=0)
@ &, acts on V by permuting variables

Theorem (Folklore)

The invariant ring VS is a polynomial algebra. Every
homogeneous choice of algebraically independent generators has
degrees 2,3, ...,n.




@ let V=R[x,x2,...,%)/(x1+x+ - +x,=0)
@ &, acts on V by permuting variables

@ degrees: d; i 1 forie [n—1]

def
@ Coxeter number: h =d,_ 1 =n

Theorem (Folklore)

The invariant ring VS is a polynomial algebra. Every
homogeneous choice of algebraically independent generators has
degrees 2,3, ...,n.




@ let V=R[x,x2,...,%)/(x1+x+ - +x,=0)
@ &, acts on V by permuting variables

@ degrees: d; i 1 forie [n—1]

def
@ Coxeter number: h =d,_ 1 =n
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@ let V=R[x,x2,...,%)/(x1+x+ - +x,=0)
@ &, acts on V by permuting variables

@ degrees: d; i 1 forie [n—1]

def
@ Coxeter number: h =d,_ 1 =n
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i1 di _i=1 i+1



@ let V=R[x,x2,...,%)/(x1+x+ - +x,=0)
@ &, acts on V by permuting variables

@ degrees: d; i 1 forie [n—1]

def
@ Coxeter number: h =d,_ 1 =n

’ﬁdi+h_’ﬁi+1+n_ (2n)!
s odi i i1 ni(n+1)!




@ let V=R[x,x2,...,%)/(x1+x+ - +x,=0)
@ &, acts on V by permuting variables

@ degrees: d; i 1 forie [n—1]

def
@ Coxeter number: h =d,_ 1 =n

’ﬁdi+h_’ﬁi+1+n_ (2n)!
c1 o4 i1 i+l nl(n+1)

;= Cat(n)






Observation

The long cycle c = (12 ... n) factorizes canonically into
adjacent transpositions:

c=(12)-(23)---(n—1n).

This orders Sy, lexicographically.




Observation

The long cycle c = (12 ... n) factorizes canonically into
adjacent transpositions:

c=(12)-(23)---(n—1n).

This orders Sy, lexicographically. And also T).




o for (i,j), (k1) € T, define

() + ) & {“’ e

, otherwise



o for (i,j), (k1) € T, define
,7)+ (k1) =
(i) + (k) {J_, otherwise

e ifw e S, and (i,j) + (j, k) € Inv(w), then
(i,j) € Inv(w) or (j, k) € Inv(w)



o for (i,j), (k1) € T, define
,7)+ (k1) =
(i) + (k) {J_, otherwise

e ifw e S, and (i,j) + (j, k) € Inv(w), then
(i,j) € Inv(w) or (j, k) € Inv(w)

Observation

Ifw € 6,(231) and (i,j) + (j, k) € Inv(w), then
(i,j) € Inv(w).




o for (i,j), (k1) € T, define
1)+ (k1) =
(i) + (k) {J_, otherwise

e ifw e S, and (i,j) + (j, k) € Inv(w), then
(i,j) € Inv(w) or (j, k) € Inv(w)

Observation

Ifw € 6,(231) and (i,j) + (j, k) € Inv(w), then
(i,j) € Inv(w).
Inversion sets of 231-avoiding permutations are lexicographically
“aligned”.
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@ let S be a finite set

@ Coxeter matrix: m: S x S — {1,2,...,00} such that
m(s,t) = m(t,s) and m(s,t) = 1if and only if s = ¢
@ Coxeter system: (W, S) such that

W = (S| (st)"t) =id if m(s, t) # %) sroup



@ let S be a finite set

@ Coxeter matrix: m: S x S — {1,2,...,00} such that
m(s,t) = m(t,s) and m(s,t) = 1if and only if s = ¢
@ Coxeter system: (W, S) such that
W = (S| (st)"t) = id if m(s, t) # oo

@ Wis a Coxeter group
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@ let S be a finite set

@ Coxeter matrix: m: S x S — {1,2,...,00} such that
m(s,t) = m(t,s) and m(s,t) = 1if and only if s = ¢
@ Coxeter system: (W, S) such that
W = (S| (st)"t) = id if m(s, t) # oo

@ Wis a Coxeter group

> group

NN W~
g =W
N~ N
— N3N
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Ag,n>1:
By,n>2:
Dy,n>4:
E,6 <n<8§:

Fy:
H,,2<n<4:

L(m),m>6:

bbb b



o (6,,S5,) is the Coxeter system of type A, 1



@ let (W, S) be a finite Coxeter system with |S| = n



@ let (W, S) be a finite Coxeter system with |S| = n

@ W acts on R" as a group generated by reflections



@ let (W, S) be a finite Coxeter system with |S| = n

@ W acts on R" as a group generated by reflections

Theorem (C. Chevalley, 1955)

The invariant ring R[xq,x2, . .., xn]w is a polynomial algebra.
Every homogeneous choice of algebraically independent
generators has degrees dy,dy, . . ., dy.




@ let (W, S) be a finite Coxeter system with |S| = n

@ W acts on R" as a group generated by reflections

o degrees: the numbers dy,dy, ..., d,

Theorem (C. Chevalley, 1955)

The invariant ring R[xq,x2, . .., xn]w is a polynomial algebra.
Every homogeneous choice of algebraically independent
generators has degrees dy,dy, . . ., dy.




@ let (W, S) be a finite Coxeter system with |S| = n

@ W acts on R" as a group generated by reflections
o degrees: the numbers dy, dy, ..., d,

n
e W-Catalan number: Cat(W) def I —d'; n
i=1

1



let (W, S) be a finite Coxeter system with |S| = n

W acts on R" as a group generated by reflections

degrees: the numbers dy,dy, ..., d,

n
@ W-Catalan number: Cat(W) def 1 _di; n
=1
@ reflections:
def -1
T={wsw'|weW,seS}

roots: normal vectors to reflecting hyperplanes
e Oy = D WDy,



let (W, S) be a finite Coxeter system with |S| = n

W acts on R" as a group generated by reflections

degrees: the numbers dy,dy, ..., d,

@ W-Catalan number: Cat(W) = def ]_[ d’;d"
i=1

@ reflections:

T fwsw ! |we W,s e S} = {tu | @ € D}

roots: normal vectors to reflecting hyperplanes
e Oy = D WDy,
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degrees: the numbers dy,dy, ..., d,

W-Catalan number: Cat(W) = def ]_[ d’;d"
i=1

reflections:
T fwsw ! |we W,s e S} = {tu | @ € D}
roots: normal vectors to reflecting hyperplanes

e Oy = D WDy,
simple roots: & € ®f; such that f, € S ~ Ty



let (W, S) be a finite Coxeter system with |S| = n

@ W acts on R" as a group generated by reflections

o degrees: the numbers dy,dy, ..., d,

@ W-Catalan number: Cat(W) = def ]_[ d’;d"
i=1

@ reflections:
T fwsw ! |we W,s e S} = {tu | @ € D}
@ roots: normal vectors to reflecting hyperplanes
e Oy = D WDy,
@ simple roots: a € ®f; such thatt, € S ~ Ty
@ root order: « < Bif and only if B — & € spany (ITy)



let (W, S) be a finite Coxeter system with |S| = n

@ W acts on R" as a group generated by reflections
o degrees: the numbers dy, dy, ..., d,

def 1_[ di+dy
dA

@ W-Catalan number: Cat(W) =
i=1

@ reflections:
def

T= {wsw ! |weW,seSt={t,|a € d}
@ roots: normal vectors to reflecting hyperplanes
e Oy = D WDy,
@ simple roots: a € ®f; such thatt, € S ~ Ty

@ root order: « < Bif and only if B — & € spany (ITy)
works only if (W, S) is crystallographic



@ let (W, S) be a finite Coxeter system with |S| = n

@ W acts on R" as a group generated by reflections
o degrees: the numbers dy, dy, ..., d,

def M di4d,
=TI ‘a‘l‘_

e W-Catalan number: Cat(W)
i=1

Theorem (A. Postnikov, 1997)
The number of order ideals in (@3}, <) equals Cat(W).




@ let (W, S) be a finite Coxeter system with |S| = n

@ W acts on R" as a group generated by reflections
o degrees: the numbers dy, dy, ..., d,

def M di4d,
=TI ‘a‘l‘_

e W-Catalan number: Cat(W)
i=1

Theorem (A. Postnikov, 1997)
The number of order ideals in (@3}, <) equals Cat(W).

~+ Cat(W) is an integer for every W



@ let (W, S) be a finite Coxeter system; w € W

o Coxeter length: shortest length of factorization of w in
terms of S ~ g



@ let (W, S) be a finite Coxeter system; w € W

o Coxeter length: shortest length of factorization of w in
terms of S ~ g

@ (right) inversion: t € T with fg(wt) < ls(w) ~» Inv(w)



@ let (W, S) be a finite Coxeter system; w € W

o Coxeter length: shortest length of factorization of w in
terms of S ~ g

@ (right) inversion: t € T with fg(wt) < ls(w) ~» Inv(w)
@ if w=umay---a, thenInv(w) = (r1,1,...,7) with
Vi = Q-1+ - Bk—i+1 °°  dk—10k



@ let (W, S) be a finite Coxeter system; w € W

o Coxeter length: shortest length of factorization of w in
terms of S ~ L
@ (right) inversion: t € T with fg(wt) < ls(w) ~» Inv(w)
@ if w=umay---a, thenInv(w) = (r1,1,...,7) with
Ti = Gpdk—1 " - Ag—iy1 " A-19k
@ since W is finite, there exists a longest element ~ ~ w,



@ let (W, S) be a finite Coxeter system; w € W

o Coxeter length: shortest length of factorization of w in
terms of S ~ L
@ (right) inversion: t € T with fg(wt) < ls(w) ~» Inv(w)
@ if w=umay---a, thenInv(w) = (r1,1,...,7) with
Ti = Gpdk—1 " - Ag—iy1 " A-19k
@ since W is finite, there exists a longest element ~ ~ w,
~Inv(w,) =T



@ let (W, S) be a finite Coxeter system with |S| = n

@ Coxeter element: ¢ = $,(1)S¢(2) * * * S(n) fOr 0 € &,



@ let (W, S) be a finite Coxeter system with |S| = n

@ Coxeter element: ¢ = $,(1)S¢(2) * * * S(n) fOr 0 € &,
~- this orders S linearly



@ let (W, S) be a finite Coxeter system with |S| = n;
weW

@ Coxeter element: ¢ = $,(1)S¢(2) * * * S(n) fOr 0 € &,
~- this orders S linearly

@ c-sorting word of w: lexicographically smallest
S-reduced word for w ~ w(c)



@ let (W, S) be a finite Coxeter system with |S| = n;
weW

@ Coxeter element: ¢ = $,(1)S¢(2) * * * S(n) fOr 0 € &,
~- this orders S linearly
@ c-sorting word of w: lexicographically smallest

S-reduced word for w ~ w(c)
~~ Inv(wo(c)) linearly orders T ~ e



@ let (W, S) be a finite Coxeter system with |S| = n;
weW

@ Coxeter element: ¢ = $,(1)S¢(2) * * * S(n) fOr 0 € &,
~- this orders S linearly
@ c-sorting word of w: lexicographically smallest

S-reduced word for w ~ w(c)
~~ Inv(wo(c)) linearly orders T and ®j, ~ e



o let (W, S) be a finite Coxeter system

@ X C W generating set closed under taking inverses
o X-length: word length with respect to alphabet X ~~ (x
@ X-postfix order: u <x v if and only if

Ox(u) + lx(ou=1t) = lx(0)



let (W, S) be a finite Coxeter system

X C W generating set closed under taking inverses

X-length: word length with respect to alphabet X ~ fx

X-postfix order: u <x v if and only if
Ox(u) + lx(ou=t) = Ix(v)
@ canonical choices for X:

o (left) weak order: X = S
@ absolute order: X =T



o let (W, S) be a finite Coxeter system



o let (W, S) be a finite Coxeter system

Definition (N. Reading, 2007)

Let ¢ € W be a Coxeter element. An element w € W is
c-aligned if ty C¢ tguipp Cc tg and 4,48 € Inv(w) imply
ty € Inv(w).

~ Align(W,c)



o let (W, S) be a finite Coxeter system

Theorem (N. Reading, 2007)

For every Coxeter element c € W, we have

|Align(W, c)| = Cat(W).




o let (W, S) be a finite Coxeter system

Theorem (N. Reading, 2007)

For every Coxeter element c € W, we have

|Align(W, c)| = Cat(W).

There is a long cycle c € &, such that

©,(231) = Align(&,,¢).



o let (W, S) be a finite Coxeter system

Theorem (N. Reading, 2007)

For every Coxeter element c € W, the poset (Align(W,c), <g) is
a lattice; the c-Cambrian lattice.




o let (W, S) be a finite Coxeter system

Definition (T. Brady & C. Watt, 2002)

Let ¢ € W be a Coxeter element. An element w € W is
c-noncrossing if w <t c.

~ NC(W,¢)



o let (W, S) be a finite Coxeter system

Theorem (D. Bessis, 2003)

For every Coxeter element c € W, we have

INC(W, )| = Cat(W).




o let (W, S) be a finite Coxeter system

Theorem (T. Brady & C. Watt, 2008)

For every Coxeter element c € W, the poset (NC(W,¢), <r) isa
lattice.




@ let (W, S) be a finite Coxeter system, let w € W

@ cover inversion: t € Inv(w) such that wt = sw for some
seES ~» Cov(w)



@ let (W, S) be a finite Coxeter system, let w € W

@ cover inversion: t € Inv(w) such that wt = sw for some
seES ~» Cov(w)

Theorem (N. Reading, 2007)

Let w € Align(W, c) such that Cov(w) = {t,ta,. .., t} with
t) Cctr Cc -+ - T ty. The product tyty - - - ty is c-noncrossing
and this correspondence is bijective.




e Parabolic Cataland
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o let (W, S) be a finite Coxeter system

o for ] C S, let Wj be the subgroup of W generated by |

@ parabolic quotient: W/ L wy Wy
~~ we identify W/ with set of minimal length
representatives of the right cosets

Theorem (A. Bjorner & M. Wachs, 1988)

W/ is isomorphic to an interval in (W, <g).

~- there is a parabolic longest element s 0
~~ any Coxeter element ¢ induces a total order of T/ via

Inv (w5 (c)) ~ [}



o let (W, S) be a finite Coxeter system

o for ] C S, let Wj be the subgroup of W generated by |

@ parabolic quotient: W/ L wy Wy
~~ we identify W/ with set of minimal length
representatives of the right cosets

Definition (N. Williams, 2013)

Let ¢ € W be a Coxeter element. An element w € W/ is
(W, c)-aligned if , T/ tantbp ) tg and tzypp € Cov(w),
then t, € Inv(w).

~ Align(W/, ¢)



o let (W, S) be a finite Coxeter system

o for ] C S, let Wj be the subgroup of W generated by |

@ parabolic quotient: W/ L wy Wy
~~ we identify W/ with set of minimal length
representatives of the right cosets

Definition (N. Williams, 2013)

Let c € W be a Coxeter element. A product 1ty - - - f is
(W, c)-noncrossing if there exists w € Align(W/, c) such
that Cov(w) = {t1, 2, ..., t} witht; Lt T - - - CL &

~ NC(W, )



o let (W, S) be a finite Coxeter system

o for ] C S, let Wj be the subgroup of W generated by |

@ parabolic quotient: W/ L wy Wy
~~ we identify W/ with set of minimal length
representatives of the right cosets

Definition (N. Williams, 2013)

The parabolic root poset is (CD%, <), where CD;{,, is the

order filter of (®j;, <) generated by the simple roots
corresponding to the elements of S\ J.




o let (W, S) be a finite Coxeter system

o for ] C S, let Wj be the subgroup of W generated by |

@ parabolic quotient: W/ L wy Wy
~~ we identify W/ with set of minimal length
representatives of the right cosets

Definition (N. Williams, 2013)

The parabolic Catalan number, denoted by Cat(W/), is the

number of order ideals in (@*V;ﬂ, =<).




o let (W, S) be a finite Coxeter system

o for ] C S, let Wj be the subgroup of W generated by |

@ parabolic quotient: W/ L wy Wy
~~ we identify W/ with set of minimal length
representatives of the right cosets

Conjecture (N. Williams, 2013)
Let ¢ € W be a Coxeter element. We have

|Align(W/, ¢)| = Cat(W/) = INC(W, ¢)|
if and only if (W, S) is of type Ay, By, Hz or I (m).




o let (W, S) be a finite Coxeter system

o for ] C S, let Wj be the subgroup of W generated by |

@ parabolic quotient: W/ L wy Wy
~~ we identify W/ with set of minimal length
representatives of the right cosets

Conjecture (N. Williams, 2013)

Let ¢ € W be a Coxeter element. The poset (Align(W/,c), <s) is
a lattice.




Parabolic Cataland in Type A,
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o we S

@ ] = {s1,53,54}
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o consider (&,,S,),and fixc= (12 ... n)

o we S

° ]: {51153154}
@ subsets of S, correspond to compositions of n
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o consider (&,,S,),and fixc= (12 ... n)

o we S
@ ] =56\ {s2,55}

@ subsets of S, correspond to compositions of n

w(l) <w2) w3)<w@) <w() w6)
Q)



o consider (&,,S,),and fixc= (12 ... n)

o we Gq
@ ] =S¢\ {s2,55} «— a=(231)

@ subsets of S, correspond to compositions of n

w(l) <w2) w3)<w@) <w() w6)
Q)



o consider (&,,S,),and fixc= (12 ... n)

Theorem (3% & N. Williams, 2015)
Forc=(12 ... n)and] C S, holds

‘Align(GL,c)| = Cat(&)) = ‘NC(GL,C)‘.




oletn=4,c=(1234),] ={s2}

Align(G{l, c)

1234
1243
2134
2143
1342
3124
3241
4123
4132
4231

order ideals in (@

AR

J7
4

S EP B D

<) NC(&),¢)



o consider (&,,S,),and fixc= (12 ... n)

@ parabolic Tamari lattice: (Align(W] ,0), < 5) s 7;]

Theorem (3% & N. Williams, 2015)
Forc= (12 ... n)and] C Sy, the poset T, is a lattice.




o consider (&,,S,),and fixc= (12 ... n)

@ parabolic Dyck paths: order ideals in (@JGF, , <)~ D)

n

Theorem (C. Ceballos, W. Fang & 3, 2018)

Forc= (12 ... n)and ] C S, the lattices (Align(GL), <s)
and (DL, <1ot) are isomorphic.




oletn=4,c=(1234),] ={s2}

4231
/N
4132 3241

sme \ /0

2143 1342

3124 / \ /

2134 1243
AN /
1234
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@ we have presented an algebraic framework to
generalize classical Catalan families to parabolic
quotients of finite Coxeter groups

@ in type A, there are surprising connections to diagonal
harmonics and Hopf algebras on pipe dreams



@ we have presented an algebraic framework to
generalize classical Catalan families to parabolic
quotients of finite Coxeter groups

@ in type A, there are surprising connections to diagonal
harmonics and Hopf algebras on pipe dreams

@ prospects:

o combinatorial realizations for other Coxeter elements in
type Ay ~~ work in progress with V. Pilaud
o combinatorial realizations for other types



Thank You.
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