Paraboli Catalano

Henri Mühle

Catalan Combinatoric

Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland in Type *A*_n

Parabolic Cataland Origins

Henri Mühle

TU Dresden

March 03, 2020 LIGM, Université Gustave Eiffel

Outline

Parabolio Cataland

Henri Mühle

Catalan Combinatori

Symmet Group

ataland

Parabolic Cataland

Parabolic Cataland in Type A_n

Catalan Combinatorics

2 The Symmetric Group

3 Cataland

Parabolic Cataland

6 Parabolic Cataland in Type A_n

Parabolic Cataland

Henri Mühle

Catalan Combinator

The Symmetri

Catalan

Paraboli Catalanc

Parabolic Cataland in Type A_n

• let n > 0 be an integer

Parabolic Cataland

Henri Mühle

Catalan Combinatori

i ne Symmetri: Group

Catalano

Parabolio Cataland

Parabolic Cataland Type A_n

• let n > 0 be an integer

- Catalan number: $Cat(n) \stackrel{\text{def}}{=} \frac{1}{n+1} {2n \choose n}$
- Catalan family: family of combinatorial objects enumerated by Cat(*n*)

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmetri Group

Parabolio

Cataland
Parabolic

Parabolic Cataland Type *A*_n • let n > 0 be an integer

- Catalan number: $Cat(n) \stackrel{\text{def}}{=} \frac{1}{n+1} {2n \choose n}$
- Catalan family: family of combinatorial objects enumerated by Cat(*n*)

triangulations of an (n + 2)-gon

Parabolic Cataland

Henri Mühle

Catalan Combinatori

i ne Symmetric Group

Catalano

Parabolio Cataland

Parabolic Cataland Type A_n

• let n > 0 be an integer

- Catalan number: $Cat(n) \stackrel{\text{def}}{=} \frac{1}{n+1} {2n \choose n}$
- Catalan family: family of combinatorial objects enumerated by Cat(*n*)

Dyck paths of length 2*n*

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmetri Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n • let n > 0 be an integer; $[n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$

- Catalan number: $Cat(n) \stackrel{\text{def}}{=} \frac{1}{n+1} {2n \choose n}$
- Catalan family: family of combinatorial objects enumerated by Cat(*n*)

231-avoiding permutations of [n]

123

132

213

312

321

Parabolic Cataland

Henri Mühle

Catalan Combinatori

rne Symmetr Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

• let n > 0 be an integer; $[n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$

- Catalan number: $Cat(n) \stackrel{\text{def}}{=} \frac{1}{n+1} \binom{2n}{n}$
- Catalan family: family of combinatorial objects enumerated by Cat(*n*)

noncrossing partitions of [n]

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

The Symmetric

Catalano

Parabolio Catalanc

Parabolic Cataland in Type A_n

• **triangulation**: dissection of a convex (n + 2)-gon into triangles $\rightsquigarrow \Delta_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Catalan

Parabolio Cataland

Parabolic Cataland ir Type A_n • **triangulation**: dissection of a convex (n + 2)-gon into triangles $\rightsquigarrow \Delta_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Catalano

Parabolio Cataland

Parabolic Cataland ir Type *A*_n • **triangulation**: dissection of a convex (n + 2)-gon into triangles $\rightsquigarrow \Delta_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

rne Symmetric Group

Cataland

Paraboli Catalano

Parabolic Cataland in Type A_n

• **triangulation**: dissection of a convex (n + 2)-gon into triangles $\rightsquigarrow \Delta_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

rne Symmetrio Group

Cataland

Parabolio Catalano

Parabolic Cataland in Type A_n

• **triangulation**: dissection of a convex (n + 2)-gon into triangles $\rightsquigarrow \Delta_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolio Catalanc

Parabolic Cataland in Type A_n

• **triangulation**: dissection of a convex (n + 2)-gon into triangles $\rightsquigarrow \Delta_n$

Parabolio Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland i Type *A*_n • **triangulation**: dissection of a convex (n + 2)-gon into triangles $\rightsquigarrow \Delta_n$

- (diagonal) flip:
- increasing flip: total slope increases

$$\leadsto \leq_{flip}$$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Cataland

Parabolio Catalanc

Parabolic Cataland in Type A_n

• Dyck path: positive lattice path using n up- and n down-steps of unit length $\rightsquigarrow \mathcal{D}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

• Dyck path: positive lattice path using n up- and n down-steps of unit length $\rightsquigarrow \mathcal{D}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

Symmetr Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

• Dyck path: positive lattice path using n up- and n down-steps of unit length $\rightsquigarrow \mathcal{D}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

Symmetri Group

Cataland

Paraboli Catalanc

Parabolic Cataland in Type A_n

• Dyck path: positive lattice path using n up- and n down-steps of unit length $\rightsquigarrow \mathcal{D}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

The Symmetric Group

Catalano

Paraboli Catalano

Parabolic Cataland in Type A_n

• Dyck path: positive lattice path using n up- and n down-steps of unit length $\rightsquigarrow \mathcal{D}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

Symmet Group

Cataland

Parabolio Catalano

Parabolic Cataland in Type A_n

• Dyck path: positive lattice path using n up- and n down-steps of unit length $\rightsquigarrow \mathcal{D}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

Symmet Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n • Dyck path: positive lattice path using n up- and n down-steps of unit length $\rightsquigarrow \mathcal{D}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmet Group

Cataland

Parabolic Cataland

Parabolic Cataland i Type A_n

• Dyck path: positive lattice path using n up- and n down-steps of unit length $\rightsquigarrow \mathcal{D}_n$

- (valley) rotation:
- increasing rotation: area increases

 $\leadsto \leq_{rot}$

Parabolic Cataland

Henri Mühle

Catalan Combinator

The Symmet

Catalan

Paraboli Catalano

Parabolic Cataland in Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetr Group

Catalan

Paraboli Catalanc

Parabolic Cataland in Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• 231-pattern: i < j < k with w(k) < w(i) < w(j)

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symme Group

Cataland

Parabolio Catalano

Parabolic Cataland in Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• 231-pattern: i < j < k with w(k) < w(i) < w(j)

531264

Parabolic Cataland

Henri Mühle

Catalan Combinator

The Symme Group

Cataland

Paraboli Catalanc

Parabolic Cataland in Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• 231-pattern:
$$i < j < k$$
 with $w(k) < w(i) < w(j)$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

i ne Symmet Group

ataland

Parabolio Cataland

Parabolic Cataland Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• 231-pattern: i < j < k with w(k) < w(i) < w(j)

• 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmet Group

Cataland

Parabolio Cataland

Parabolic Cataland Type A_n

- \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$
- 231-pattern: i < j < k with w(k) < w(i) < w(j)
- 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$

431265

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmeti Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n • \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• 231-pattern: i < j < k with w(k) < w(i) < w(j)

• 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$

• inversion: i < j with w(i) > w(j) \longrightarrow Inv(w)

431265

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmetri Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

- \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$
- 231-pattern: i < j < k with w(k) < w(i) < w(j)
- 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$
- inversion: i < j with w(i) > w(j) $\rightsquigarrow Inv(w)$
- weak order: containment of inversion sets $\rightsquigarrow \leq_{\text{weak}}$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmetri Broup

ataland

Parabolic Cataland

Parabolic Cataland Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

- 231-pattern: i < j < k with w(k) < w(i) < w(j)
- 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$
- inversion: i < j with w(i) > w(j) $\rightsquigarrow Inv(w)$
- weak order: containment of inversion sets $\rightsquigarrow \leq_{\text{weak}}$

431265

Parabolic Cataland

Henri Mühle

Catalan Combinatori

ine Symmetri Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• 231-pattern: i < j < k with w(k) < w(i) < w(j)

• 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$

• inversion: i < j with w(i) > w(j) \longrightarrow Inv(w)

• weak order: containment of inversion sets $\rightsquigarrow \leq_{\text{weak}}$

531264

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmetr Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

- \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$
- 231-pattern: i < j < k with w(k) < w(i) < w(j)
- 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$
- inversion: i < j with w(i) > w(j) \longrightarrow Inv(w)
- weak order: containment of inversion sets $\rightsquigarrow \leq_{\text{weak}}$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

i ne Symmetr Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

- \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$
- 231-pattern: i < j < k with w(k) < w(i) < w(j)
- 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$
- inversion: i < j with w(i) > w(j) \longrightarrow Inv(w)
- weak order: containment of inversion sets $\rightsquigarrow \leq_{\text{weak}}$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

rne Symmetri Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

- 231-pattern: i < j < k with w(k) < w(i) < w(j)
- 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$
- inversion: i < j with w(i) > w(j) \longrightarrow Inv(w)
- weak order: containment of inversion sets $\rightsquigarrow \leq_{\text{weak}}$

531264

Inversion Order on 231-Avoiding Permutations

Parabolic Cataland

Henri Mühle

Catalan Combinatori

me Symmetri Sroup

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• 231-pattern: i < j < k with w(k) < w(i) < w(j)

• 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$

• inversion: i < j with w(i) > w(j) \longrightarrow Inv(w)

• weak order: containment of inversion sets $\rightsquigarrow \leq_{\text{weak}}$

Inversion Order on 231-Avoiding Permutations

Parabolic Cataland

Henri Mühle

Catalan Combinatori

rne Symmetri Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

- \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$
- 231-pattern: i < j < k with w(k) < w(i) < w(j)
- 231-avoiding permutation: permutation without 231-pattern $\rightsquigarrow \mathfrak{S}_n(231)$
- inversion: i < j with w(i) > w(j) \longrightarrow Inv(w)
- weak order: containment of inversion sets $\rightsquigarrow \leq_{\text{weak}}$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetric

Catalan

Parabolio Cataland

Parabolic Cataland in Type A_n

$$\mathcal{T}_n \stackrel{\text{def}}{=} \left(\Delta_n, \leq_{\text{flip}}\right) \cong \left(\mathcal{D}_n, \leq_{\text{rot}}\right) \cong \left(\mathfrak{S}_n(231), \leq_{\text{weak}}\right)$$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symme Group

Catalano

Parabolio Cataland

Parabolic Cataland in Type A_n

$$\mathcal{T}_n \stackrel{\mathrm{def}}{=} \left(\Delta_n, \leq_{\mathrm{flip}}\right) \cong \left(\mathcal{D}_n, \leq_{\mathrm{rot}}\right) \cong \left(\mathfrak{S}_n(231), \leq_{\mathrm{weak}}\right)$$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmet Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

$$\mathcal{T}_n \stackrel{\text{def}}{=} \left(\Delta_n, \leq_{\text{flip}}\right) \cong \left(\mathcal{D}_n, \leq_{\text{rot}}\right) \cong \left(\mathfrak{S}_n(231), \leq_{\text{weak}}\right)$$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symme Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

$$\mathcal{T}_n \stackrel{\mathrm{def}}{=} \left(\Delta_n, \leq_{\mathrm{flip}}\right) \cong \left(\mathcal{D}_n, \leq_{\mathrm{rot}}\right) \cong \left(\mathfrak{S}_n(231), \leq_{\mathrm{weak}}\right)$$

• noncrossing partition: set partition of [n] such that if i < j < k < l and $i \sim k$ and $j \sim l$, then $i \sim j$ \rightsquigarrow NC_n $\rightsquigarrow \leq_{\text{ref}}$

• refinement order: containment of blocks

• noncrossing partition: set partition of [n] such that if i < j < k < l and $i \sim k$ and $j \sim l$, then $i \sim j$ \rightsquigarrow NC_n \rightsquigarrow $<_{ref}$

• refinement order: containment of blocks

• noncrossing partition: set partition of [n] such that if \rightsquigarrow NC_n $\rightsquigarrow \leq_{\text{ref}}$ i < j < k < l and $i \sim k$ and $j \sim l$, then $i \sim j$

• refinement order: containment of blocks

- noncrossing partition: set partition of [n] such that if \rightsquigarrow NC_n $\rightsquigarrow \leq_{\text{ref}}$ i < j < k < l and $i \sim k$ and $j \sim l$, then $i \sim j$
- refinement order: containment of blocks

- noncrossing partition: set partition of [n] such that if \rightsquigarrow NC_n $\rightsquigarrow \leq_{\text{ref}}$ i < j < k < l and $i \sim k$ and $j \sim l$, then $i \sim j$
- refinement order: containment of blocks

- noncrossing partition: set partition of [n] such that if \rightsquigarrow NC_n $\rightsquigarrow \leq_{\text{ref}}$ i < j < k < l and $i \sim k$ and $j \sim l$, then $i \sim j$
- refinement order: containment of blocks

Noncrossing Partition Lattices

Parabolio Cataland

Henri Mühle

Catalan Combinatori

The Symmetri

Catalan

Parabolio Catalanc

Parabolic Cataland in Type A_n

• noncrossing partition lattice: $\mathcal{NC}_n \stackrel{\text{def}}{=} (NC_n, \leq_{\text{ref}})$

Noncrossing Partition Lattices

Parabolio Cataland

Henri Mühle

Catalan Combinator

The Symmetric Group

Catalan

Parabolio Catalano

Parabolic Cataland in Type A_n

• noncrossing partition lattice: $\mathcal{NC}_n \stackrel{\text{def}}{=} (NC_n, \leq_{\text{ref}})$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmet Group

Catalanc

Parabolio Cataland

Parabolic Cataland in Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• **cover inversion**: i < j with w(i) = w(j) + 1

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

rne Symmeti Group

Cataland

Parabolio Cataland

Parabolic Cataland i Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• **cover inversion**: i < j with w(i) = w(j) + 1

431265

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

Symmeti Group

Cataland

Parabolio Cataland

Parabolic Cataland i Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• **cover inversion**: i < j with w(i) = w(j) + 1

431265

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Symmetr Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• **cover inversion**: i < j with w(i) = w(j) + 1

Parabolio Cataland

Henri Mühle

Catalan Combinatori

Group Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

• \mathfrak{S}_n .. group of permutations of [n]; $w \in \mathfrak{S}_n$

• **cover inversion**: i < j with w(i) = w(j) + 1

Theorem (N. Williams, 2013; N. Reading, 2015)

The set of cover inversions of a 231-avoiding permutation forms a noncrossing partition, and this correspondence is bijective.

Outline

Parabolio Cataland

Henri Mühle

Catalan Combinatorio

The Symmetri Group

Catalan

Parabolic Cataland

Parabolic Cataland in Type A_n

- Catalan Combinatorics
- 2 The Symmetric Group
- Cataland
- Parabolic Cataland
- \bigcirc Parabolic Cataland in Type A_n

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetr Group

Catalano

Parabolic Cataland

Parabolic Cataland in Type A_n

• **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinator

The Symmetri Group

ataland

Parabolio Cataland

Parabolic Cataland in Type A_n

- **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$
- $X \subseteq \mathfrak{S}_n$ generating set closed under taking inverses

Parabolic Cataland

Henri Mühle

Catalan Combinat

The Symmetric Group

Catalano

Parabolio Cataland

Parabolic Cataland i Type *A*_n • **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

- $X \subseteq \mathfrak{S}_n$ generating set closed under taking inverses
- *X*-length: word length with respect to alphabet $X \rightsquigarrow \ell_X$
- *X*-postfix order: $u \leq_X v$ if and only if

$$\ell_X(u) + \ell_X(vu^{-1}) = \ell_X(v)$$

Parabolio Cataland

Henri Mühle

Catalan Combinator

The Symmetri Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

• **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

• canonical choices for *X*:

$$X = S_n \stackrel{\text{def}}{=} \{(i \ i+1) \mid 1 \le i < n\}$$

Parabolic Cataland

Henri Mühle

Catalan Combina

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland in Type A_n

- **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$
- canonical choices for *X*:

$$X = S_n \stackrel{\text{def}}{=} \{(i \ i+1) \mid 1 \le i < n\}$$

Parabolic Cataland

Henri Mühle

Catalan Combinator

Гhe Symmetri Group

ataland

Parabolio Cataland

Parabolic Cataland in Type A_n

• **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

• canonical choices for *X*:

$$X = T_n \stackrel{\text{def}}{=} \{(i j) \mid 1 \le i < j \le n\}$$

Parabolic Cataland

Henri Mühle

Catalan Combina

The Symmetri Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

• **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

• canonical choices for *X*:

$$X = T_n \stackrel{\text{def}}{=} \{ (i j) \mid 1 \le i < j \le n \}$$

Parabolio Cataland

Henri Mühle

Catalan

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland Type *A*_n • **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

Theorem (A. Björner, 1980)

For $u, v \in \mathfrak{S}_n$ we have $u \leq_S v$ if and only if $u \leq_{\text{weak}} v$. Consequently, there is an isomorphism of lattices

$$(\mathfrak{S}_n(231), \leq_S) \cong \mathcal{T}_n.$$

Parabolic Cataland

Henri Mühle

Catalan Combina

The Symmetrio Group

Cataland

Parabolio Cataland

Parabolic Cataland i Type A_n • symmetric group: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

Theorem (P. Biane, 1997; T. Brady, 2001)

There is an isomorphism of lattices

$$(\{w \in \mathfrak{S}_n \mid w \leq_T (1 \ 2 \ \dots \ n)\}, \leq_T) \cong \mathcal{NC}_n.$$

Parabolic Cataland

Henri Mühle

Catalan Combinate

The Symmetr Group

Catalan

Parabolio Cataland

Parabolic Cataland in Type A_n

• **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

Parabolic Cataland

Henri Mühle

Catalan Combina

The Symmetr Group

Catalanc

Parabolio Cataland

Parabolic Cataland in Type A_n

• **symmetric group**: group of permutations of $[n] \rightsquigarrow \mathfrak{S}_n$

Parabolio Cataland

Henri Mühle

Catalan Combinatorics

The Symmetri Group

Catalan

Parabolio Cataland

Parabolic Cataland in Type A_n

• root order: $(i,j) \leq (k,l)$ if and only if $i \geq k$ and $j \leq l$

• root poset: $\Phi_n \stackrel{\text{def}}{=} (T_n, \preceq)$

Parabolio Cataland

Henri Mühle

Catalan Combinatorics

The Symmetri Group

Catalanc

Parabolic Cataland

Parabolic Cataland in Type A_n • root order: $(i,j) \leq (k,l)$ if and only if $i \geq k$ and $j \leq l$

• root poset: $\Phi_n \stackrel{\text{def}}{=} (T_n, \preceq)$

Parabolio Cataland

Henri Mühle

Catalan Combinator

The Symmetri Group

Cataland

Parabolic Cataland

Parabolic Cataland ir Type *A*n • root order: $(i,j) \leq (k,l)$ if and only if $i \geq k$ and $j \leq l$

• root poset: $\Phi_n \stackrel{\text{def}}{=} (T_n, \preceq)$

Parabolio Cataland

Henri Mühle

Catalan Carabinata

The Symmetri Group

^ Cataland

Parabolic Cataland

Parabolic Cataland ii

- root order: $(i,j) \leq (k,l)$ if and only if $i \geq k$ and $j \leq l$
- root poset: $\Phi_n \stackrel{\text{def}}{=} (T_n, \preceq)$

Parabolio Catalano

Henri Mühle

Catalan Combinatoric

The Symmetri Group

Cataland

Parabolio Cataland

Parabolic Cataland i • root order: $(i,j) \leq (k,l)$ if and only if $i \geq k$ and $j \leq l$

• root poset: $\Phi_n \stackrel{\text{def}}{=} (T_n, \preceq)$

Theorem (A. Postnikov, 1997)

The set of order ideals in Φ_n is in bijection with \mathcal{D}_n .

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetri Group

Catalan

Parabolio Cataland

Parabolic Cataland in Type A_n

- let $V = \mathbb{R}[x_1, x_2, \dots, x_n] / (x_1 + x_2 + \dots + x_n = 0)$
- \mathfrak{S}_n acts on V by permuting variables

Parabolio Cataland

Henri Mühle

Catalan Combinatoric

The Symmetri Group

Parabolic Cataland

Parabolic Cataland Type A_n

• let $V = \mathbb{R}[x_1, x_2, \dots, x_n] / (x_1 + x_2 + \dots + x_n = 0)$

• \mathfrak{S}_n acts on V by permuting variables

Theorem (Folklore)

The invariant ring $V^{\mathfrak{S}_n}$ is a polynomial algebra. Every homogeneous choice of algebraically independent generators has degrees $2, 3, \ldots, n$.

Parabolio Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Cataland
Parabolic
Cataland

Cataland
Parabolic
Cataland in
Type A_n

• let $V = \mathbb{R}[x_1, x_2, \dots, x_n]/(x_1 + x_2 + \dots + x_n = 0)$

• \mathfrak{S}_n acts on V by permuting variables

• **degrees**: $d_i \stackrel{\text{def}}{=} i + 1$ for $i \in [n-1]$

• Coxeter number: $h \stackrel{\text{def}}{=} d_{n-1} = n$

Theorem (Folklore)

The invariant ring $V^{\mathfrak{S}_n}$ is a polynomial algebra. Every homogeneous choice of algebraically independent generators has degrees $2,3,\ldots,n$.

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland in Type A_n

• let $V = \mathbb{R}[x_1, x_2, \dots, x_n]/(x_1 + x_2 + \dots + x_n = 0)$

• \mathfrak{S}_n acts on V by permuting variables

• **degrees**: $d_i \stackrel{\text{def}}{=} i + 1$ for $i \in [n-1]$

$$\prod_{i=1}^{n-1} \frac{d_i + h}{d_i}$$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Catalan

Parabolic Cataland

Parabolic Cataland in Type A_n

• let $V = \mathbb{R}[x_1, x_2, \dots, x_n] / (x_1 + x_2 + \dots + x_n = 0)$

• \mathfrak{S}_n acts on V by permuting variables

• **degrees**: $d_i \stackrel{\text{def}}{=} i + 1$ for $i \in [n-1]$

$$\prod_{i=1}^{n-1} \frac{d_i + h}{d_i} = \prod_{i=1}^{n-1} \frac{i+1+n}{i+1}$$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland is Type A_n

• let $V = \mathbb{R}[x_1, x_2, \dots, x_n] / (x_1 + x_2 + \dots + x_n = 0)$

• \mathfrak{S}_n acts on V by permuting variables

• **degrees**: $d_i \stackrel{\text{def}}{=} i + 1$ for $i \in [n-1]$

$$\prod_{i=1}^{n-1} \frac{d_i + h}{d_i} = \prod_{i=1}^{n-1} \frac{i+1+n}{i+1} = \frac{(2n)!}{n!(n+1)!}$$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Darabolio

Parabolic Cataland

Parabolic Cataland i Type A_n

• let $V = \mathbb{R}[x_1, x_2, \dots, x_n]/(x_1 + x_2 + \dots + x_n = 0)$

• \mathfrak{S}_n acts on V by permuting variables

• **degrees**: $d_i \stackrel{\text{def}}{=} i + 1$ for $i \in [n-1]$

$$\prod_{i=1}^{n-1} \frac{d_i + h}{d_i} = \prod_{i=1}^{n-1} \frac{i+1+n}{i+1} = \frac{(2n)!}{n!(n+1)!} = \operatorname{Cat}(n)$$

Parabolio Catalano

Henri Mühle

Catalan Combinatoric

The Symmetri Group

Catalano

Parabolio

Parabolic Cataland ir Type *A*_n

Parabolio Cataland

Henri Mühle

Catalan Combinatori

The Symmetr Group

Cataland

Parabolic Cataland

Parabolic Cataland i Type *A*n

Observation

The long cycle $c = (1 \ 2 \dots n)$ factorizes canonically into adjacent transpositions:

$$c = (1\ 2) \cdot (2\ 3) \cdot \cdot \cdot (n-1\ n).$$

This orders S_n lexicographically.

Parabolio Cataland

Henri Mühle

Catalan Combinator

The Symmetr Group

Cataland

Parabolic Cataland

Parabolic Cataland i Type *A*n

Observation

The long cycle $c = (1 \ 2 \dots n)$ factorizes canonically into adjacent transpositions:

$$c = (1\ 2) \cdot (2\ 3) \cdot \cdot \cdot (n-1\ n).$$

This orders S_n lexicographically. And also T_n .

Parabolic Cataland

Henri Mühle

Catalan Combinatorics

The Symmetri Group

Catalan

Parabolio Cataland

Parabolic Cataland in Type A_n

• for $(i, j), (k, l) \in T_n$ define

$$(i,j) + (k,l) \stackrel{\text{def}}{=} \begin{cases} (i,l), & \text{if } j = k, \\ \bot, & \text{otherwise} \end{cases}$$

Parabolic Cataland

Henri Mühle

Catalan Combinatorics

The Symmetri Group

Cataland

Parabolio Cataland

Parabolic Cataland i Type A_n

• for $(i, j), (k, l) \in T_n$ define

$$(i,j) + (k,l) \stackrel{\text{def}}{=} \begin{cases} (i,l), & \text{if } j = k, \\ \bot, & \text{otherwise} \end{cases}$$

• if $w \in \mathfrak{S}_n$ and $(i,j) + (j,k) \in Inv(w)$, then $(i,j) \in Inv(w)$ or $(j,k) \in Inv(w)$

Parabolio Cataland

Henri Mühle

Catalan Combinatori

The Symmetrio Group

Cataland

Parabolic Cataland

Parabolic Cataland i Type *An* • for $(i, j), (k, l) \in T_n$ define

$$(i,j) + (k,l) \stackrel{\text{def}}{=} \begin{cases} (i,l), & \text{if } j = k, \\ \bot, & \text{otherwise} \end{cases}$$

• if $w \in \mathfrak{S}_n$ and $(i,j) + (j,k) \in Inv(w)$, then $(i,j) \in Inv(w)$ or $(j,k) \in Inv(w)$

Observation

If
$$w \in \mathfrak{S}_n(231)$$
 and $(i,j) + (j,k) \in Inv(w)$, then $(i,j) \in Inv(w)$.

• for $(i, j), (k, l) \in T_n$ define

$$(i,j) + (k,l) \stackrel{\text{def}}{=} \begin{cases} (i,l), & \text{if } j = k, \\ \bot, & \text{otherwise} \end{cases}$$

• if $w \in \mathfrak{S}_n$ and $(i,j) + (j,k) \in \operatorname{Inv}(w)$, then $(i, j) \in Inv(w) \text{ or } (j, k) \in Inv(w)$

Observation

If $w \in \mathfrak{S}_n(231)$ and $(i,j) + (j,k) \in Inv(w)$, then $(i,j) \in \text{Inv}(w)$.

Inversion sets of 231-avoiding permutations are lexicographically "aligned".

Outline

Parabolio Catalano

Henri Mühle

Catalan Combinatori

The Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

- Catalan Combinatorics
- The Symmetric Group
- Cataland
- Parabolic Cataland
- lacktriangle Parabolic Cataland in Type A_n

Coxeter Systems

Parabolic Cataland

Henri Mühle

Combinato
The
Symmetric

Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland Type A_n

• let *S* be a finite set

- Coxeter matrix: $m: S \times S \to \{1, 2, ..., \infty\}$ such that m(s, t) = m(t, s) and m(s, t) = 1 if and only if s = t
- Coxeter system: (*W*, *S*) such that

$$W = \langle S \mid (st)^{m(s,t)} = \text{id if } m(s,t) \neq \infty \rangle_{\text{group}}$$

Coxeter Systems

Parabolic Cataland

Henri Mühle

Catalan Combinato The Symmetric

Group

Parabolio

Cataland Parabolic

Parabolic Cataland : Type A_n

• let *S* be a finite set

- Coxeter matrix: $m: S \times S \to \{1, 2, ..., \infty\}$ such that m(s, t) = m(t, s) and m(s, t) = 1 if and only if s = t
- Coxeter system: (W, S) such that $W = \langle S \mid (st)^{m(s,t)} = \text{id if } m(s,t) \neq \infty \rangle_{\text{group}}$
- *W* is a **Coxeter group**

Coxeter Systems

Parabolic Cataland

Henri Mühle

Catalan Combinate

Group

Parabolic Cataland

Parabolic Cataland Type *A*_n • let *S* be a finite set

- Coxeter matrix: $m: S \times S \to \{1, 2, ..., \infty\}$ such that m(s, t) = m(t, s) and m(s, t) = 1 if and only if s = t
- Coxeter system: (W, S) such that $W = \langle S \mid (st)^{m(s,t)} = \text{id if } m(s,t) \neq \infty \rangle_{\text{group}}$
- W is a Coxeter group

$$m = \begin{pmatrix} 1 & 3 & 2 & 2 \\ 3 & 1 & 4 & \infty \\ 2 & 4 & 1 & 2 \\ 2 & \infty & 2 & 1 \end{pmatrix} \longleftrightarrow 3$$

Finite Coxeter Systems

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

The Symmetric

Catalano

Parabolio Cataland

Parabolic Cataland in Type A_n

$$A_n, n \geq 1$$
: §1 — §2 — §3 — · · · — §n

$$B_n, n \geq 2$$
: §1)—4—§2)——§3)— · · · · ——§4)

$$D_n, n \geq 4:$$
 §3 §4 \cdots §5.

$$E_n, 6 \leq n \leq 8$$
: (3) (4) \cdots (6)

$$F_4$$
: s_1 — s_2 — 4 — s_3 — s_4

$$H_n, 2 \leq n \leq 4$$
: ©1)—5—©2——©3—···——© n

$$I_2(m), m \ge 6$$
: $\mathfrak{S}_1 - \mathfrak{m} - \mathfrak{S}_2$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Catalani

Parabolio Cataland

Parabolic Cataland in Type A_n

• (\mathfrak{S}_n, S_n) is the Coxeter system of type A_{n-1}

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

The Symmetr Group

C-1-1---

Parabolio Cataland

Parabolic Cataland in Type A_n

• let (W, S) be a finite Coxeter system with |S| = n

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetri Group

Cataland

Paraboli Catalano

Parabolic Cataland in Type A_n

- let (W, S) be a finite Coxeter system with |S| = n
- W acts on \mathbb{R}^n as a group generated by reflections

Parabolic Cataland

Henri Mühle

Combinate The Symmetric

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

• let (W, S) be a finite Coxeter system with |S| = n

• W acts on \mathbb{R}^n as a group generated by reflections

Theorem (C. Chevalley, 1955)

The invariant ring $\mathbb{R}[x_1, x_2, ..., x_n]^W$ is a polynomial algebra. Every homogeneous choice of algebraically independent generators has degrees $d_1, d_2, ..., d_n$.

Parabolic Cataland

Henri Mühle

Combinato The Symmetric

Symmetric Group

Davahalia

Cataland

Parabolic Cataland Type *A*_n

- let (W, S) be a finite Coxeter system with |S| = n
- W acts on \mathbb{R}^n as a group generated by reflections
- **degrees**: the numbers d_1, d_2, \ldots, d_n

Theorem (C. Chevalley, 1955)

The invariant ring $\mathbb{R}[x_1, x_2, ..., x_n]^W$ is a polynomial algebra. Every homogeneous choice of algebraically independent generators has degrees $d_1, d_2, ..., d_n$.

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland Type A_n

• let (W, S) be a finite Coxeter system with |S| = n

- W acts on \mathbb{R}^n as a group generated by reflections
- **degrees**: the numbers d_1, d_2, \ldots, d_n
- W-Catalan number: $Cat(W) \stackrel{\text{def}}{=} \prod_{i=1}^{n} \frac{d_i + d_n}{d_i}$

Parabolic Cataland

Henri Mühle

Catalan Combined

The Symmetric Group

Cataland

Parabolic Cataland Parabolic

Parabolic Cataland i Type *A*n • let (W, S) be a finite Coxeter system with |S| = n

- W acts on \mathbb{R}^n as a group generated by reflections
- **degrees**: the numbers d_1, d_2, \ldots, d_n
- W-Catalan number: $Cat(W) \stackrel{\text{def}}{=} \prod_{i=1}^{n} \frac{d_i + d_n}{d_i}$
- reflections:

$$T \stackrel{\text{def}}{=} \{wsw^{-1} \mid w \in W, s \in S\}$$

• roots: normal vectors to reflecting hyperplanes

$$\rightsquigarrow \Phi_W = \Phi_W^+ \uplus \Phi_W^-$$

• let (W, S) be a finite Coxeter system with |S| = n

- W acts on \mathbb{R}^n as a group generated by reflections
- **degrees**: the numbers d_1, d_2, \ldots, d_n
- W-Catalan number: $Cat(W) \stackrel{\text{def}}{=} \prod_{i=1}^{n} \frac{d_i + d_n}{d_i}$
- reflections:

$$T \stackrel{\mathrm{def}}{=} \{wsw^{-1} \mid w \in W, s \in S\} = \{t_{\alpha} \mid \alpha \in \Phi_{W}^{+}\}\$$

• roots: normal vectors to reflecting hyperplanes

$$\leadsto \Phi_W = \Phi_W^+ \uplus \Phi_W^-$$

• let (W, S) be a finite Coxeter system with |S| = n

- W acts on \mathbb{R}^n as a group generated by reflections
- **degrees**: the numbers d_1, d_2, \ldots, d_n
- *W*-Catalan number: Cat(*W*) $\stackrel{\text{def}}{=} \prod_{i=1}^{n} \frac{d_i + d_n}{d_i}$
- reflections:

$$T \stackrel{\mathrm{def}}{=} \{wsw^{-1} \mid w \in W, s \in S\} = \{t_{\alpha} \mid \alpha \in \Phi_{W}^{+}\}\$$

• roots: normal vectors to reflecting hyperplanes

$$\leadsto \Phi_W = \Phi_W^+ \uplus \Phi_W^-$$

• simple roots: $\alpha \in \Phi_{W}^{+}$ such that $t_{\alpha} \in S$ $\rightsquigarrow \Pi_{W}$

• let (W, S) be a finite Coxeter system with |S| = n

- W acts on \mathbb{R}^n as a group generated by reflections
- **degrees**: the numbers d_1, d_2, \ldots, d_n
- *W*-Catalan number: Cat(*W*) $\stackrel{\text{def}}{=} \prod_{i=1}^{n} \frac{d_i + d_n}{d_i}$
- reflections:

$$T \stackrel{\mathrm{def}}{=} \{wsw^{-1} \mid w \in W, s \in S\} = \{t_{\alpha} \mid \alpha \in \Phi_{W}^{+}\}\$$

• roots: normal vectors to reflecting hyperplanes

$$\leadsto \Phi_W = \Phi_W^+ \uplus \Phi_W^-$$

- simple roots: $\alpha \in \Phi_{W}^{+}$ such that $t_{\alpha} \in S$ $\rightsquigarrow \Pi_{W}$
- root order: $\alpha \leq \beta$ if and only if $\beta \alpha \in \operatorname{span}_{\mathbb{N}}(\Pi_W)$

- let (W, S) be a finite Coxeter system with |S| = n
- W acts on \mathbb{R}^n as a group generated by reflections
- **degrees**: the numbers d_1, d_2, \ldots, d_n
- *W*-Catalan number: Cat(*W*) $\stackrel{\text{def}}{=} \prod_{i=1}^{n} \frac{d_i + d_n}{d_i}$
- reflections:

$$T \stackrel{\mathrm{def}}{=} \{wsw^{-1} \mid w \in W, s \in S\} = \{t_{\alpha} \mid \alpha \in \Phi_{W}^{+}\}\$$

• roots: normal vectors to reflecting hyperplanes

$$\leadsto \Phi_W = \Phi_W^+ \uplus \Phi_W^-$$

- simple roots: $\alpha \in \Phi_{W}^{+}$ such that $t_{\alpha} \in S$ $\rightsquigarrow \Pi_{W}$
- root order: $\alpha \leq \beta$ if and only if $\beta \alpha \in \operatorname{span}_{\mathbb{N}}(\Pi_W)$ works only if (W, S) is crystallographic

• let (W, S) be a finite Coxeter system with |S| = n

- W acts on \mathbb{R}^n as a group generated by reflections
- **degrees**: the numbers d_1, d_2, \ldots, d_n
- *W*-Catalan number: $Cat(W) \stackrel{\text{def}}{=} \prod_{i=1}^{n} \frac{d_i + d_n}{d_i}$

Theorem (A. Postnikov, 1997)

The number of order ideals in (Φ_W^+, \preceq) equals Cat(W).

Parabolic Cataland

Henri Mühle

The Symmetric Group

Cataland

Parabolic Cataland Parabolic Cataland • let (W, S) be a finite Coxeter system with |S| = n

• W acts on \mathbb{R}^n as a group generated by reflections

• **degrees**: the numbers d_1, d_2, \ldots, d_n

• W-Catalan number: $Cat(W) \stackrel{\text{def}}{=} \prod_{i=1}^{n} \frac{d_i + d_n}{d_i}$

Theorem (A. Postnikov, 1997)

The number of order ideals in (Φ_W^+, \preceq) equals Cat(W).

 \rightsquigarrow Cat(W) is an integer for every W

Parabolic Cataland

Henri Mühle

Catalan Combinatorics

The Symmetric Group

Cataland

Paraboli Catalano

Cataland in Type A_n

- let (W, S) be a finite Coxeter system; $w \in W$
- Coxeter length: shortest length of factorization of w in terms of S $\rightsquigarrow \ell_S$

Parabolic Cataland

Henri Mühle

Catalan Combinatorics

The Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland i Type A_n

- let (W, S) be a finite Coxeter system; $w \in W$
- Coxeter length: shortest length of factorization of w in terms of S $\rightsquigarrow \ell_S$
- (right) **inversion**: $t \in T$ with $\ell_S(wt) < \ell_S(w) \rightsquigarrow \text{Inv}(w)$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolio

Parabolic Cataland

Parabolic Cataland Type A_n

- let (W, S) be a finite Coxeter system; $w \in W$
- Coxeter length: shortest length of factorization of w in terms of S $\rightsquigarrow \ell_S$
- (right) **inversion**: $t \in T$ with $\ell_S(wt) < \ell_S(w) \rightsquigarrow \text{Inv}(w)$
- if $\mathbf{w} = a_1 a_2 \cdots a_k$, then $Inv(\mathbf{w}) = (r_1, r_2, \dots, r_k)$ with $r_i = a_k a_{k-1} \cdots a_{k-i+1} \cdots a_{k-1} a_k$

Parabolic Cataland

Henri Mühle

Catalan Combinatori The

Symmetric Group

Parabolic Cataland

Parabolic Cataland Type A_n • let (W, S) be a finite Coxeter system; $w \in W$

- Coxeter length: shortest length of factorization of w in terms of S $\leadsto \ell_S$
- (right) **inversion**: $t \in T$ with $\ell_S(wt) < \ell_S(w) \rightsquigarrow \text{Inv}(w)$
- if $\mathbf{w} = a_1 a_2 \cdots a_k$, then $Inv(\mathbf{w}) = (r_1, r_2, \dots, r_k)$ with $r_i = a_k a_{k-1} \cdots a_{k-i+1} \cdots a_{k-1} a_k$
- since W is finite, there exists a longest element $\longrightarrow w_{\circ}$

Inversions in a Coxeter Group

Parabolic Cataland

Henri Mühle

Catalan Combinatoric The

Symmetric Group

Parabolic Cataland

Parabolic Cataland i Type A_n • let (W, S) be a finite Coxeter system; $w \in W$

- Coxeter length: shortest length of factorization of w in terms of S $\leadsto \ell_S$
- (right) **inversion**: $t \in T$ with $\ell_S(wt) < \ell_S(w) \rightsquigarrow \text{Inv}(w)$
- if $\mathbf{w} = a_1 a_2 \cdots a_k$, then $\operatorname{Inv}(\mathbf{w}) = (r_1, r_2, \dots, r_k)$ with $r_i = a_k a_{k-1} \cdots a_{k-i+1} \cdots a_{k-1} a_k$
- since W is finite, there exists a longest element $\rightsquigarrow w_\circ$ $\rightsquigarrow \operatorname{Inv}(w_\circ) = T$

Parabolio Cataland

Henri Mühle

Catalan Combinatoric

The Symmetri Group

Cataland

Paraboli Catalano

Parabolic Cataland in Type A_n

• let (W, S) be a finite Coxeter system with |S| = n

• Coxeter element: $c = s_{\sigma(1)} s_{\sigma(2)} \cdots s_{\sigma(n)}$ for $\sigma \in \mathfrak{S}_n$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Catalano

Paraboli Catalano

Parabolic Cataland i Type A_n

• let (W, S) be a finite Coxeter system with |S| = n

• Coxeter element: $c = s_{\sigma(1)} s_{\sigma(2)} \cdots s_{\sigma(n)}$ for $\sigma \in \mathfrak{S}_n$ \leadsto this orders S linearly

Parabolic Cataland

Henri Mühle

Catalan Combinatorics

The Symmetric Group

Catalano

Parabolio Cataland

Parabolic Cataland Type A_n

• let (W, S) be a finite Coxeter system with |S| = n; $w \in W$

- Coxeter element: $c = s_{\sigma(1)} s_{\sigma(2)} \cdots s_{\sigma(n)}$ for $\sigma \in \mathfrak{S}_n$ \leadsto this orders S linearly
- *c*-sorting word of w: lexicographically smallest S-reduced word for $w ext{} \sim \mathbf{w}(c)$

Parabolic Cataland

Henri Mühle

Catalan Combinatorica

The Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland i Type *A*_n • let (W, S) be a finite Coxeter system with |S| = n; $w \in W$

- Coxeter element: $c = s_{\sigma(1)} s_{\sigma(2)} \cdots s_{\sigma(n)}$ for $\sigma \in \mathfrak{S}_n$ \leadsto this orders S linearly
- *c*-sorting word of w: lexicographically smallest S-reduced word for $w \leadsto \mathbf{w}(c) \leadsto \operatorname{Inv}(\mathbf{w}_{\circ}(c))$ linearly orders $T \leadsto \Box_c$

Cataland

Henri Mühle

Catalan Combinatorics

The Symmetric Group

Cataland

Parabolic Cataland Parabolic

Parabolic Cataland i Type A_n • let (W, S) be a finite Coxeter system with |S| = n; $w \in W$

- Coxeter element: $c = s_{\sigma(1)} s_{\sigma(2)} \cdots s_{\sigma(n)}$ for $\sigma \in \mathfrak{S}_n$ \leadsto this orders S linearly
- *c*-sorting word of w: lexicographically smallest S-reduced word for $w \leadsto \mathbf{w}(c) \longrightarrow \operatorname{Inv}(\mathbf{w}_{\circ}(c))$ linearly orders T and $\Phi_W^+ \leadsto \Box_c$

Ordering a Coxeter Group

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland Type A_n

• let (*W*, *S*) be a finite Coxeter system

- $X \subseteq W$ generating set closed under taking inverses
- X-length: word length with respect to alphabet $X \leadsto \ell_X$
- *X*-postfix order: $u \leq_X v$ if and only if

$$\ell_X(u) + \ell_X(vu^{-1}) = \ell_X(v)$$

Ordering a Coxeter Group

Parabolic Cataland

Henri Mühle

Catalan Combinato

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland i Type A_n • let (*W*, *S*) be a finite Coxeter system

- $X \subseteq W$ generating set closed under taking inverses
- X-length: word length with respect to alphabet $X \leadsto \ell_X$
- *X*-postfix order: $u \leq_X v$ if and only if

$$\ell_X(u) + \ell_X(vu^{-1}) = \ell_X(v)$$

- canonical choices for *X*:
 - (left) weak order: X = S
 - absolute order: X = T

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

The Symmetric Group

Catalano

Parabolio Catalano

Parabolic Cataland in Type A_n

 \bullet let (W, S) be a finite Coxeter system

Parabolic Cataland

Henri Mühle

Catalan Combinator The

Symmetric Group

Cataland

Parabolic Cataland Parabolic

Parabolic Cataland Type A_n \bullet let (W, S) be a finite Coxeter system

Definition (N. Reading, 2007)

Let $c \in W$ be a Coxeter element. An element $w \in W$ is **c-aligned** if $t_{\alpha} \sqsubseteq_{c} t_{a\alpha+b\beta} \sqsubseteq_{c} t_{\beta}$ and $t_{a\alpha+b\beta} \in Inv(w)$ imply $t_{\alpha} \in Inv(w)$.

 \rightsquigarrow Align(W, c)

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Catalano

Parabolic Cataland Parabolic

Parabolic Cataland ii Type *A*n • let (*W*, *S*) be a finite Coxeter system

Theorem (N. Reading, 2007)

For every Coxeter element $c \in W$, we have

$$|Align(W,c)| = Cat(W).$$

Parabolio Catalano

Henri Mühle

Catalan Combinato: The

rne Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland i Type A_n • let (*W*, *S*) be a finite Coxeter system

Theorem (N. Reading, 2007)

For every Coxeter element $c \in W$, we have

$$|Align(W,c)| = Cat(W).$$

There is a long cycle $c \in \mathfrak{S}_n$ such that

$$\mathfrak{S}_n(231) = \text{Align}(\mathfrak{S}_n, c).$$

Parabolio Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolic Cataland Parabolic

Parabolic Cataland Type A_n

 \bullet let (W, S) be a finite Coxeter system

Theorem (N. Reading, 2007)

For every Coxeter element $c \in W$, the poset $(Align(W, c), \leq_S)$ is a lattice; the *c-Cambrian lattice*.

Parabolio Cataland

Henri Mühle

Combinate
The
Symmetric

Calaland

Parabolic Cataland

Parabolic Cataland ii Type A_n • let (*W*, *S*) be a finite Coxeter system

Definition (T. Brady & C. Watt, 2002)

Let $c \in W$ be a Coxeter element. An element $w \in W$ is c-noncrossing if $w \leq_T c$.

 \rightsquigarrow NC(W, c)

Parabolio Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland i Type *A*n • let (*W*, *S*) be a finite Coxeter system

Theorem (D. Bessis, 2003)

For every Coxeter element $c \in W$, we have

$$\left| NC(W,c) \right| = Cat(W).$$

Parabolio Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolic Cataland Parabolic

Parabolic Cataland i Type A_n

• let (*W*, *S*) be a finite Coxeter system

Theorem (T. Brady & C. Watt, 2008)

For every Coxeter element $c \in W$, the poset $(NC(W, c), \leq_T)$ is a lattice.

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Cataland

Paraboli Catalano

Cataland i Type A_n

- let (W, S) be a finite Coxeter system, let $w \in W$
- **cover inversion**: $t \in \text{Inv}(w)$ such that wt = sw for some $s \in S$ $\leadsto \text{Cov}(w)$

Parabolic Cataland

Henri Mühle

Combinator The Symmetric Group

Cataland

Parabolic Cataland Parabolic Cataland ir Type *A*n • let (W, S) be a finite Coxeter system, let $w \in W$

• **cover inversion**: $t \in \text{Inv}(w)$ such that wt = sw for some $s \in S$ $\leadsto \text{Cov}(w)$

Theorem (N. Reading, 2007)

Let $w \in \text{Align}(W, c)$ such that $\text{Cov}(w) = \{t_1, t_2, \dots, t_k\}$ with $t_1 \sqsubseteq_c t_2 \sqsubseteq_c \dots \sqsubseteq_c t_k$. The product $t_1t_2 \dots t_k$ is c-noncrossing and this correspondence is bijective.

Outline

Parabolio Catalano

Henri Mühle

Catalan Combinatori

The Symmetric

Catalan

Parabolic Cataland

Parabolic Cataland i Type *A*n

- Catalan Combinatorics
- The Symmetric Group
- Cataland
- 4 Parabolic Cataland
- \bigcirc Parabolic Cataland in Type A_n

Parabolic Cataland

Henri Mühle

Catalan Combinatorio

The Symmetri Group

Catalanc

Paraboli Catalano

Parabolic Cataland in Type A_n

- let (*W*, *S*) be a finite Coxeter system
- for $J \subseteq S$, let W_J be the subgroup of W generated by J

Parabolic Cataland

Henri Mühle

Catalan Combinatori

Fhe Symmetric Group

Cataland

Paraboli Cataland

Parabolic Cataland i Type A_n

- \bullet let (W, S) be a finite Coxeter system
- for $J \subseteq S$, let W_J be the subgroup of W generated by J
- parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$

Parabolio Cataland

Henri Mühle

<mark>Catalan</mark> Combinator

the Symmetric Group

Catalano

Paraboli Catalano

Parabolic Cataland Type A_n

- let (*W*, *S*) be a finite Coxeter system
- for $J \subseteq S$, let W_J be the subgroup of W generated by J
- **parabolic quotient**: $W^J \stackrel{\text{def}}{=} W/W_J$ \leadsto we identify W^J with set of minimal length representatives of the right cosets

Parabolio Cataland

Henri Mühle

Catalan Combinate

Symmetric Group

Parabolio Cataland

Parabolic Cataland i Type A_n • let (*W*, *S*) be a finite Coxeter system

- for $J \subseteq S$, let W_I be the subgroup of W generated by J
- parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$ \leadsto we identify W^J with set of minimal length representatives of the right cosets

Theorem (A. Björner & M. Wachs, 1988)

 W^{J} is isomorphic to an interval in (W, \leq_{S}) .

Parabolic Cataland

Henri Mühle

Catalan Combinat

The Symmetric Group

Parabolio

Parabolic Cataland

 \bullet let (W, S) be a finite Coxeter system

• for $J \subseteq S$, let W_J be the subgroup of W generated by J

• parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$ \leadsto we identify W^J with set of minimal length representatives of the right cosets

Theorem (A. Björner & M. Wachs, 1988)

 W^{J} is isomorphic to an interval in (W, \leq_{S}) .

→ there is a parabolic longest element

 $\rightsquigarrow w_{\circ}^{J}$

Parabolic Cataland

Henri Mühle

Combinator The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland ii Type A_n

- let (*W*, *S*) be a finite Coxeter system
- for $J \subseteq S$, let W_J be the subgroup of W generated by J
- parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$ \rightsquigarrow we identify W^J with set of minimal length representatives of the right cosets

Theorem (A. Björner & M. Wachs, 1988)

 W^{J} is isomorphic to an interval in (W, \leq_{S}) .

 \leadsto there is a parabolic longest element $\leadsto w_{\circ}^{J}$ \leadsto any Coxeter element c induces a total order of T^{J} via $\operatorname{Inv}(\mathbf{w}_{\circ}^{J}(c))$ $\leadsto \sqsubset_{c}^{J}$

Parabolic Cataland

Henri Mühle

The Symmetric Group

Parabolio Cataland

Parabolic Cataland Type A_n • let (*W*, *S*) be a finite Coxeter system

• for $J \subseteq S$, let W_J be the subgroup of W generated by J

• parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$ \rightsquigarrow we identify W^J with set of minimal length representatives of the right cosets

Definition (N. Williams, 2013)

Let $c \in W$ be a Coxeter element. An element $w \in W^J$ is (W^J, c) -aligned if $t_{\alpha} \sqsubset_c^J t_{a\alpha+b\beta} \sqsubset_c^J t_{\beta}$ and $t_{a\alpha+b\beta} \in Cov(w)$, then $t_{\alpha} \in Inv(w)$.

 \rightsquigarrow Align (W^{J}, c)

Parabolic Cataland

Henri Mühle

The Symmetric Group

Parabolic Cataland

Parabolic Cataland i Type *A*n • let (*W*, *S*) be a finite Coxeter system

- for $J \subseteq S$, let W_J be the subgroup of W generated by J
- parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$ \rightsquigarrow we identify W^J with set of minimal length representatives of the right cosets

Definition (N. Williams, 2013)

Let $c \in W$ be a Coxeter element. A product $t_1t_2 \cdots t_k$ is (W^J, c) -noncrossing if there exists $w \in \text{Align}(W^J, c)$ such that $\text{Cov}(w) = \{t_1, t_2, \dots, t_k\}$ with $t_1 \sqsubseteq_c^J t_2 \sqsubseteq_c^J \cdots \sqsubseteq_c^J t_k$.

 $\rightsquigarrow NC(W^J, c)$

Parabolic Cataland

Henri Mühle

The Symmetric Group

Cataland Parabolio

Parabolic Cataland

Parabolic Cataland Type *A*_n

- let (*W*, *S*) be a finite Coxeter system
- for $J \subseteq S$, let W_J be the subgroup of W generated by J
- parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$ \rightsquigarrow we identify W^J with set of minimal length representatives of the right cosets

Definition (N. Williams, 2013)

The **parabolic root poset** is (Φ_{WI}^+, \preceq) , where Φ_{WI}^+ is the order filter of (Φ_{W}^+, \preceq) generated by the simple roots corresponding to the elements of $S \setminus J$.

Parabolic Cataland

Henri Mühle

Combinato The Symmetric Group

Parabolio

Parabolic Cataland Type *A*_n

- let (*W*, *S*) be a finite Coxeter system
- for $J \subseteq S$, let W_J be the subgroup of W generated by J
- parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$ \leadsto we identify W^J with set of minimal length representatives of the right cosets

Definition (N. Williams, 2013)

The **parabolic Catalan number**, denoted by $Cat(W^{J})$, is the number of order ideals in $(\Phi_{W^{J}}^{+}, \preceq)$.

Parabolio Cataland

Henri Mühle

The Symmetric Group

Parabolio Cataland

Parabolic Cataland i Type *A*n

- let (*W*, *S*) be a finite Coxeter system
- for $J \subseteq S$, let W_I be the subgroup of W generated by J
- parabolic quotient: $W^J \stackrel{\text{def}}{=} W/W_J$ \rightsquigarrow we identify W^J with set of minimal length representatives of the right cosets

Conjecture (N. Williams, 2013)

Let $c \in W$ be a Coxeter element. We have

$$\left| \text{Align}(W^{J}, c) \right| = \text{Cat}(W^{J}) = \left| \text{NC}(W^{J}, c) \right|$$

if and only if (W, S) is of type A_n , B_n , H_3 or $I_2(m)$.

Parabolio Cataland

Henri Mühle

Catalan Combinat

The Symmetric Group

Paraboli

Cataland

Parabolic Cataland i Type *A*_n

- let (*W*, *S*) be a finite Coxeter system
- for $J \subseteq S$, let W_J be the subgroup of W generated by J
- **parabolic quotient**: $W^J \stackrel{\text{def}}{=} W/W_J$ \leadsto we identify W^J with set of minimal length representatives of the right cosets

Conjecture (N. Williams, 2013)

Let $c \in W$ be a Coxeter element. The poset (Align(W^{J}, c), \leq_{S}) is a lattice.

Outline

Parabolio Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Catalan

Parabolio Cataland

Parabolic Cataland in Type A_n

- Catalan Combinatorics
- The Symmetric Group
- Cataland
- Parabolic Cataland
- **6** Parabolic Cataland in Type A_n

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetr Group

Catalan

Paraboli Catalano

Parabolic Cataland in Type A_n

- consider (\mathfrak{S}_n, S_n) , and fix $c = (1 \ 2 \ \dots \ n)$
- $w \in \mathfrak{S}_6$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetr Group

Catalan

Parabolio Cataland

Parabolic Cataland in Type A_n

• consider (\mathfrak{S}_n, S_n) , and fix $c = (1 \ 2 \ \dots \ n)$

•
$$w \in \mathfrak{S}_6$$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetri Group

Catalanc

Parabolio Cataland

Parabolic Cataland in Type A_n

• consider (\mathfrak{S}_n, S_n) , and fix $c = (1 \ 2 \ \dots \ n)$

•
$$w \in \mathfrak{S}_6$$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

'atalanc

Parabolio Cataland

Parabolic Cataland in Type A_n

• consider (\mathfrak{S}_n, S_n) , and fix $c = (1 \ 2 \ \dots \ n)$

- $w \in \mathfrak{S}_6$
- $J = \{s_1, s_3, s_4\}$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

<mark>The</mark> Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

- $w \in \mathfrak{S}_6$

$$w(1)$$
 $w(2)$ $w(3)$ $w(4)$ $w(5)$ $w(6)$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type An

- $w \in \mathfrak{S}_6$

Parabolic Cataland

Henri Mühle

Catalan Combinatoric

The Symmetric Group

atalano

Parabolio Cataland

Parabolic Cataland in Type An

- $w \in \mathfrak{S}_6$

• consider (\mathfrak{S}_n, S_n) , and fix $c = (1 \ 2 \ \dots \ n)$

- $w \in \mathfrak{S}_6$
- $I = \{s_1, s_3, s_4\}$

$$w(1) < w(2)$$

$$w(1) < w(2)$$
 $w(3) < w(4) < w(5)$

w(6)

Parabolic Cataland

Henri Mühle

<mark>Catalan</mark> Combinatori

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland in Type A_n

- $w \in \mathfrak{S}_6$
- subsets of S_n correspond to compositions of n

$$w(1) < w(2)$$
 $w(3) < w(4) < w(5)$ $w(6)$

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetri Group

Cataland

Parabolic Cataland

Parabolic Cataland in Type A_n

- $w \in \mathfrak{S}_6$
- $J = S_6 \setminus \{s_2, s_5\}$
- subsets of S_n correspond to compositions of n

Parabolic Cataland

Henri Mühle

Catalan Combinatori

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland in Type A_n

- $w \in \mathfrak{S}_6$
- $\bullet J = S_6 \setminus \{s_2, s_5\} \quad \longleftrightarrow \quad \alpha = (2, 3, 1)$
- subsets of S_n correspond to compositions of n

$$w(1) < w(2)$$
 $w(3) < w(4) < w(5)$ $w(6)$

Parabolio Cataland

Henri Mühle

Catalan Combinatorio

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland ir Type *A*n • consider (\mathfrak{S}_n, S_n) , and fix $c = (1 \ 2 \ \dots \ n)$

Theorem (& N. Williams, 2015)

For
$$c = (1 \ 2 \dots n)$$
 and $J \subseteq S_n$ holds

$$\left| \text{Align}(\mathfrak{S}_n^J, c) \right| = \text{Cat}(\mathfrak{S}_n^J) = \left| \text{NC}(\mathfrak{S}_n^J, c) \right|.$$

Parabolio Cataland

Henri Mühle

Catalan Combinato

Fhe Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland ir Type *A*n

Align(\mathfrak{S}_4^J, c)

order ideals in $(\Phi^+_{\mathfrak{S}_4^{I'}} \preceq)$

 $NC(\mathfrak{S}_4^J, c)$

1234

1243

2134

2143

1342

3124

3241

4123

4132

4231

Parabolio Cataland

Henri Mühle

Catalan Combinate

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland in Type A_n

• consider (\mathfrak{S}_n, S_n) , and fix $c = (1 \ 2 \ \dots \ n)$

• parabolic Tamari lattice: (Align(W^{J}, c), \leq_{S}) $\rightsquigarrow \mathcal{T}_{n}^{J}$

Theorem (& N. Williams, 2015)

For $c = (1 \ 2 \dots n)$ and $J \subseteq S_n$, the poset \mathcal{T}_n^J is a lattice.

Parabolio Cataland

Henri Mühle

Catalan Combinate

The Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland i Type A_n

• consider (\mathfrak{S}_n, S_n) , and fix $c = (1 \ 2 \ \dots \ n)$

• parabolic Dyck paths: order ideals in $(\Phi_{\mathfrak{S}_n^I}^+)' \preceq \longrightarrow \mathcal{D}_n^I$

Theorem (C. Ceballos, W. Fang & 🐇, 2018)

For $c = (1 \ 2 \dots n)$ and $J \subseteq S_n$, the lattices $(Align(\mathfrak{S}_n^J), \leq_S)$ and $(\mathcal{D}_n^J, \leq_{rot})$ are isomorphic.

Parabolic Cataland

Henri Mühle

Catalan

The Symmetri Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

• let
$$n = 4$$
, $c = (1 2 3 4)$, $J = \{s_2\}$

Parabolic Cataland

Henri Mühle

Catalan

The Symmetric Group

Cataland

Parabolio Cataland

Parabolic Cataland in Type A_n

• let
$$n = 4$$
, $c = (1 2 3 4)$, $J = \{s_2\}$

Conclusion

Parabolio Cataland

Henri Mühle

Catalan Combinatorics

i ne Symmetric Group

. Cataland

Parabolic Cataland

Parabolic Cataland in Type A_n

- we have presented an algebraic framework to generalize classical Catalan families to parabolic quotients of finite Coxeter groups
- in type A_n there are surprising connections to diagonal harmonics and Hopf algebras on pipe dreams

Conclusion

Paraboli

Henri Mühle

Catalan Combinatori

Symmetric Group

Cataland

Parabolic Cataland

Parabolic Cataland ir Type *A*_n we have presented an algebraic framework to generalize classical Catalan families to parabolic quotients of finite Coxeter groups

- in type A_n there are surprising connections to diagonal harmonics and Hopf algebras on pipe dreams
- prospects:
 - combinatorial realizations for other Coxeter elements in type A_n \leadsto work in progress with V. Pilaud
 - combinatorial realizations for other types

Paraboli Catalan

Henri Mühle

Catalan Combinatori

The Symmetri

Catalano

Parabolio Catalanc

Parabolic Cataland in Type A_n

Thank You.