On the EL-Shellability of the Cambrian Lattices

Myrto Kallipoliti and Henri Mühle

September 10, 2012

- it is well-known that the Hasse diagram of the Tamari lattice corresponds to the 1-skeleton of the classical associahedron
- the Tamari lattice T_n can be realized as a lattice quotient of the weak order lattice of the Coxeter group A_n
- the bottom elements of each congruence class are precisely the 312-avoiding permutations
- Nathan Reading has generalized this construction to all finite Coxeter groups W and all Coxeter elements $\gamma \in W$
- he called the resulting lattices *Cambrian lattices*, denoted by C_{γ}
- this construction yields a generalized associahedron for all finite Coxeter groups

• Björner and Wachs showed that \mathcal{T}_n is EL-shellable and that each open interval of \mathcal{T}_n is either contractible or spherical

• it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical

- Björner and Wachs showed that \mathcal{T}_n is EL-shellable and that each open interval of \mathcal{T}_n is either contractible or spherical
 - it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
 - it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical

- Björner and Wachs showed that \mathcal{T}_n is EL-shellable and that each open interval of \mathcal{T}_n is either contractible or spherical
 - it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
 - it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical
- however,
 - Thomas and Ingalls utilize the representation theory of Coxeter groups
 - Reading utilizes the fact that C_{γ} is the fan lattice of the Coxeter arrangement

- Björner and Wachs showed that \mathcal{T}_n is EL-shellable and that each open interval of \mathcal{T}_n is either contractible or spherical
 - it follows from a result by Hugh Thomas and Colin Ingalls that C_{γ} is EL-shellable
 - it follows from a result by Nathan Reading that the open intervals of C_{γ} are either contractible or spherical
- however,
 - Thomas and Ingalls utilize the representation theory of Coxeter groups
 - Reading utilizes the fact that C_{γ} is the fan lattice of the Coxeter arrangement
- we give a direct, case-free proof of these properties, using the realization of C_{γ} in terms of γ -sortable elements

Outline

- Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets
- 2 EL-Shellability of C_{γ} The Labeling Main Result
- **3 Applications**Topology of C_{γ} Subword Complexes

Outline

- Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets
- **EL-Shellability of** C_γ
 The Labeling
 Main Result
- 3 Applications
 Topology of C_{γ} Subword Complexes

γ -Sorting Words

- let W be a finite Coxeter group of rank n, with simple generators $S = \{s_1, s_2, \dots, s_n\}$
- consider the Coxeter element $\gamma = s_1 s_2 \cdots s_n$ and the half-infinite word $\gamma^{\infty} = s_1 s_2 \cdots s_n | s_1 s_2 \cdots s_n | s_1 \cdots$
- γ -sorting word of w: the reduced decomposition of $w \in W$ which is lexicographically first as a subword of γ^{∞} among all reduced decompositions of w

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

$$s_1 s_4 s_3 s_4$$
, $s_4 s_1 s_3 s_4$, $s_4 s_3 s_1 s_4$, $s_4 s_3 s_4 s_1$, $s_1 s_3 s_4 s_3$, $s_3 s_4 s_3$, $s_3 s_4 s_3 s_4$, $s_3 s_4 s_3 s_4$

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

$$s_1 s_4 s_3 s_4,$$
 $s_4 s_1 s_3 s_4,$ $s_4 s_3 s_1 s_4,$ $s_4 s_3 s_4 s_1,$ $s_1 s_3 s_4 s_3,$ $s_3 s_1 s_4 s_3,$ $s_3 s_4 s_1 s_3,$ $s_3 s_4 s_3 s_1$

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

$$s_1s_4s_3s_4$$
, $s_4s_1s_3s_4$, $s_4s_3s_1s_4$, $s_4s_3s_4s_1$,
 $s_1s_3s_4s_3$, $s_3s_1s_4s_3$, $s_3s_4s_1s_3$, $s_3s_4s_3s_1$

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

$$s_1 s_4 s_3 s_4$$
, $s_4 s_1 s_3 s_4$, $s_4 s_3 s_1 s_4$, $s_4 s_3 s_4 s_1$, $s_1 s_3 s_4 s_3$, $s_3 s_1 s_4 s_3$, $s_3 s_4 s_1 s_3$, $s_3 s_4 s_3 s_1$

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

$$s_1 s_4 s_3 s_4$$
, $s_4 s_1 s_3 s_4$, $s_4 s_3 s_1 s_4$, $s_4 s_3 s_4 s_1$, $s_1 s_3 s_4 s_3$, $s_3 s_1 s_4 s_3$, $s_3 s_4 s_1 s_3$, $s_3 s_4 s_3 s_1$

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

$$s_1 s_4 s_3 s_4$$
, $s_4 s_1 s_3 s_4$, $s_4 s_3 s_1 s_4$, $s_4 s_3 s_4 s_1$, $s_1 s_3 s_4 s_3$, $s_3 s_4 s_3$, $s_3 s_4 s_3 s_4$, $s_3 s_4 s_3 s_4$

- let $W = A_4$ with $s_i = (i, i + 1)$, and $\gamma = s_1 s_2 s_3 s_4$
- consider $w = s_1 s_4 s_3 s_4$
- there are eight reduced decompositions of w, namely

$$s_1s_4s_3s_4$$
, $s_4s_1s_3s_4$, $s_4s_3s_1s_4$, $s_4s_3s_4s_1$,
 $s_1s_3s_4s_3$, $s_3s_1s_4s_3$, $s_3s_4s_1s_3$, $s_3s_4s_3s_1$

γ -Sortable Words

• write the γ -sorting word of w as follows

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

- *i*-th block of w: the set $b_i = \{s_j \mid \delta_{i,j} = 1\} \subseteq S$, where $i \in \{1, 2, \dots, I\}$
- γ -sortable word: a word $w \in W$ satisfying $b_1 \supseteq b_2 \supseteq \cdots \supseteq b_l$

γ -Sortable Words

• write the γ -sorting word of w as follows

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

- *i*-th block of w: the set $b_i = \{s_j \mid \delta_{i,j} = 1\} \subseteq S$, where $i \in \{1, 2, \dots, l\}$
- γ -sortable word: a word $w \in W$ satisfying $b_1 \supseteq b_2 \supseteq \cdots \supseteq b_l$
- the γ -sorting word $w=s_1s_3s_4|s_3$ has $b_1=\{s_1,s_3,s_4\}$ and $b_2=\{s_3\}$ and is thus γ -sortable
- the γ -sorting word $v = s_1 s_3 s_4 | s_2$ is not

Theorem (Reading, 2005)

Let γ be a Coxeter element of a finite Coxeter group W. The γ -sortable elements of W constitute a sublattice of the weak order on W.

- consider the map $\pi_{\gamma}: W \to W, w \mapsto \pi_{\gamma}(w)$ that maps w to the largest γ -sortable element below it
- the fibers of π_γ induce a lattice congruence θ_γ on the weak order on W
- Cambrian lattice C_{γ} : the lattice quotient W/θ_{γ}

Basics on Posets

- bounded poset: a poset that has a unique minimal and a unique maximal element
- let $\mathbb{P} = (P, \leq_{\mathbb{P}})$ be a bounded poset
- $\overline{\mathbb{P}}$ is the poset that arises from \mathbb{P} by removing the maximal and minimal element (the so-called proper part of \mathbb{P})
- chain: linearly ordered subset c of P notation: c : p₀ <_ℙ p₁ <_ℙ ··· <_ℙ p_s
- maximal chain in [p,q]: there is no $p' \in [p,q]$ and no $0 \le i < s$ such that $p = p_0 <_{\mathbb{P}} p_1 <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_i <_{\mathbb{P}} p' <_{\mathbb{P}} p_{i+1} <_{\mathbb{P}} \cdots <_{\mathbb{P}} p_s = q$ is a chain

Edge-Labelings

- cover relation $p \lessdot_{\mathbb{P}} q$: $p \lessdot_{\mathbb{P}} q$ and there is no $p' \in P$ with $p \lessdot_{\mathbb{P}} p' \lessdot_{\mathbb{P}} q$
- $\mathcal{E}(\mathbb{P}) = \big\{ (p,q) \mid p \lessdot_{\mathbb{P}} q \big\}$ is the set of covering relations on \mathbb{P}
- edge-labeling λ : map $\lambda : \mathcal{E}(\mathbb{P}) \to \Lambda$, for some poset Λ
- $\lambda(c) = (\lambda(p_0, p_1), \lambda(p_1, p_2), \dots, \lambda(p_{s-1}, p_s))$ is the label-sequence of c
- rising chain: a chain c such that $\lambda(c)$ is strictly increasing
- ullet ER-labeling: an edge-labeling such that for every interval of ${\mathbb P}$ there is exactly one rising maximal chain
- EL-labeling: an ER-labeling such that the rising chain in every interval is lexicographically first among all maximal chains

000

EL-Shellability

• EL-shellable poset: a bounded poset that admits an **EL-labeling**

Preliminaries

EL-Shellability

- EL-shellable poset: a bounded poset that admits an EL-labeling
- the order complex $\Delta(\overline{\mathbb{P}})$ of an EL-shellable poset \mathbb{P} is shellable and hence Cohen-Macaulay
- the geometric realization of $\Delta(\overline{\mathbb{P}})$ is homotopy equivalent to a wedge of spheres
- the *i*-th Betti number of $\Delta(\overline{\mathbb{P}})$ is given by the number of falling maximal chains of length i+2
- hence, the Euler characteristic $\chi \left(\Delta(\overline{\mathbb{P}}) \right)$ can be computed from the labeling
- if $0_{\mathbb{P}}$ is the unique minimal element and $1_{\mathbb{P}}$ the unique maximal element of \mathbb{P} , we have $\chi(\Delta(\overline{\mathbb{P}})) = \mu(0_{\mathbb{P}}, 1_{\mathbb{P}})$

Outline

- Preliminaries Cambrian Lattices EL-Shellability of Posets
- **2 EL-Shellability of** C_{γ} The Labeling Main Result
- 3 Applications
 Topology of C_{γ} Subword Complexes

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} | s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots | s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0,$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = \mathbf{s}_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 \mathbf{s}_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 \mathbf{s}_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | \mathbf{s_1^0} s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le I$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}} | \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 \mathbf{s_4^1} | s_1^0 s_2^0 s_3^1 \mathbf{s_4^0}, \quad \alpha(w) = \{1, 3, 6, 8\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | \mathbf{s_1^0} s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 \mathbf{s_3^1} s_4^0, \quad \alpha(w) = \{1, 3, 6, 8, 11\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 \mathbf{s_4^0}, \quad \alpha(w) = \{1, 3, 6, 8, 11\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le l$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

• let $w = s_1 s_3 | s_2 s_4 | s_3 \in A_4$ $w = s_1^1 s_2^0 s_3^1 s_4^0 | s_1^0 s_2^1 s_3^0 s_4^1 | s_1^0 s_2^0 s_3^1 s_4^0, \quad \alpha(w) = \{1, 3, 6, 8, 11\}$

• recall that we write the γ -sorting word of $w \in W$ as

$$w = s_1^{\delta_{1,1}} s_2^{\delta_{1,2}} \cdots s_n^{\delta_{1,n}} |s_1^{\delta_{2,1}} s_2^{\delta_{2,2}} \cdots s_n^{\delta_{2,n}}| \cdots |s_1^{\delta_{l,1}} s_2^{\delta_{l,2}} \cdots s_n^{\delta_{l,n}},$$

where $\delta_{i,j} \in \{0,1\}$ for $1 \le i \le I$ and $1 \le j \le n$

• define the set of filled positions of w in γ^{∞} by

$$\alpha(w) = \{(i-1) \cdot n + j \mid \delta_{i,j} = 1\} \subseteq \mathbb{N}$$

•
$$\lambda : \mathcal{E}(C_{\gamma}) \to \mathbb{N}, \quad (u, v) \mapsto \min\{\alpha(v) \setminus \alpha(u)\}$$

The Labeling – Example

Main Result

Theorem

For every finite Coxeter group W and every Coxeter element $\gamma \in W$, the edge-labeling λ is an EL-labeling of C_{γ} .

We need two technical lemmas for the proof!

Lemma 1

Lemma

Let $u \le v$ in C_{γ} . If u and v have the same first block b, then let u', v' be the elements obtained by omitting b. Then, $u', v' \in C_{\gamma}$, and we have:

- 1 The intervals [u, v] and [u', v'] are isomorphic.
- **2** For every $w_1', w_2' \in [u', v']$ with $w_1' \lessdot w_2'$ we have $\lambda(bw_1', bw_2') = \lambda(w_1', w_2') + n$.

Lemma 2

Lemma

For $u, v \in C_{\gamma}$ with $u \le v$ define $i_0 = \min\{i \in \alpha(v) \setminus \alpha(u)\}$. The following hold:

- 1 The label i_0 appears in every maximal chain of [u, v].
- **2** There is a unique element $u_1 \in (u, v)$ with $u \lessdot u_1$ and $\lambda(u, u_1) = i_0$.
- **3** $\alpha(u)$ is a subset of $\alpha(v)$.
- 4 The labels of each maximal chain in [u, v] are distinct.

Main Result

Theorem

For every finite Coxeter group W and every Coxeter element $\gamma \in W$, the edge-labeling λ is an EL-labeling of C_{γ} .

Sketch of proof:

- proceed by induction on the length k of the interval [u, v]
- if k = 2, then the result follows from Lemma 2
- Lemma 2 tells us that there exists an $u \leqslant u_1$ in [u,v] with $\lambda(u,u_1)=i_0$
- apply induction on the interval $[u_1, v]$ to find the maximal chain $u_1 \lessdot u_2 \lessdot \cdots \lessdot v$ which is rising and lexicographically first
- by definition and Lemma 2, the chain $u \lessdot u_1 \lessdot u_2 \lessdot \cdots \lessdot v$ is the desired maximal chain in [u, v]

Outline

- 1 Preliminaries
 Cambrian Lattices
 EL-Shellability of Posets
- 2 EL-Shellability of Cartesian The Labeling Main Result
- 3 Applications
 Topology of C_{γ} Subword Complexes

Topology of C_{γ}

Theorem (Reading, 2004)

Every open interval in a Cambrian lattice is either contractible or homotopy equivalent to a sphere.

- Nathan Reading obtained this result by showing that C_{γ} is a special instance of a fan lattice associated to a central hyperplane arrangement
- he showed this property for this larger class of lattices
- having an EL-labeling of C_{γ} , we can proof this property directly

Topology of C_{γ}

Theorem

Let $u, v \in C_{\gamma}$ with $u \leq v$. Then $|\mu(u, v)| \leq 1$.

• if $\mathbb P$ is an EL-shellable poset, and $p,q\in\mathbb P$ with $p\leq q$, then

$$\mu(p,q)=\#$$
 even length falling chains in $[p,q] \#$ odd length falling chains in $[p,q]$

 we show that there exists at most one falling chain in each interval

Subword Complexes

- Vincent Pilaud and Christian Stump have recently shown that the Cambrian lattices coincide with the poset of flips of special subword complexes
- Christian Stump observed that our labeling is a specialization of a natural labeling of the poset of flips for every subword complex

EL-Shellability of C_{γ}

Applications

oo
oo

Subword Complexes

Thank You.

An EL-Labeling for Trim Lattices

- let L be a lattice
- left-modular element: $x \in L$ such that for all $y, z \in L$ holds

$$(y \vee_L x) \wedge_L z = y \vee_L (x \wedge_L z)$$

- left-modular lattice: a lattice that contains a maximal chain of left-modular elements
- join-irreducible element: x ∈ L which covers exactly one element
- meet-irreducible element: x ∈ L which is covered by exactly one element
- trim lattice: a left-modular lattice (with left-modular chain of length n) that has exactly n join- and n meet-irreducible elements

An EL-Labeling for Trim Lattices

- let *L* be a finite lattice with left-modular chain $\hat{0} = x_0 \leqslant_I x_1 \leqslant_I \cdots \leqslant_I x_n = \hat{1}$
- $\gamma: \mathcal{E}(L) \to \mathbb{N}, \quad (p,q) \mapsto \min\{i \mid p \lor_L x_i \land_L q = q\}$

Proposition (Liu, 1999)

If L is a finite, left-modular lattice, then γ is an EL-labeling.

Liu's Labeling

Our Labeling

