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@ Catalan numbers: Cat(n) dof 711?(2: )

@ many combinatorial objects are counted by Cat(n)

@ we replace 1 by a composition « of n and generalize
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@ w € &,; « composition of n

@ a-permutation: values with same color are increasing

@ descent: (i,j) such thati < jand w(i) = w(j) +1

@ (a,231)-pattern: a triple (i,7, k) withi < j < kin
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@ w € &,; « composition of n

@ a-permutation: values with same color are increasing

@ descent: (i,j) such thati < jand w(i) = w(j) +1

@ (a,231)-pattern: a triple (i,7, k) withi < j < kin
different a-regions such that w(i) < w(j) and (i, k) is a

descent
o (a,231)-avoiding: does not have an (&, 231)-pattern
~ G,(231)
a=(1,31,24,31)

12311131125 4 910157 8 146
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{1,2,...,n}
@ w-partition: a set partition of [n] whose blocks intersect
any a-region in at most one element

@ « composition of 1; [n]

@ bump: two consecutive elements in a block

o diagram: graphical representation of a-partitions
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def

{1,2,...,n}
@ w-partition: a set partition of [n] whose blocks intersect
any a-region in at most one element

@ « composition of 1; [n]

@ bump: two consecutive elements in a block
o diagram: graphical representation of a-partitions

@ noncrossing: no bumps cross in the diagram  ~+ NC,

a=(1,3,1,2,4,3,1)

VR D
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@ « composition of n

@ «-tree: plane rooted tree with n + 1 nodes colorable by
the following algorithm ~ Ty

a=(1,31,2,4,31)



Theorem (C. Ceballos, W. Fang, 4%, N. Williams;
2015-2018)

For every composition , the sets S,(231), NCy, Dy and Ty, are
in bijection.
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@ inversion: (7,j) such thati < jand w(i) > w(j)
o (left) weak order: w <; @' if and only if
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o weE B,
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o weE B,

@ inversion: (7,j) such thati < jand w(i) > w(j)
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o weE G,

@ inversion: (7,j) such thati < jand w(i) > w(j)
o (left) weak order: w <; @' if and only if
Inv(w) C Inv(w')

@ parabolic Tamari lattice: 7, def (64(231),<1)

Theorem (¢, N. Williams; 2015)

For every integer composition w, the poset T, is a quotient lattice
Of(sz; SL)
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o uecD,

@ valley: coordinate preceded by E and followed by N

@ rotation at valley: exchange east step with subpath
subject to a distance condition ~ <y

@ v,-Tamari lattice: 7, def (Da, <4)
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o uecD,

@ valley: coordinate preceded by E and followed by N

@ rotation at valley: exchange east step with subpath
subject to a distance condition ~ <y

@ v,-Tamari lattice: 7, def (Da, <4)

Theorem (L.-E. Préville-Ratelle, X. Viennot; 2017)

For every integer composition w, the poset Ty, is a lattice.




o uecD,

@ valley: coordinate preceded by E and followed by N

@ rotation at valley: exchange east step with subpath
subject to a distance condition ~ <y

@ v,-Tamari lattice: 7, def (Da, <4)

Theorem (L.-E. Préville-Ratelle, X. Viennot; 2017)

For every integer composition w, the poset Ty, is a lattice.

Holds for arbitrary Dyck paths v.
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For every integer composition w, the lattices T, and T, are
isomorphic.




Theorem (C. Ceballos, W. Fang, ; 2018)

For every integer composition w, the lattices T, and T, are
isomorphic.
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number of bumps.




e PP cIIl,

@ (dual) refinement: every block of P is contained in
some block of P’ ~ < dref

@ noncrossing a-partition poset: NC, def (NCa, <dref)

Theorem (¢; 2018)

For every integer composition , the poset NC, is a ranked
meet-semilattice, where the rank of an a-partition is given by the
number of bumps.

NC, is a lattice if and only if « = (n) ora = (1,1,...,1).
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o L = (L, <) finite lattice; A edge-labeling; x € L

def
@ nucleus: x| = Ay
yeLy<x
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o L = (L, <) finite lattice; A edge-labeling; x € L

def
@ nucleus: x| = Ay
yeLy<x

@ core: interval [x|, x|

o core labels: ¥, (x) & {A(w,v) | x) <u<ov<x}

Y,(x) ={3,4,5}




o L = (L, <) finite lattice; A edge-labeling; x € L

o core label order: x C y if and only if ¥ (x) C ¥, (y)
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o L = (L, <) finite lattice; A edge-labeling; x € L

o core label order: x C y if and only if ¥ (x) C ¥, (y)

o CLO,(£) ¥ (L,C)
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o L = (L, <) finite lattice; A edge-labeling; x € L

o core label order: x C y if and only if ¥ (x) C ¥, (y)

e CLO, (,C) d=ef (L, E) (requires that x — ¥, (x) is injective)
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o L = (L, <) finite lattice; A edge-labeling; x € L

o core label order: x C y if and only if ¥ (x) C ¥, (y)

e CLO, (,C) d=ef (L, E) (requires that x — ¥, (x) is injective)

A
e {1,2,3,5} (3,45}

53 45 2/( /\ \K}\
yedt! {2,4} {3,4} {4,5} {3,5}
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@ A, label w < w' by the unique descent of w' that is not
an inversion of w

o w— ¥, (w) is injective on &,(231)
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@ A, label w < w' by the unique descent of w' that is not
an inversion of w

o w— ¥, (w) is injective on &,(231)
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@ A, label w < w' by the unique descent of w' that is not
an inversion of w

o w— ¥, (w) is injective on &,(231)
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@ A, label w < w' by the unique descent of w' that is not
an inversion of w

o w— ¥, (w) is injective on &,(231)
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@ A, label w < w' by the unique descent of w' that is not
an inversion of w

o w— ¥, (w) is injective on &,(231)

Theorem (¢; 2018)

Let o be an integer composition of n. The poset CLO, (Ty) is
always a subposet of NC.




@ A, label w < w' by the unique descent of w' that is not
an inversion of w

o w— ¥, (w) is injective on G,(231)

Theorem (¢; 2018)

Let o be an integer composition of n. The poset CLO, (Ty) is
always a subposet of NC.

We have CLO,, (Tx) = NCy ifand only if &« = (a,1,1,...,1,D)
for some a,b > 1.
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@ A, label w < w' by the unique descent of w' that is not
an inversion of w

o w— ¥, (w) is injective on &,(231)
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© A Hopf Algebra on Pipe Dreams
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o weE G,

e global split: k € [n] such that w([k]) = [n] \ [n — k]
@ atomic: permutation whose only global split is n

@ unique decomposition of w into atomic permutations

w=2~8e e3e12



o weE G,

e global split: k € [n] such that w([k]) = [n] \ [n — k]
@ atomic: permutation whose only global split is n

@ unique decomposition of w into atomic permutations

w=1e elel2
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@ pipe dream: filling of a triangular shape with elbows

“ and crosses -+

@ reduced: every pair of pipes crosses at most once

@ technical requirement: elbow in top-left cell ~ I,

@ exit permutation: order of the pipes exiting on the top
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pipe dream: filling of a triangular shape with elbows

“ and crosses -+

reduced: every pair of pipes crosses at most once

technical requirement: elbow in top-left cell ~ I,

exit permutation: order of the pipes exiting on the top

consider the graded vector space kI1 ot Do kI,

6 57 42 1 3=uwp
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o P e I1,; k global split of wp

@ untangling: Ay, _x(P) = P1 ® P, where P; restricts to
pipes labeled k,k + 1, ...,n and P, restricts to pipes
labeled 1,2,...,k —1; A, ,(P) = 0 otherwise

@ coproduct: A df Y. Agp

a,beIN
@ counit: €(P) = 1if P = <~ and 0 otherwise



o P e I1,; k global split of wp

@ untangling: Ay, _x(P) = P1 ® P, where P; restricts to
pipes labeled k,k + 1, ...,n and P, restricts to pipes
labeled 1,2,...,k —1; A, ,(P) = 0 otherwise

@ coproduct: A df Y. Agp

a,beIN
@ counit: €(P) = 1if P = J- and 0 otherwise
6 57 4 2 1 3
J J
T e
,J 1)

J r

d r




o P e I1,; k global split of wp

@ untangling: Ay, _x(P) = P1 ® P, where P; restricts to
pipes labeled k,k + 1, ...,n and P, restricts to pipes
labeled 1,2,...,k —1; A, ,(P) = 0 otherwise

@ coproduct: A df Y. Agp

a,beIN
@ counit: €(P) = 1if P = <~ and 0 otherwise

6 57 4 2 1 3

J J
7 g
2 r——’I r
B T
4 f_r-

e
T



o P e I1,; k global split of wp

@ untangling: Ay, _x(P) = P1 ® P, where P; restricts to
pipes labeled k,k + 1, ...,n and P, restricts to pipes
labeled 1,2,...,k —1; A, ,(P) = 0 otherwise

@ coproduct: A df Y. Agp

a,beIN
@ counit: €(P) = 1if P = <~ and 0 otherwise

6 57 4 2 1 3

J( )f_)r 32 4 1
1J_’ r ]
43 |, f_r =
4

5 r
fr

6
o



o P e I1,; k global split of wp

@ untangling: Ay, _x(P) = P1 ® P, where P; restricts to
pipes labeled k,k + 1, ...,n and P, restricts to pipes
labeled 1,2,...,k —1; A, ,(P) = 0 otherwise

@ coproduct: A df Y. Agp

a,beIN
@ counit: €(P) = 1if P = J- and 0 otherwise
6 5 7 4 2 1 3
J y
T e
a
T
Asy | ° r =0
4 r
5~ (@
6 fr—



Theorem (N. Bergeron, C. Ceballos, V. Pilaud; 2018)

The product - and coproduct A endow the family of all pipe
dreams with a graded, connected Hopf algebra structure.




@ I1,(1,12,123...): set of pipe dreams whose exit
permutation factors into identity permutations

o "(-walk: a lattice walk in the positive quadrant
starting at the origin, ending on the x-axis, and using
2n steps from the set {(—1,1),(1,—1),(0,1) }
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Theorem (C. Ceballos, W. Fang, #; 2018)

Forn > 0, the dimension of kI1,,(1,12,123, ...) equals the
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Theorem (H. Weyl; 1949)

The ring Q[X, Y]®" of &,-invariant polynomials is generated by
the polarized power sums.
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o w=(1,1,...,1) composition of n; y € D, = D,

def

@ bounce path: path of the form N1 EAN®2E® .. NiEir

@ bounce parameters: b; is i-th contact of ypounce With

diagonal

@ bounce: bounce(y)
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Theorem (A. Garsia, J. Haglund, M. Haiman; 2000s)
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Theorem (A. Garsia, J. Haglund, M. Haiman; 2000s)

Forn > 0, we have

’Hi(q,t) _ Z qarea(y)tbounce(y)
ueD,

_ Z qdinv(y)tarea.
ueD,

@ the first equality is proven via a detour through
g, t-Catalan numbers

o the second equality is proven via an explicit bijection;
the zeta map ¢



Theorem (C. Ceballos, W. Fang, %; 2018)

For every n > 0 and every r € [n], there exists an explicit
bijection T from
o the set of nested pairs (u1, pi2) € D2, where yy is a steep
path ending in r east-steps, to
@ the set of nested pairs (u}, uy) € D3, where y} is a bounce
path that touches the diagonal r + 1 times.




Theorem (C. Ceballos, W. Fang, %; 2018)
For every n > 0, the map T restricts to a bijection from
o the set of pairs (i, Usteep ), where p € Dy, to
@ the set of pairs (Vpounce, V), Where v € D,,.
Moreover, if (Vpounces V) = T (1, Ysteep), then v = C(u).
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Theorem (C. Ceballos, W. Fang, #; 2018)

For every composition w, there is an explicit bijection from T, to
D“-

a=(1,31,2,431)




@ Chapoton Triangles in Parabolic Cataland



a=(1,3,1,2,4,31)




o uecD,

@ peak: coordinate preceded by N and followed by E

a=(1,3,1,2,4,31)




o uecD,

@ peak: coordinate preceded by N and followed by E

a=(1,3,1,2,4,31)




o uecD,

@ peak: coordinate preceded by N and followed by E

a=(1,3,1,2,4,31)

peak =8




o uecD,

@ peak: coordinate preceded by N and followed by E

@ bounce peak: common peak of y and v,

a=(1,3,1,2,4,31)

peak =8




o uecD,

@ peak: coordinate preceded by N and followed by E

@ bounce peak: common peak of y and v,

a=(1,3,1,2,4,31)

peak =8




o uecD,

@ peak: coordinate preceded by N and followed by E

@ bounce peak: common peak of y and v,

a=(1,3,1,2,4,31)

peak =8
bouncepeak = 2




o uecD,

@ peak: coordinate preceded by N and followed by E
@ bounce peak: common peak of y and v,

@ base peak: peak at distance 1 from v,

a=(1,3,1,2,4,31)

peak =8
bouncepeak = 2




o uecD,

@ peak: coordinate preceded by N and followed by E
@ bounce peak: common peak of y and v,

@ base peak: peak at distance 1 from v,

a=(1,3,1,2,4,31)

peak =8
bouncepeak = 2




o uecD,

@ peak: coordinate preceded by N and followed by E
@ bounce peak: common peak of y and v,

@ base peak: peak at distance 1 from v,

a=(1,3,1,2,4,31)

peak =8
bouncepeak = 2
basepeak =1




o uecD,

@ peak: coordinate preceded by N and followed by E
@ bounce peak: common peak of y and v,
@ base peak: peak at distance 1 from v,

@ H-triangle:
H, (S, t) def Z Speak(y)—bouncepeak(y)tbasepeak(y)

UED,
a=(1,3,1,2,4,31)

peak =8
bouncepeak = 2
basepeak =1





































x=(1,21)

H ) (s,t) = 2 4252t 4+ 52 + 25t + 35+ 1
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a=(1,3,1,2,4,3,1)

S O A



e P e NC,

@ bump: number of bumps of P

a=(1,3,1,2,4,3,1)

S O A



e P e NC,

@ bump: number of bumps of P

a=(1,3,1,2,4,3,1)

bump =7

S O A



e P e NC,

@ bump: number of bumps of P
@ upc,: Mobius function of NC,

a=(1,3,1,2,4,3,1)

bump =7

S O A



e P e NC,

@ bump: number of bumps of P
@ upc,: Mobius function of NC,

@ M-triangle:
M, (S, f) d:ef Z e (P, P/)Sbump(P’)tbump(P)
P,P’eNC,

a=(1,3,1,2,4,3,1)

bump =7

S O A









a=(1,2,1)

M(l,Z,l) (S, t) =1 + Sst



a=(1,2,1)

M(l,Z,l) (S, t) =1 + Sst —+ 4Szt2



a=(1,2,1)

M11)(s, ) = 1+ 5st + 45*t> — 55



a=(1,21)

M) (s,t) =1+ 5st + 45212 — 55 — 1082t



a=(1,2,1)

M11)(s,t) = 1+ Bst + 452> — 5s — 105t + 65



x=(1,21)

M(1,2,1) (s,t) = 45242 — 1082t + 652 + 55t — 55 + 1



@ H-triangle:
Ha(S/ i’) d:ef Z Speak(y)—bouncepeak(y)tbasepeak(y)
ueD,
@ M-triangle:
Ma(s,) = Y e, (B, P)sPmp (P oume(®)
P,P'eNC,



@ H-triangle:
H(X(S/ t) d:ef Z Speak(y)—bouncepeak(y)tbasepeak(y)
ueD,
@ M-triangle:
Mi(s,t) < Y- i, (B, F)s>emp ) ume(t)
P,P'eNC,

Conjecture (; 2018)

The following equation holds if and only if « has r parts, where
either the first or the last may exceed 1:

H“(S,t) _ (S(t—l) +1)T_1Ma ( S(t—l) t >

(s(t—1)+1"t—1




@ H-triangle:
H, (S, t) d:ef Z Speak(y)—bouncepeak(y)tbasepeak(y)

ueD,
@ M-triangle:

My(s, ) & Y pag, (P, P/)sbump(P) jpump(P)
P,P'eNC,

Conjecture (; 2018)

The following equation holds if and only if « has r parts, where
either the first or the last may exceed 1:

H“(S,t) _ (S(t—l) +1)T_1Ma ( S(t—l) t >

(s(t—1)+1"t—1

Ifa = (1,1,...,1), then this is a theorem.



@ H-triangle:
H, (S, i’) d:ef Z Speak(y)—bouncepeak(y)tbasepeak(y)
ueD,
° M-triangle:d ) ,
M, (S, t) 1 Z HCLO(TL) (P, P/)Sbump(P )tbump(P)
P,P'eNC,



@ H-triangle:
H, (S, t) d:ef Z Speak(y)—bouncepeak(y)tbasepeak(y)
ueD,
° M-trianglezd .
Ma(s,t) = Y pcror) (P, P/)s?ump(F) foump(P)
P,P'eNC,

Conjecture (; 2018)

The following equation holds if and only if « has r parts, of which
at most one exceeds 1:

HAaﬂ:(ﬂr—n+4y”ph( s(t—=1) ¢ >.

(s(t—1)+1"t—1




@ H-triangle:
H, (S, t) d:ef Z Speak(y)—bouncepeak(y)tbasepeak(y)
ueD,
° M-trianglezd .
Ma(s,t) = Y pcror) (P, P/)s?ump(F) foump(P)
P,P'eNC,

Conjecture (; 2018)

The following rational function is a polynomial with positive
integer coefficients if and only if a has r parts, of which at most
one exceeds 1:

Fu(s,t) &5 1H, (

s+1 t+1
s 's+1)°




@ H-triangle:
H, (S, t) d:ef Z Speak(y)—bouncepeak(y)tbasepeak(y)
ueD,
° M-trianglezd .
Ma(s,t) = Y pcror) (P, P/)s?ump(F) foump(P)
P,P'eNC,

Conjecture (; 2018)

The following rational function is a polynomial with positive
integer coefficients if and only if a has r parts, of which at most
one exceeds 1:

Fu(s, 1) def s H, (

s+1 t+1
s 's+1/°

Ifa = (1,1,...,1), then this is a theorem.



@ H-triangle:
H, (S, i’) d:ef 2 Speak(y)—bouncepeak(y)tbasepeak(y)
ueD,
° M—triangle:d .
Ma(s,t) = ) pcrogr) (P, P/)sPamp(F) foump(®)
P,P'eNC,

Which family of combinatorial objects realizes F,? What are the
statistics?







x=(1,21)

H ) (s,t) = 2 4252t 4+ 52 + 25t + 35+ 1



a=(1,2,1)
H ) (s,t) = 2 4252t 4+ 52 + 25t + 35+ 1

M1 (s,t) = 45*> — 952t + 557 4 5st — 55 + 1



a=(1,2,1)
H ) (s,t) = 2 4252t 4+ 52 + 25t + 35+ 1

M1 (s,t) = 45*> — 952t + 557 4 5st — 55 + 1

F(l,Z,l) (S/ t) - 552 + 4st + tz +9s+4t+4






a=(2,2)

Hppp)(s,t) = s2+st+3s+1



a=(2,2)
Hppp)(s,t) = §2 4+ st+3s+1

My0)(s,t) = s21% — 282t + 57 4 4st —4s + 1



a=(2,2)
Hppp)(s,t) = §2 4+ st+3s+1

My0)(s,t) = s21% — 282t + 57 4 4st —4s + 1

5% +-st+6s+1
F(2,2)(s,t) = %



@ The Ballot Case



@ &(y def (t,1,1,...,1) composition of n



@ &(y def (t,1,1,...,1) composition of n

@ a(,)-Dyck paths are essentially Ballot paths

i

«=(61,1,1,1,1,1)




o D‘(nt) d_ef (t 1 1

., 1) composition of n
@ «(,-Dyck paths are essentially Ballot paths

Theorem (¢; 2018)
Forn > 0and 1 < t < n, the common cardmalzty of the sets

Sa,,, (231), NCu,,, Da,,y, and Ta,,

def t+1 [2n—t
Cat(aus)) = n—+1(n—t)'




@ &(y def (t,1,1,...,1) composition of n

@ a(,)-Dyck paths are essentially Ballot paths

Theorem (¢; 2018)

Forn > 0and 1 <t < n, the number of noncrossing
& () -partitions with exactly k bumps is

B -G




@ &(y def (t,1,1,...,1) composition of n

@ a(,)-Dyck paths are essentially Ballot paths

Theorem (¢; 2018)

Forn > 0and 1 < t < n, we have CLO(’Y;W)) = NCMM).




@ &(y def (t,1,1,...,1) composition of n
@ a(,)-Dyck paths are essentially Ballot paths

@ zeta polynomial: evaluation at g + 1 counts
g-multichains



@ &(y def (t,1,1,...,1) composition of n
@ a(,)-Dyck paths are essentially Ballot paths

@ zeta polynomial: evaluation at g + 1 counts
g-multichains

Theorem (C. Krattenthaler; 2019)
Forn > 0and 1 <t < n, the zeta polynomial of NCy,, is

tg—1)+1 (ng—t
ZNCW)(L]):M( q )

nig—1)+1\n—t




@ &(y def (t,1,1,...,1) composition of n
@ a(,)-Dyck paths are essentially Ballot paths

@ zeta polynomial: evaluation at g + 1 counts
g-multichains

Theorem (C. Krattenthaler; 2019)

Forn > 0and 1 <t < n, the number of maximal chains in
NC,XW) is tn"—t-1,




e Miscellaneous



@ &,: symmetric group of degree n

@ &= (ay,a2,...,4): composition of n
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@ &,: symmetric group of degree n
@ &= (ay,a2,...,4): composition of n
o lets; dzeflxl-i-ﬂéz-i-"'-i-lxi

@ a-region: aset{s;+1,s;+2,...,8141}



@ &,: symmetric group of degree n
@ &= (ay,a2,...,4): composition of n
o lets; d:efoq—i-uc2+---+ai

@ a-region: aset{s;+1,s;+2,...,8141}
@ parabolic quotient:

G T 6,/ (G, X Gy X - X By



@ &,: symmetric group of degree n
@ &= (ay,a2,...,4): composition of n
o lets; d:efoq—i-uc2+---+zxi
@ a-region: aset{s;+1,s;+2,...,8141}
@ parabolic quotient:
cEwes, |wk) <wk+1)
forallk & {s1,52,...,5-1}}



@ &,: symmetric group of degree n
@ &= (ay,a2,...,4): composition of n
o lets; d:efoq—i-uc2+---+ai

@ a-region: aset{s;+1,s;+2,...,8141}

@ parabolic quotient:
def

Sy = {we &, |wk) <wk+1)
forallk ¢ {s1,s2,...,5-1}}
1234 1243 1324 1342 1423 1432
n=4 2134 2143 2314 2341 2413 2431

3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321



@ &,: symmetric group of degree n
@ &= (ay,a2,...,4): composition of n
o lets; d:efoq—i-uc2+---+ai

@ a-region: aset{s;+1,s;+2,...,8141}

@ parabolic quotient:
def

&y = {we &, | wik) <w(k+1)
forallk ¢ {s1,s2,...,5-1}}
1234 1243 1324 1382 1428 1432
n=4 2134 2143 2314 2341 2413 2431
a=(1,21) 3124 3142 3214 3241 3412 3421

4123 4132 4213 4231 4312 4321



@ &,: symmetric group of degree n

@ &= (ay,a2,...,4): composition of n

° letsid:Efocl—i-uc2+---+oci

@ a-region: aset{s;+1,s;+2,...,8141}

@ parabolic quotient:

s, &
1234
= 2134
«=(1,21)
3124
4123

1243
2143
3142
4132

{we &, | wk) <wk+1)

forallk ¢ {si1,s2,... ,sr,l}}



@ P = (P, <) finite poset
@ Mobius function: the map pp: P x P — Z given by

L, ifx=y,
up(x,y) =4 — X pp(xz), ifx<y,

x<z<y
0, otherwise



@ P = (P, <) finite poset

@ Mobius function: the map pp: P x P — Z given by

1/ lf X = y,
() = { = 5 () ifx<y
0, otherwise

Theorem (G.-C. Rota; 1964)

Let P = (P, <) be a finite poset, and let f,g: P x P — Z. It
holds f(y) = Y.<y 8(x) if and only if g(y) = Lx<y (X) 1 (%, Y)-




@ P = (P, <) finite bounded poset; 0,1 least/ greatest
element
@ Mobius function: the map pp: P x P — Z given by

1/ lf X = y,
() =4 = 5 () ifx<y
0, otherwise

Theorem (P. Hall; 1936)

Let P = (P, <) be a finite bounded poset. The reduced Euler
characteristic of the order complex of (P \ {0,1}, <) equals

1p(0,1) up to sign.




o L = (L, <) finite lattice

@ join irreducible: j = x Vy impliesj € {x,y} ~ J(L)
@ meet irreducible: m = x Ay implies m € {x,y}

~ M(L)
@ length: maximal length of a chain ~U(L)



o L = (L, <) finite lattice

o extremal: |7 (L)| = 4(L) = |M(L)]

[ T(£)] =4
|IM(L)] =4
0L)=3



o L = (L, <) finite lattice

o extremal: |7 (L)| = 4(L) = |M(L)]

|T(£)] =3
|IM(L)] =3
0L)=3



o L = (L, <) finite lattice

o extremal: |7 (L)| = 4(L) = |M(L)]
[+) CZX0<JC1<"'<X[(L)



o L = (L, <) finite lattice

o extremal: |7 (L)| = 4(L) = |M(L)]
[+) CZX0<JC1<"'<X[(L)
@ sort irreducibles such that

JIVRV Vg = X = My Atgp A= Ay gy



o L = (L, <) finite lattice

o extremal: |7 (L)| = 4(L) = |M(L)]
[+) CZX0<JC1<"'<X[(L)
@ sort irreducibles such that
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o L = (L, <) finite lattice
o extremal: |7 (L)| = 4(L) = |M(L)]
[+) CZX0<JC1<"'<X[(L)

@ sort irreducibles such that

JIVRV Vg = X = My Atgp A= Ay gy



o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,
i — kif and only if i # k and j; £ my

.. (L)} with
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o L = (L, <) finite lattice
@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y



o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y

@ order: (X,Y) C (X, Y') ifand only if X C X’



o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y

@ order: (X,Y) C (X, Y') ifand only if X C X’

Theorem (G. Markowsky; 1992)

Every finite extremal lattice is isomorphic to the lattice of
maximal orthogonal pairs of its Galois graph.

This is a special case of a formal context.



o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y

@ order: (X,Y) C (X, Y') ifand only if X C X’



o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y

@ order: (X,Y) C (X, Y') ifand only if X C X’
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o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y

@ order: (X,Y) C (X, Y') ifand only if X C X’

N

(1,23) 1

(—,123)



o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y

@ order: (X,Y) C (X, Y') ifand only if X C X’



o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y

@ order: (X,Y) C (X, Y') ifand only if X C X’

A

(12,3 2 e
(3,1) l .
123) 1

(—,123)



o L = (L, <) finite lattice

@ Galois graph: directed graph on {1,2,...,¢(L)} with
i — kif and only if i # k and j; £ my

@ orthogonal pair: (X,Y) such that XN'Y = @ and no
arrows from X to Y

@ order: (X,Y) C (X, Y') ifand only if X C X’
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