

Bereich Mathematik und Naturwissenschaften, Fakultät Mathematik, Institut für Algebra

Jun.-Prof. Friedrich Martin Schneider, Dr. Henri Mühle.

Wintersemester 2018/19

11. Übungsblatt zur Vorlesung "Diskrete Strukturen für Informatiker"

Homomorphismen, RSA

V. Es seien (G, \circ_G) und (H, \circ_H) Gruppen mit neutralen Elementen e_G und e_H . Für einen Gruppenhomomorphismus $f: G \to H$ definieren wir den Kern analog zum Kern von linearen Abbildungen zwischen Vektorräumen (vgl. Modul "Lineare Algebra") als

$$Ker(f) = \{ g \in G \mid f(g) = e_H \}.$$

Weiter sei $\ker(f) = \{(g_1, g_2) \in G \times G \mid f(g_1) = f(g_2)\}$ der Kern einer Abbildung nach Definition 4.5.

- (a) Zeigen Sie, dass Ker(f) der Äquivalenzklasse von ker(f) entspricht, die e_G enthält.
- (b) Zeigen Sie, dass für $g_1, g_2 \in G$ gilt:

$$(g_1,g_2)\in \ker(f)$$
 genau dann wenn $g_1\circ_G g_2^{-1}\in \operatorname{Ker}(f).$

Ü61. (a) Zum Verschlüsseln eines Textes wird das RSA-Kryptosystem verwendet. Dabei werden die Buchstaben A, B, . . . , Z mit den Zahlen 0, 1, . . . , 25 codiert. Verschlüsseln Sie den Klartext GEHEIM mit den öffentlichen Schlüsseln

(i)
$$(n,e) = (33,3)$$
, (ii) $(n,e) = (15,5)$.

- (b) Es wurde die mit dem RSA-Verfahren verschlüsselte Nachricht QUTCIM zum öffentlichen Schlüssel (n,e)=(21,5) abgefangen. Wie kann diese Nachricht entschlüsselt werden? Wie lautet die entschlüsselte Nachricht?
- Ü62. Es seien $(R, +_R, \circ_R)$ und $(S, +_S, \circ_S)$ zwei Ringe. Eine Abbildung $f: R \to S$ heißt *Ringisomorphismus*, falls f bijektiv ist, und für alle $x, y \in R$ gilt:

$$f(x +_R y) = f(x) +_S f(y)$$
 und $f(x \circ_R y) = f(x) \circ_S f(y)$.

Für eine endliche Menge M werden die kommutativen Ringe $(\mathcal{P}(M), \Delta, \cap)$ und $(\{0,1\}^M, \oplus, \odot)$ aus den Aufgaben Ü33 und H35 betrachtet. Zeigen Sie, dass beide Ringe isomorph sind, indem Sie einen Ringisomorphismus explizit angeben.

- Ü63. Zeigen Sie, dass die Gruppen
 - $(i) \quad \mathbb{Z}_8, \quad (ii) \quad \mathbb{Z}_4 \times \mathbb{Z}_2, \quad (iii) \quad \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

paarweise nicht isomorph sind. Bestimmen Sie dazu jeweils die zyklischen Untergruppen (d.h. die von einem Element erzeugten Untergruppen), und vergleichen Sie diese Informationen.

- A64. Hausaufgabe, bitte vor Beginn der 12. Übung (oder im Lernraum) unter Angabe von Name, Matrikelnummer, Übungsgruppe und Übungsleiter abgeben. Es wird das RSA-Kryptosystem mit dem öffentlichen Schlüssel (n,e)=(33,13) betrachtet.
 - (a) Für $i \in \{1,2,3,4,5,6,7\}$ bezeichne a_i die i-te Ziffer Ihrer Matrikelnummer. Verschlüsseln Sie die Nachricht $m = (a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ mit dem oben genannten öffentlichen Schlüssel.
 - (b) Führen Sie eine Probe durch, indem Sie zunächst den geheimen Schlüssel (n, d) bestimmen, und anschließend die in (a) erhaltene Nachricht entschlüsseln.
- H65. Sei $n \in \mathbb{N}$, und $[n] = \{1, 2, ..., n\}$. Die Menge aller bijektiven Abbildungen von [n] nach [n] bildet mit der Hintereinanderausführung \circ eine Gruppe; die *symmetrische Gruppe* vom Grad n, bezeichnet mit \mathfrak{S}_n .
 - (a) Wie viele Elemente hat \mathfrak{S}_n für $n \in \mathbb{N}$?
 - (b) Geben Sie die Verknüpfungstafeln von \mathfrak{S}_2 und \mathfrak{S}_3 an.
 - (c) Zeigen Sie, dass die Gruppe $(\{f_1, f_2, f_3, f_4, f_5, f_6\}, \circ)$ aus Aufgabe H18 isomorph zu \mathfrak{S}_3 ist.

<u>Hinweis:</u> Eine bijektive Abbildung $f: [n] \rightarrow [n]$ lässt sich einfach mit Hilfe des Tupels $(f(1), f(2), \ldots, f(n))$ der Bildwerte darstellen.

- H66. Seien (G, \circ_G) und (H, \circ_H) zwei Gruppen und $f: G \to H$ eine Abbildung. Zeigen Sie, dass folgende Aussagen äquivalent sind.
 - (i) Die Abbildung f ist ein Homomorphismus von (G, \circ_G) nach (H, \circ_H) .
 - (ii) Die Menge $\{(x,y) \in G \times H \mid f(x) = y\}$ ist eine Untergruppe von $(G \times H, \circ_{G \times H})$.