Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann Institut für Algebra

20.1.2020

13. Vorlesung

- Orthogonale Vektoren
- Orthogonalraum (Orthogonales Komplement)
- Orthogonalbasis, Orthonormalbasis

Winkelmessung

Sei V ein euklidischer \mathbb{R} -Vektorraum mit dem Skalarprodukt ullet.

• Seien $u, v \in \{0_V\}$. Das eindeutig bestimmte $\alpha \in [0, \pi]$ mit

$$\cos(\alpha) = \frac{u \bullet v}{||u|| \cdot ||v||}$$

heißt Winkel zwischen u und v.

• Seien $u, v \in V$. Die Vektoren u und v heißen zueinander orthogonal, wenn $u \bullet v = 0$ gilt; Bezeichnung: $u \bot v$

• Seien $u, v \in V$. Dann gilt:

$$u \perp v \iff ||u + v||^2 = ||u||^2 + ||v||^2$$

Ulrike Baumann

Lineare Algebra

Orthogonalraum (Orthogonales Komplement)

• Sei U ein Untervektorraum des euklidischen \mathbb{R} -Vektorraums V.

Die Menge aller Vektoren aus V, die orthogonal zu jedem Vektor $u \in U$ sind, heißt Orthogonalraum (orthogonales Komplement) U^{\perp} von U in V.

- U^{\perp} ist ein Untervektorraum von V.
- $v \in \text{Span}(\{v_1, \dots, v_k\})^{\perp}$ gilt genau dann, wenn v orthogonal zu v_1, \dots, v_k ist.
- Es sei $A \in \mathbb{R}^{m \times n}$. Dann gilt:

$$Row(A)^{\perp} = Ker(A)$$
 und $Col(A)^{\perp} = Ker(A^{T})$

Orthogonalbasis

- Ist $\{v_1, \ldots, v_k\}$ eine Menge von k Vektoren aus dem \mathbb{R}^n mit $v_i \bullet v_j = 0$ für alle $i, j \in \{1, \ldots, k\}$ mit $i \neq j$, dann ist $\{v_1, \ldots, v_k\}$ linear unabhängig und somit eine Basis eines Untervektorraums von \mathbb{R}^n .
- Eine Basis (b_1, \ldots, b_k) eines Untervektorraums W von \mathbb{R}^n wird eine Orthogonalbasis von W genannt, wenn

$$b_i \bullet b_i = 0$$

für alle $i, j \in \{1, \dots, k\}$ mit $i \neq j$ gilt.

Orthonormalbasis

• Eine Orthogonalbasis (b_1, \ldots, b_k) eines Untervektorraums W von \mathbb{R}^n wird eine Orthonormalbasis von W genannt, wenn

$$||b_{i}|| = 1$$

für alle $i \in \{1, \dots, k\}$ gilt.

• Es sei $A \in \mathbb{R}^{m \times n}$.

Die Spaltenvektoren von A bilden eine Orthonormalbasis des Spaltenraums Col(A) von A genau dann, wenn

$$A^TA = E_n$$

gilt.