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Endopolymorphisms

Given a relational structure A.
We say that f : An → A is a polymorphism of A if one of the
following equivalent conditions is satisfied:

I f is a homomorphism from An to A,
I for each relation RA and all tuples a1, . . . , an ∈ RA we have

f (a1, . . . , an) ∈ RA,

I each relation RA is a subuniverse of (A; f )k where k is the
arity of R .

The set Pol(A) of all (endo)polymorphisms of A is a clone.



Polymorphisms

Given relational structures A and B that share a signature.
We say that f : An → B is a polymorphism from A to B if one of
the following equivalent conditions is satisfied:

I f is a homomorphism from An to B,
I for each relation RA and all tuples a1, . . . , an ∈ RA we have

f (a1, . . . , an) ∈ RB,

I each relational pair (RA, RB) is a subuniverse of (A, B; f )k
where k is the arity of R .

The set Pol(A,B) of all polymorphisms from A to B is not a clone,
but it is closed under taking minors.



Minor closed sets
a.k.a. clonoids

Let f : An → B be a function. Any function g of the form

g(x1, . . . , xm) = f (xe(1), . . . , xe(n)).

for some e : [n]→ [m] is called a minor of f .

Theorem (Pippenger, 2002; Brakiensiek, Guruswami, 2016)

For all finite sets A, B and every minor closed set A ⊆ O(A, B)
there exist relational structures A and B such that Pol(A,B) = A .

(O(A, B) = {f | f : An → B,n ∈ N})



Minor preserving maps
a.k.a. h1 homomorphisms, clonoid homomorphisms

Let A and B be minor closed. A map ξ : A → B that preserves
arities is minor preserving if for each f ∈ A (n) and each
e : [n]→ [m] we have

ξ(f (πme(1), . . . , πme(n))) ≈ ξ(f )(πme(1), . . . , πme(n)).

Theorem (Barto, O, Pinsker, 2017)

If A and B are finite (ω-categorical) structures such that there is
a (uniformly continuous) minor preserving map
ξ : Pol(A)→ Pol(B), then CSP(A) ≥L CSP(B).



The polymorphism functor

Note. Even if A and B are homomorphically equivalent, there is
no clone homomorphism from Pol(A) to Pol(B).
Fix a relational signature, and let A, B, A′, B′ be structures in this
signatures, and a : A′ → A, b : B→ B′ homomorphisms.

An (A′)n

B B′

a

b

f ξa,b(f )

ξa,b(f )(x1, . . . , xn) = bf (a(x1), . . . , a(xn))

Note. Pol(A′,B′) contains a reflection of Pol(A,B).



The adjunct
For each structure A, Pol(A, −) has a left adjunct Free(−,A).

Given a minor closed set C and a relational structure A. We
define the free structure (‘free action of C on A’) F:
I Let F = {f (a1, . . . , an) : n ∈ N, f ∈ C (n), a1, . . . , an ∈ A}/ ≈
I for a relation R , we define
RF = {f (a1, . . . , an) : n ∈ N, f ∈ C (n), a1, . . . , an ∈ RA}.

We use the symbol Free(C ,A) for F.

Observation
For each A, B, relational structures and C , minor closed, there is
a natural isomorphism ηC ,A,B:

{h : Free(C ,A)→ B}
ηC ,A,B' {ξ : C → Pol(A,B)}.



Linear Mal’cev conditions

A coloring of a minor closed set C by A is a homomorphism
c : Free(C ,A)→ A.
A coloring of a clone is strong if c(a) = a for all a ∈ A.
Note. C is strongly colorable by A iff there is a minor preserving
map from C to Pol(A) that maps the identity map to itself.

Theorem (Sequeira, Greenwell & Lovász, . . . )

Let C be a clone.

I C has a Mal’cev term iff it is not strongly colorable by
L = ({0, 1, 2}, 01|2, 0|12).

I C satisfies a non-trivial Mal’cev condition iff it is not
colorable by K3.



Deciding triviality of Mal’cev conditions
Label Cover

Mal’cev condition is linear if it contains only identities of the form

f (xπ(1), . . . , xπ(m)) ≈ g(xσ (1), . . . , xσ (n)), or f (xπ(1), . . . , xπ(m)) ≈ x1.

Corollary
Given a linear Mal’cev condition Σ of arity at most N.

I For each N , deciding whether Σ implies the Mal’cev term is
solvable in Ptime.

I For each N ≥ 6, deciding whether Σ is trivial is NP-complete.

Proof. Construct Free(Σ,A) in Ptime, then decide existence of
a homomorphism Free(Σ,A)→ A by CSP(A). �



Promise constraint satisfaction

Fix two finite relational structures A and B with the same finite
signature. PCSP(A,B) is the following problem: Given a structure
Q in the common language, output

I YES if Q maps homomorphically into A,
I NO if Q does not map homomorphically into B.

Note. CSP(A) ≡ PCSP(A,A) and PCSP(A,B) ≤ CSP(A), CSP(B).



Gap Label Cover

Fix A, B. Given a minor closed set C , we know

I C → Pol(A,A) iff Free(C ,A)→ A, and
I C 6→ Pol(A,B) iff Free(C ,A) 6→ B.

Gap Mal’cev Sat. Fix two minor closed sets A and B. Given Σ
of maximal arity N , output

I YES if Σ is satisfied in A ,
I NO if Σ is not satisfied in B.

Denote this problem GMSA ,B(N).



Reduction between LC and PCSP

Theorem (O, Bulin, 2017*)

Let A and B be relational structures, A = Pol(A,A), and Pol(A,B).
Then

I For all N > 0, GMSA ,B(N) ≤L PCSP(A,B).
I There exists N > 0 s.t. PCSP(A,B) ≤L GMSA ,B(N).

Corollary
The complexity of PCSP(A,B) depends only on minor Mal’cev
conditions satisfied by Pol(A,B).

Thanks! �


