Übungsblatt 2

Die Hausaufgaben sollen schriftlich bearbeitet werden und spätestens am 20. April abgegeben werden.

Eigenwerte & charakteristisches Polynom

Sei K ein Körper und sei $n \in \mathbb{N}$.

Vorbereitungsaufgabe 8. Wir betrachten \mathbb{C} als \mathbb{R} -Vektorraum. Geben Sie alle Eigenwerte und Eigenräume an für:

- (a) die Spiegelung $\sigma: \mathbb{C} \to \mathbb{C}, a+bi \mapsto b+ai$.
- (b) die Drehung $\rho : \mathbb{C} \to \mathbb{C}, a + bi \mapsto -a bi$.
- (c) die Projektion $\pi: \mathbb{C} \to \mathbb{C}, a+bi \mapsto a$.

Übung 9. Bestimmen Sie Eigenwerte und Eigenräume für

(a)
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \in \operatorname{Mat}_{2}(\mathbb{Z}/p\mathbb{Z}) \text{ für } 3 (c) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \in \operatorname{Mat}_{3}(\mathbb{Q})$
(b) $\begin{bmatrix} 1 & 0 & \cdots & 0 & 2 \\ 0 & a_{2} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & & a_{n-1} & 0 \\ 2 & 0 & \cdots & 0 & 1 \end{bmatrix} \in \operatorname{Mat}_{n}(\mathbb{R})$ (d) $\begin{bmatrix} 2 & 2 & -1 \\ 0 & 4 & -1 \\ 0 & 1 & 2 \end{bmatrix} \in \operatorname{Mat}_{3}(\mathbb{C})$$$

wobei die $a_2, ..., a_{n-1}$ in (b) beliebige Elemente von \mathbb{R} sind.

Übung 10. Eine Matrix $A \in \text{Mat}_n(K)$ heißt nilpotent, wenn $A^m = 0$ für irgendein $m \in \mathbb{N}$. Zeigen Sie dass

- (a) 0 der einzige Eigenwert einer nilpotenten Matrix ist.
- (b) eine strikte obere Dreiecksmatrix nilpotent ist. (Eine Matrix $A = (a_{ij})_{i,j}$ ist eine strikte obere Dreiecksmatrix wenn $a_{ij} = 0$ für $i \ge j$.)

Übung 11. Sei $A = (a_{ij})_{i,j} \in \operatorname{Mat}_n(\mathbb{R})$ eine Matrix mit $a_{ij} \geq 0$ für alle i, j und mit Eigenwert λ . Zeigen Sie, dass $\lambda \leq n \cdot \max_{i,j} a_{ij}$. Zeigen Sie weiterhin, dass auch wirklich eine Matrix $A = (a_{ij})_{i,j} \in \operatorname{Mat}_n(\mathbb{R})$ existiert mit Eigenwert $\lambda = n \cdot \max_{i,j} a_{ij}$.

Übung 12. Weisen Sie nach, dass ein Polynom $P = \sum_{i=0}^n c_i t^i \in K[t]$ genau dann als charakteristisches Polynom einer Matrix $A \in \operatorname{Mat}_n(K)$ dargestellt werden kann, wenn es normiert ist. (**Hinweis**: Zeige, dass ein Polynom $P = t^n + \sum_{i=0}^{n-1} c_i t^i$ das charakteristische Polynom der Begleitmatrix ist.)

Übung 13. Seien $m \in \mathbb{N}$ und $n_1, ..., n_l$ in \mathbb{N} . Wir betrachten die Blockmatrix

$$A = \begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix}$$

für quadratische Matrizen $A_1 \in \operatorname{Mat}_n(K)$ und $A_2 \in \operatorname{Mat}_n(K)$, mit $B \in \operatorname{Mat}_{n \times m}(K)$. Zeigen Sie, dass $\chi_A(t) = \operatorname{Mat}_n(K)$ $\chi_{A_1}(t)\chi_{A_2}(t)$. Verallgemeinern Sie diesen Satz für quadratische Matrizen $A_1 \in \operatorname{Mat}_{n_1}(K), ..., A_l \in \operatorname{Mat}_{n_l}(K)$. Schlussfolgern Sie, dass für eine obere Dreiecksmatrix $A = (a_{ij})_{i,j} \in \operatorname{Mat}_n(K), \ \chi_A(t) = \prod_{i=1}^n (t - a_{ii}).$

Übung 14. Zeigen Sie, dass ein Eigenwert einer Spiegelung bzw. Projektion notwendigerweise 1 oder −1 bzw. 0 oder 1 ist. (Cfr. Wintersemester, Übungsblatt 12.)

Hausaufgabe 15. Welche der folgenden Aussagen sind wahr? Welche falsch? Geben Sie einen Beweis oder ein Gegenbeispiel.

- (a) Sei $n \geq 2$. Jeder Eigenwert einer Matrix $A = (a_{ij})_{i,j} \in \operatorname{Mat}_n(\mathbb{C})$ mit alle $a_{ij} \in \mathbb{R}$ ist eine reelle Zahl.
- (b) Eine Matrix $A \in \operatorname{Mat}_n(K)$ ist genau dann invertierbar, wenn 0 kein Eigenwert von A ist.

Hausaufgabe 16. Geben Sie alle Eigenwerte und Eigenvektoren für folgende lineare Abbildungen an:

- (a) die Konjugation $c:\mathbb{C}\to\mathbb{C}, t\mapsto \bar{t}$ mit \mathbb{C} als \mathbb{R} -Vektorraum.
- (b) die Ableitung $\frac{d}{dt}: K[t] \to K[t], f \mapsto f'$ mit K[t] als K-Vektorraum. (Cfr. Wintersemester, Übungsblatt 11.)
- (c) der Einsetzung $e_a: K[t] \to K[t]: P(t) \mapsto P(a)$ mit $a \in K$ und mit K[t] als K-Vektorraum.
- (d) die Transponierung $\tau: \operatorname{Mat}_n(K) \to \operatorname{Mat}_n(K), A \mapsto A^t$ mit $\operatorname{Mat}_n(K)$ als K-Vektorraum und mit $n \geq 2$.

[Wenn $\dim_K(V) = \infty$ definieren wir Eigenwerte und Eigenräume genau so wie im Skript: ein Eigenwert einer lineare Abbildung f ist ein Skalar $\lambda \in K$ für welches $0 \neq v \in V$ existiert mit $f(v) = \lambda v$. Der Eigenraum zu λ ist $\{v \in V \mid f(v) = \lambda v\}$.]