Übungsblatt 4

Die Hausaufgaben sollen schriftlich bearbeitet werden und spätestens am 4. Mai abgegeben werden.

Sei K ein Körper und sei $n \in \mathbb{N}$.

Vorbereitungsaufgabe 25. Sei V ein n-dimensionaler K-Vektorraum und sei $f \in \operatorname{End}_K(V)$. Zeigen Sie: wenn $V = W_1 \oplus W_2$ für f-invariante Untervektorräume W_1 und W_2 , so ist $P_f = \operatorname{kgV}(P_{f|_{W_1}}, P_{f|_{W_2}})$.

 $NB: mit \ kgV(P_{f|W_1}, P_{f|W_2})$ meinen wir hier das normierte Polynom kleinsten Grades, das von $P_{f|W_1}$ und $P_{f|W_2}$ geteilt wird.

Übung 26. Weisen Sie nach dass, mit $k \in \mathbb{N}$,

- (a) J_k nilpotent von Nilpotenzklasse k ist.
- (b) $J_k(\lambda)$ Minimalpolynom $(t \lambda)^k$ hat.

Übung 27. Sei V ein n-dimensionaler Vektorraum über $K = \mathbb{Z}/p\mathbb{Z}$.

- (a) Wie viele unterschiedliche charakteristische Polynome gibt es für Endomorphismen von V?
- (b) Wie viele charakteristische Polynome und Minimalpolynome gibt es für trigonalisierbare Endomorphismen von V?
- (c) Zeigen Sie anhand von Beispielen, dass $\chi_f = \chi_g \Rightarrow P_f = P_g$ und $P_f = P_g \Rightarrow \chi_f = \chi_g$.

Übung 28. Sei V ein n-dimensionaler K-Vektorraum. Eine Fahne ist eine Folge

$$V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_n$$

von Untervektorräumen V_i mit $\dim_K V_i = i$. Sei $f \in \operatorname{End}_K(V)$. Wenn jedes V_i f-invariant ist, so nennt man die Fahne selbst f-invariant. Zeigen Sie, dass f genau dann triagonalisierbar ist wenn es eine f-invariante Fahne gibt.

Übung 29. Sei V ein n-dimensionaler K-Vektorraum und seien $f, g \in \operatorname{End}_K(V)$. Man nennt f und g simultan diagonalisierbar wenn es einen Basis \mathcal{B} gibt, für die die Darstellungsmatrizen $M_{\mathcal{B}}(f)$ und $M_{\mathcal{B}}(g)$ beide Diagonalmatrizen sind. Wir möchten gerne beweisen, dass f und g genau dann simultan diagonalisierbar sind, wenn f und g kommutieren. Zeigen Sie dazu:

- (a) Wenn f und g simultan diagonalisierbar sind, so kommutieren f und g.
- (b) $\text{Eig}(g,\lambda)$ ist f-invariant, und vice versa.
- (c) $f|_{\text{Eig}(q,\lambda)}$ ist diagonalisierbar.

und schlußfolgern Sie dass die Aussage gilt.

Übung 30. Zeigen Sie, dass folgende Matrizen nilpotent sind und geben Sie die Normalform für nilpotente Matrizen an:

(a)
$$A = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{bmatrix} \in \operatorname{Mat}_4(\mathbb{Z}/p\mathbb{Z})$$
 [NB: abhängig von $p!$]

(b)
$$A = \begin{bmatrix} -1-i & 1+i & 1+i & 0 \\ -1-i & 1+i & 1+i & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \in \mathrm{Mat}_4(\mathbb{C})$$

Hausaufgabe 31. Sei $V=\mathbb{C}^4$. Wir betrachten den Endomorphismus mit Darstellungsmatrix (bzgl. der Standardbasis \mathcal{E})

$$\begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{bmatrix}.$$

Geben Sie wenn möglich eine Zerlegung $V=W_1\oplus W_2$ in f-zyklische Untervektoräume W_1 und W_2 mit

- (a) $\dim(W_1) = 0$ und $\dim(W_2) = 4$.
- (b) $\dim(W_1) = 1 \text{ und } \dim(W_2) = 3.$
- (c) $\dim(W_1) = 2$ und $\dim(W_2) = 2$.

an

Hausaufgabe 32. Wie viele paarweise nicht-ähnliche nilpotente Matrizen gibt es in $Mat_6(K)$? Was sind die entsprechenden Nilpotenzklassen?