Übungsblatt 8

Die Hausaufgaben sollen schriftlich bearbeitet werden und spätestens am 8. Juni abgegeben werden.

Sei $n \in \mathbb{N}$.

Vorbereitungsaufgabe 55. Zeigen Sie, dass die Matrix

$$A = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix} \in \operatorname{Mat}_{2}(\mathbb{C})$$

unitär ist. Geben Sie eine Orthonormalbasis aus Eigenvektoren von A an.

Übung 56. Zeigen Sie

(a)
$$O_2 = \left\{ \begin{bmatrix} \cos(\theta) & \mp \sin(\theta) \\ \sin(\theta) & \pm \cos(\theta) \end{bmatrix} \mid \theta \in [0, 2\pi) \right\}.$$

(b)
$$\phi: U_1 \to SO_2, [a+bi] \mapsto \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
 ist ein Gruppenisomorphismus.

Übung 57. Zeigen Sie, dass jede unitäre obere Dreiecksmatrix $D = (d_{ij})_{i,j} \in \operatorname{Mat}_n(\mathbb{C})$ eine Diagonalmatrix ist und dass $|d_{ii}| = 1$ für jede i.

Übung 58. Sei V ein euklidischer Vektorraum und seien $u, v \in V$. Zeigen Sie, dass

- (a) wenn ||u|| = ||v||, dann ist $||u \lambda v|| = ||\lambda u v||$ für alle $\lambda \in \mathbb{R}$,
- (b) $||u|| = ||v|| \Leftrightarrow (u-v)\perp (u+v).$

Kann man diese Aussagen anpassen für unitäre Vektorräume?

Übung 59. Zeigen Sie, dass für jedes $A \in \operatorname{Mat}_n(\mathbb{C})$ eine unitäre Matrix U existiert, für die $UAU^{-1} = D$ eine obere Dreiecksmatrix ist.

Übung 60. Sei A eine symmetrische Matrix in $\operatorname{Mat}_n(\mathbb{R})$. Zeigen Sie, dass $\max_{||v||=1} q_{s_A}(v)$ der größte Eigenwert der Matrix A ist.

Übung 61. Wir nennen eine Matrix $A \in \operatorname{Mat}_n(\mathbb{C})$ normal, wenn $AA^* = A^*A$. Welche der folgenden Aussagen sind wahr? Welche falsch? Geben Sie einen Beweis oder ein Gegenbeispiel.

- (a) Jede invertierbare Matrix $M \in \operatorname{Mat}_n(\mathbb{C})$ ist normal.
- (b) Wenn A normal und B unitär ist, so ist BAB^{-1} normal.
- (c) Jede hermitesche Matrix ist normal.
- (d) Jede Diagonalmatrix ist normal.
- (e) Jede unitäre Matrix ist normal.

Hausaufgabe 62. Zeigen Sie, dass eine symmetrische Matrix $A \in \operatorname{Mat}_n(\mathbb{R})$ genau dann positiv semidefinit ist, wenn für das charakteristische Polynom $\chi_A(t) = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n$ gilt, dass $(-1)^{n-i}\alpha_i \geq 0$ für jedes i. [Hinweis: eine symmetrische Matrix in $\operatorname{Mat}_n(\mathbb{R})$ hat nur reelle Eigenwerte, dass heißt $\chi_A(t)$ zerfällt in Linearfaktoren.]

Hausaufgabe 63. Zeigen Sie, dass die Matrix

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 0 & i \\ 0 & -1 - i & 0 \\ i & 0 & -1 \end{bmatrix} \in \text{Mat}_3(\mathbb{C})$$

unitär ist. Geben Sie eine Orthonormalbasis aus Eigenvektoren von ${\cal A}$ an.