Relation Algebras and CSPs

Simon Knäuer

Joint work with Manuel Bodirsky

Institut für Algebra,
TU Dresden

QuantLA Workshop 2019, Stolpen
What you can expect

- Relation Algebras

Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).

Tool to model temporal and spatial reasoning problems in AI.

The Really Big Complexity Problem (RBCP)

Classification problem for relation algebras.

Introduced by Robin Hirsch in 1996.

Result: Partial Solution of RBCP.

A model theory perspective on relation algebras.

Labeled homogeneous graphs (Cherlin).

Translation of RBCP into a classification question about CSPs.

Use of structural Ramsey Theory (Hubička, Nešetřil).

Simon Knäuer (TU Dresden)
Relation Algebras and CSPs
QuantLA Workshop 2019
What you can expect

- Relation Algebras
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).

The Really Big Complexity Problem (RBCP)

Result: Partial Solution of RBCP.

A model theory perspective on relation algebras.

Labeled homogeneous graphs (Cherlin).

Translation of RBCP into a classification question about CSPs.

Use of structural Ramsey Theory (Hubi˘cka, Ne˘set˘ril).
What you can expect

- Relation Algebras
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.
What you can expect

- **Relation Algebras**
 - Intensivley studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.

- The Really Big Complexity Problem (RBCP)
What you can expect

- **Relation Algebras**
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.

- **The Really Big Complexity Problem (RBCP)**
 - Classification problem for relation algebras.
What you can expect

- Relation Algebras
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.

- The Really Big Complexity Problem (RBCP)
 - Classification problem for relation algebras.
 - Introduced by Robin Hirsch in 1996.

Result: Partial Solution of RBCP.
What you can expect

- **Relation Algebras**
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.

- **The Really Big Complexity Problem (RBCP)**
 - Classification problem for relation algebras.
 - Introduced by Robin Hirsch in 1996.

- **Result:** Partial Solution of RBCP.
What you can expect

- Relation Algebras
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.

- The Really Big Complexity Problem (RBCP)
 - Classification problem for relation algebras.
 - Introduced by Robin Hirsch in 1996.

- Result: Partial Solution of RBCP.

- A model theory perspective on relation algebras.
What you can expect

- **Relation Algebras**
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.

- **The Really Big Complexity Problem (RBCP)**
 - Classification problem for relation algebras.
 - Introduced by Robin Hirsch in 1996.

- Result: **Partial Solution of RBCP**.

- A model theory perspective on relation algebras.
 - Labeled homogeneous graphs (Cherlin).
What you can expect

- **Relation Algebras**
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.

- **The Really Big Complexity Problem (RBCP)**
 - Classification problem for relation algebras.
 - Introduced by Robin Hirsch in 1996.

- Result: **Partial Solution of RBCP**.

- A model theory perspective on relation algebras.
 - Labeled homogeneous graphs (Cherlin).
 - Translation of RBCP into a classification question about CSPs.
What you can expect

- **Relation Algebras**
 - Intensively studied algebraic object (Tarski, Hodkinson, Maddux, ...).
 - Tool to model temporal and spatial reasoning problems in AI.

- **The Really Big Complexity Problem (RBCP)**
 - Classification problem for relation algebras.
 - Introduced by Robin Hirsch in 1996.

- **Result:** Partial Solution of RBCP.

- **A model theory perspective on relation algebras.**
 - Labeled homogeneous graphs (Cherlin).
 - Translation of RBCP into a classification question about CSPs.
 - Use of structural Ramsey Theory (Hubička, Nešetřil).
Definition

A relation algebra \mathcal{A} is an algebra $(\mathcal{A}; \cup, \neg, 0, 1, 1', \sim, \circ)$ of type $(2, 1, 0, 0, 0, 1, 2)$ satisfying the following laws:

1. $(\mathcal{A}; \cup, \neg, 0, 1)$ is a boolean algebra,
2. $(x \circ y) \circ z = x \circ (y \circ z)$,
3. $(x \cup y) \circ z = x \circ z \cup y \circ z$,
4. $x \circ 1' = x$,
5. $(x\neg)\neg = x$,
6. $(x \cup y)\neg = x\neg \cup y\neg$,
7. $(x \circ y)\neg = y\neg \circ x\neg$,
8. $(x\neg \circ (x \circ y)) \cup \bar{y} = \bar{y}$.

What does this mean?
A relation algebra \(A \) is an algebra \((A; \cup, \neg, 0, 1, 1', \sim, \circ)\) of type \((2, 1, 0, 0, 0, 1, 2)\) satisfying the following laws:

1. \((A; \cup, \neg, 0, 1)\) is a boolean algebra,
2. \((x \circ y) \circ z = x \circ (y \circ z)\),
3. \((x \cup y) \circ z = x \circ z \cup y \circ z\),
4. \(x \circ 1' = x\),
5. \((x')' = x\),
6. \((x \cup y)' = x' \cup y'\),
7. \((x \circ y)' = y' \circ x'\)
8. \((x' \circ (x \circ y)) \cup \bar{y} = \bar{y}\).

What does this mean?
Proper Relation Algebra

Definition

Let D be a set and $E \subseteq D^2$ an equivalence relation. Then $(\mathcal{P}(E); \cup, \sim, 0, 1, 1', \circ)$ is a relation algebra for the following interpretation of function symbols:

1. $A \cup B := A \cup B$,
2. $\bar{A} := E \setminus A$,
3. $0 := \emptyset$,
4. $1 := E$,
5. $1' := \{(x, x) \mid x \in D\}$,
6. $A\sim := \{(x, y) \mid (y, x) \in A\}$,
7. $A \circ B := \{(x, z) \mid \exists y \in D: (x, y) \in A \text{ and } (y, z) \in B\}$.

A subalgebra of $(\mathcal{P}(E); \cup, \sim, 0, 1, 1', \circ)$ is called proper relation algebra.
Proper Relation Algebra

Definition

Let D be a set and $E \subseteq D^2$ an equivalence relation. Then $(\mathcal{P}(E); \cup, \sim, 0, 1, 1', \sim, \circ)$ is a relation algebra for the following interpretation of function symbols:

1. $A \cup B := A \cup B$,
2. $\bar{A} := E \setminus A$,
3. $0 := \emptyset$,
4. $1 := E$,
5. $1' := \{(x, x) \mid x \in D\}$,
6. $A\sim := \{(x, y) \mid (y, x) \in A\}$,
7. $A \circ B := \{(x, z) \mid \exists y \in D : (x, y) \in A \text{ and } (y, z) \in B\}$.

A subalgebra of $(\mathcal{P}(E); \cup, \sim, 0, 1, 1', \sim, \circ)$ is called proper relation algebra.

For model theorists:
For a proper relation algebra \mathcal{R} we view $\mathcal{R} = (D; \mathcal{R})$ as a relational structure.
Point Algebra:
The set \(\{=, <, >, \leq, \geq, \emptyset, \neq, Q^2 \} \) together with the “natural” relation algebra operations and the table.

\[
| \circ | = | < | > \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>=</td>
<td><</td>
<td>></td>
</tr>
<tr>
<td><</td>
<td><</td>
<td><</td>
<td>Q^2</td>
</tr>
<tr>
<td>></td>
<td>></td>
<td>Q^2</td>
<td>></td>
</tr>
</tbody>
</table>
\]
Examples I

Point Algebra:
The set \{=, <, >, \leq, \geq, \emptyset, \neq, \mathbb{Q}^2\} together with the “natural” relation algebra operations and the table.

Forbidden Triangle:
Examples I

Point Algebra:
The set \{=, <, >, \leq, \geq, \emptyset, \neq, Q^2\} together with the “natural” relation algebra operations and the table.

Henson Algebra:
The set \{=, E, N, E\cup =, E\cup N, N\cup =, \emptyset, V^2\} together with the “natural” relation algebra operations and the table.

Forbidden Triangle:

\[
\begin{array}{c}
\circ \\
= \\
E \\
N \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\circ & = & E \\
= & = & N \\
E & E & N \cup = \\
N & N & E \cup N \\
& & V^2 \\
\end{array}
\]
Examples I

Point Algebra:
The set \{=, <, >, \leq, \geq, \emptyset, \neq, \mathbb{Q}^2\} together with the “natural” relation algebra operations and the table.

Forbidden Triangle:

Henson Algebra:
The set \{=, E, N, E \cup =, E \cup N, N \cup =, \emptyset, V^2\} together with the “natural” relation algebra operations and the table.

Forbidden Triangle:
Examples I

Point Algebra:
The set \(\{=, <, >, \leq, \geq, \emptyset, \neq, \mathbb{Q}^2 \} \) together with the “natural” relation algebra operations and the table.

Forbidden Triangle:

Henson Algebra:
The set \(\{=, E, N, E \cup =, E \cup N, N \cup =, \emptyset, V^2 \} \) together with the “natural” relation algebra operations and the table.

Forbidden Triangle:

Definition

The minimal non-trivial relations with respect to inclusion are called atoms.
Examples II

Metric spaces:
Let \{\neq, 1, 2, 3, 4\} be binary predicates associated with integer distances.
Examples II

Metric spaces:
Let \{=, 1, 2, 3, 4\} be binary predicates associated with integer distances. Consider the set of forbidden triangle inequalities.
Examples II

Metric spaces:

Let \(\{=, 1, 2, 3, 4\} \) be binary predicates associated with integer distances. Consider the set of forbidden triangle inequalities.

Define a relation algebra on \(\mathcal{P}(\{=, 1, 2, 3, 4\}) \) with the following multiplication table.
Examples II

Metric spaces:
Let \(\{=, 1, 2, 3, 4\} \) be binary predicates associated with integer distances. Consider the set of forbidden triangle inequalities.

\[
\begin{array}{ccc}
1 & 3 & 1 \\
1 & 1 & 3 \\
1 & 1 & 4 \\
1 & 4 & 2
\end{array}
\]

Define a relation algebra on \(\mathcal{P}(\{=, 1, 2, 3, 4\}) \) with the following multiplication table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>=</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 \cup 2 = 3</td>
<td>1 \cup 2 \cup 3</td>
<td>3 \cup 4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1 \cup 2 \cup 3</td>
<td>1 \cup 2 \cup 3 \cup 4 = 1 \cup 2 \cup 3 \cup 4</td>
<td>2 \cup 3 \cup 4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2 \cup 3 \cup 4</td>
<td>1 \cup 2 \cup 3 \cup 4 = 1 \cup 2 \cup 3 \cup 4</td>
<td>1 \cup 2 \cup 3 \cup 4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3 \cup 4</td>
<td>2 \cup 3 \cup 4</td>
<td>1 \cup 2 \cup 3 \cup 4 = 1 \cup 2 \cup 3 \cup 4</td>
</tr>
</tbody>
</table>

Simon Knäuer (TU Dresden)
Representations

Definition

A relational structure \(\mathbb{B} \) is called a representation of a relation algebra \(\mathcal{A} \) if

1. \(\mathbb{B} \) is an \(\mathcal{A} \)-structure,
2. the induced proper relation algebra on a subset of \(\mathcal{P}(B^2) \) is isomorphic to \(\mathcal{A} \).
Representations

Definition
A relational structure \mathcal{B} is called a representation of a relation algebra \mathcal{A} if

- \mathcal{B} is an \mathcal{A}-structure,
- the induced proper relation algebra on a subset of $\mathcal{P}(B^2)$ is isomorphic to \mathcal{A}.

Examples

- $(\mathbb{Q}; =, <, >, \leq, \geq, \emptyset, \neq, \mathbb{Q}^2)$ is a representation of the Point Algebra.
- The countable, universal, homogeneous, triangle-free graph

$$\mathbb{H} = (V; =, E, N, E \cup =, E \cup N, N \cup =, \emptyset, V^2)$$

is a representation of the Henson Algebra.
Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is a finite set of nodes V together with a function $f : V \times V \to A$.

Point Algebra Network:

\[
\begin{array}{c}
\wedge \\
\leq
\end{array}
\]

Henson Algebra Network:

\[
\begin{array}{c}
E \cup N \\
E \cup =
\end{array}
\]
Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is a finite set of nodes V together with a function $f: V \times V \to \mathcal{A}$.

Let \mathcal{B} be a representation of \mathcal{A}. An \mathcal{A}-network $(V; f)$ is satisfiable in \mathcal{B} if there exists an assignment $s: V \to \mathcal{B}$ such that for all $x, y \in V$:

$$(s(x), s(y)) \in f(x, y)^\mathcal{B}$$

Point Algebra Network:

Henson Algebra Network:
Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is a finite set of nodes V together with a function $f: V \times V \to \mathcal{A}$.

Let \mathcal{B} be a representation of \mathcal{A}. An \mathcal{A}-network $(V; f)$ is satisfiable in \mathcal{B} if there exists an assignment $s: V \to B$ such that for all $x, y \in V$:

$$(s(x), s(y)) \in f(x, y)^\mathcal{B}$$

Point Algebra Network:

Henson Algebra Network:
Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is a finite set of nodes V together with a function $f: V \times V \to \mathcal{A}$.

Let \mathcal{B} be a representation of \mathcal{A}. An \mathcal{A}-network $(V; f)$ is satisfiable in \mathcal{B} if there exists an assignment $s: V \to \mathcal{B}$ such that for all $x, y \in V$:

$$(s(x), s(y)) \in f(x, y)^\mathcal{B}$$

Point Algebra Network:

Not satisfiable in \mathcal{Q}!

Henson Algebra Network:

Satisfiable in \mathcal{H}!
Networks

Definitions

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is a finite set of nodes V together with a function $f: V \times V \to \mathcal{A}$.

Let \mathcal{B} be a representation of \mathcal{A}. An \mathcal{A}-network $(V; f)$ is satisfiable in \mathcal{B} if there exists an assignment $s: V \to B$ such that for all $x, y \in V$:

$$(s(x), s(y)) \in f(x, y)^B$$

An \mathcal{A}-network $(V; f)$ is satisfiable if there exists some representation \mathcal{C} of \mathcal{A} such that $(V; f)$ is satisfiable in \mathcal{C}.

Point Algebra Network:

```

```

Not satisfiable in \mathcal{Q}!

Henson Algebra Network:

```

```

Satisfiable in \mathcal{H}!
The Really Big Complexity Problem

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\text{NSP}(\mathcal{A})$.
The Really Big Complexity Problem

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\text{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.
Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\text{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.
The Really Big Complexity Problem

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\text{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.

Classification Results:
The Really Big Complexity Problem

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\text{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.

Classification Results:
- Dechter, Meiri, Pearl 1991: Point algebra (P).
The Really Big Complexity Problem

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\text{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.

Classification Results:

- Dechter, Meiri, Pearl 1991: Point algebra (P).
- Renz, Nebel 1997: RCC5 and RCC8 (NP-c).
The Really Big Complexity Problem

Definition

The Network Satisfaction Problem for a finite relation algebra \mathcal{A} is the problem to decide whether a given \mathcal{A}-network is satisfiable. We denote this with $\text{NSP}(\mathcal{A})$.

- Research Goal: Classifying those NSPs which are polynomial-time tractable.

Classification Results:

- Dechter, Meiri, Pearl 1991: Point algebra (P).
- Renz, Nebel 1997: RCC5 and RCC8 (NP-c).
Theorem (Partial RBCP)

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then $\text{NSP}(\mathcal{A})$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.
Theorem (Partial RBCP)

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then $\text{NSP}(\mathcal{A})$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Definition

Let \mathcal{A} be a finite relation algebra. An atom $S \in A$ is flexible if for all $B, C \in A \setminus \{1\}$ it holds that $S \leq B \circ C$.

→ “All triangles that contain a S are allowed.”
To solve RBCP in full generality seems very difficult.
To solve RBCP in full generality seems very difficult.

Hirsch introduced a subclass of finite relation algebras with “nice” representations:
To solve RBCP in full generality seems very difficult.

Hirsch introduced a subclass of finite relation algebras with “nice” representations:

Finite relation algebras with normal representations.
To solve RBCP in full generality seems very difficult.

Hirsch introduced a subclass of finite relation algebras with “nice” representations:

Finite relation algebras with normal representations.

Homogeneous edge-labeled graphs defined by forbidden triangles.
To solve RBCP in full generality seems very difficult.

Hirsch introduced a subclass of finite relation algebras with “nice” representations:

Finite relation algebras with normal representations.

Hirsch 1994

Homogeneous edge-labeled graphs defined by forbidden triangles.

Cherlin: Classification is open.
Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is called atomic if the image of f only contains atoms and if

$$f(a, c) \leq f(a, b) \circ f(b, c)$$
Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is called atomic if the image of f only contains atoms and if

$$f(a, c) \leq f(a, b) \circ f(b, c)$$

Definitions

A representation \mathbb{B} of a relation algebra \mathcal{A} is called

- fully universal if every atomic \mathcal{A}-network is satisfiable in \mathbb{B};
Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is called atomic if the image of f only contains atoms and if

$$f(a, c) \leq f(a, b) \circ f(b, c)$$

Definitions

A representation \mathcal{B} of a relation algebra \mathcal{A} is called

- **fully universal** if every atomic \mathcal{A}-network is satisfiable in \mathcal{B};
- **square** if $1^\mathcal{B} = B^2$;
Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is called atomic if the image of f only contains atoms and if

$$f(a, c) \leq f(a, b) \circ f(b, c)$$

Definitions

A representation \mathcal{B} of a relation algebra \mathcal{A} is called

- fully universal if every atomic \mathcal{A}-network is satisfiable in \mathcal{B};
- square if $1^\mathcal{B} = B^2$;
- homogeneous if every isomorphism of finite substructures of \mathcal{B} can be extended to an automorphism;
Normal Representations

Definition

Let \mathcal{A} be a relation algebra. An \mathcal{A}-network $(V; f)$ is called atomic if the image of f only contains atoms and if

$$f(a, c) \leq f(a, b) \circ f(b, c)$$

Definitions

A representation \mathcal{B} of a relation algebra \mathcal{A} is called

- **fully universal** if every atomic \mathcal{A}-network is satisfiable in \mathcal{B};
- **square** if $\mathbf{1}_\mathcal{B} = \mathcal{B}^2$;
- **homogeneous** if every isomorphism of finite substructures of \mathcal{B} can be extended to an automorphism;
- **normal** if it is fully universal, square and homogeneous.
NSP as CSP

Definition

Let A be a τ-structure. The Constraint Satisfaction Problem of A is to decide for a given finite τ-structure C whether there exists a homomorphism from C to A.
Definition

Let \mathcal{A} be a τ-structure. The **Constraint Satisfaction Problem** of \mathcal{A} is to decide for a given finite τ-structure \mathcal{C} whether there exists a homomorphism from \mathcal{C} to \mathcal{A}.

Proposition

Let \mathcal{A} be a finite relation algebra with normal representation \mathcal{A}. Then \mathcal{A} is finitely bounded and $\text{NSP}(\mathcal{A})$ equals $\text{CSP}(\mathcal{A})$ (up to some cosmetic differences in the formalisation) and is therefore in NP.

Remark: There exists a finite relation algebra with undecidable NSP (Hirsch 1999)!
NSP as CSP

Definition

Let A be a τ-structure. The **Constraint Satisfaction Problem** of A is to decide for a given finite τ-structure C whether there exists a homomorphism from C to A.

Proposition

Let A be a finite relation algebra with normal representation \mathfrak{A}. Then \mathfrak{A} is finitely bounded and $\text{NSP}(A)$ equals $\text{CSP}(A)$ (up to some cosmetic differences in the formalisation) and is therefore in NP.

Remark: There exists a finite relation algebra with undecidable NSP (Hirsch 1999)!
Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\text{CSP}(\Gamma)$ is in $\Pi \text{ or } \text{NP-complete}$. Moreover, it is decidable which of the two cases holds.

Proof:

- **Finitely bounded structures:** Nice description for Γ.
- **Fraisse’s Theorem:** Γ exists, because of free amalgamation.
- **Universal algebra:** Study homomorphisms $\Gamma_n \to \Gamma$ (Polymorphisms).
- **Ramsey theory:** Γ with a generic order is a Ramsey structure by a result of Hubiška and Nešetřil (2016).
- **Finite-domain CSP:** Use the Bulatov-Zhuk Dichotomy Theorem (2017) for tractability results.
Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\text{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:

- Finitely bounded structures: Nice description for Γ.

Simon Knäuer (TU Dresden)
Relation Algebras and CSPs
QuantLA Workshop 2019
Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\text{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:

- Finitely bounded structures: Nice description for Γ.

- Fraisse’s Theorem: Γ exists, because of free amalgamation.
Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and CSP(Γ) is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:

- Finitely bounded structures: Nice description for Γ.
- Fraïssé’s Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^n \rightarrow \Gamma$ (Polymorphisms).
Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\text{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:

- Finitely bounded structures: Nice description for Γ.
- Fraisse’s Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^n \to \Gamma$ (Polymorphisms).
- Ramsey theory: Γ with a generic order is a Ramsey structure by a result of Hubička and Nešetřil (2016).
Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\text{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:

- Finitely bounded structures: Nice description for Γ.
- Fraisse’s Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^n \to \Gamma$ (Polymorphisms).
- Ramsey theory: Γ with a generic order is a Ramsey structure by a result of Hubička and Nešetřil (2016).
Theorem

Let A be a finite relation algebra with a flexible atom. Then A has a normal representation Γ and $\text{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:
- Finitely bounded structures: Nice description for Γ.
- Fraïssé’s Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^n \rightarrow \Gamma$ (Polymorphisms).
- Ramsey theory: Γ with a generic order is a Ramsey structure by a result of Hubička and Nešetřil (2016).
Finitely Bounded Structures

Definition

Let F be a finite set of finite τ-structures. $\text{Forb}(F)$ is the class of all finite τ-structures that embed no $B \in F$.

A class C of finite τ-structures is called **finitely bounded** if $C = \text{Forb}(F)$ for a finite set F.

Simon Knäuer (TU Dresden)
Relation Algebras and CSPs
QuantLA Workshop 2019
15 / 27
Finitely Bounded Structures

Definition

Let F be a finite set of finite τ-structures. $\text{Forb}(F)$ is the class of all finite τ-structures that embed no $B \in F$.

A class C of finite τ-structures is called finitely bounded if $C = \text{Forb}(F)$ for a finite set F.

A structure A is called finitely bounded if the class of finite substructures of A is finitely bounded.
Finitely Bounded Structures

Definition
Let F be a finite set of finite τ-structures. Forb(F) is the class of all finite τ-structures that embed no $B \in F$.
A class C of finite τ-structures is called **finitely bounded** if $C = \text{Forb}(F)$ for a finite set F.
A structure A is called **finitely bounded** if the class of finite substructures of A is finitely bounded.

Observation
Let A be a finite relation algebra. The class of atomic A-networks (considered as structures) is finitely bounded by all forbidden (with respect to \circ) triangles.
Theorem

Let A be a finite relation algebra with a flexible atom. Then A has a normal representation Γ and $\text{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:

- Finitely bounded structures: Nice Γ.
- Fraisse’s Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^n \rightarrow \Gamma$ (Polymorphisms).
- Ramsey theory: Γ with a generic order is a Ramsey structure by a result of Hubička and Nešetřil (2016).
Fraisse’s Theorem

Theorem

Let τ be a finite signature and let C be an amalgamation class. Then there exists a unique countable τ-structure F which is homogeneous and the age of F is exactly C.

(I) Isomorphism-closed: For every $A \in C$ every isomorphic copy A is also in C.

(HP) Hereditary property: For $A \in C$ and an arbitrary substructure B of A the structure B is in C.

(AP) Amalgamation property: For $A, B, C \in C$ and embeddings $e : A \to B$ and $f : A \to C$ there exists a structure $D \in C$ and embeddings $g : B \to D$ and $h : C \to D$ such that $g \circ e = h \circ f$.

Simon Knäuer (TU Dresden) Relation Algebras and CSPs QuantLA Workshop 2019
Fraisse’s Theorem

Theorem

Let τ be a finite signature and let C be an amalgamation class. Then there exists a unique countable τ-structure F which is homogeneous and the age of F is exactly C.

C is an amalgamation class if it has the following properties:
Fraisse’s Theorem

Theorem

Let τ be a finite signature and let C be an amalgamation class. Then there exists a unique countable τ-structure F which is homogeneous and the age of F is exactly C.

C is an amalgamation class if it has the following properties:

(I) **Isomorphism-closed:** For every $A \in C$ every isomorphic copy A is also in C.
Fraisse’s Theorem

Theorem
Let \(\tau \) be a finite signature and let \(C \) be an amalgamation class. Then there exists a unique countable \(\tau \)-structure \(F \) which is homogeneous and the age of \(F \) is exactly \(C \).

\(C \) is an amalgamation class if it has the following properties:

(I) **Isomorphism-closed:** For every \(A \in C \) every isomorphic copy \(\hat{A} \) is also in \(C \).

(HP) **Hereditary property:** For \(A \in C \) and an arbitrary substructure \(B \) of \(A \) the structure \(B \) is in \(C \).
Fraïssé’s Theorem

Theorem

Let τ be a finite signature and let C be an amalgamation class. Then there exists a unique countable τ-structure F which is homogeneous and the age of F is exactly C.

C is an amalgamation class if it has the following properties:

(I) **Isomorphism-closed**: For every $A \in C$ every isomorphic copy \bar{A} is also in C.

(HP) **Hereditary property**: For $A \in C$ and an arbitrary substructure B of A the structure B is in C.

(AP) **Amalgamation property**: For $A, B, C \in C$ and embeddings $e : A \to B$ and $f : A \to C$ there exists a structure $D \in C$ and embeddings $g : B \to D$ and $h : C \to D$ such that $g \circ e = h \circ f$.

Amalgamation

Examples
All finite linear orders, all finite undirected graphs,...
Amalgamation

Examples
All finite linear orders, all finite undirected graphs,…

Proposition
Let \(\mathcal{A} \) be a finite relation algebra with a flexible atom. Then \(\mathcal{A} \) has a normal representation \(\Gamma \) (and CSP(\(\Gamma \)) is in NP).

Proof:
The class of atomic \(\mathcal{A} \)-networks is an amalgamation class by free amalgamation with the flexible atom. Fraisse’s Theorem states that a countable, homogeneous limit structure \(\Gamma \) exists and is unique up to isomorphism. This structure is fully-universal since the age of \(\Gamma \) contains all atomic \(\mathcal{A} \)-networks.
Amalgamation

Examples
All finite linear orders, all finite undirected graphs,...

Proposition
Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ (and CSP(Γ) is in NP).

Proof:

- The class of atomic \mathcal{A}-networks is an amalgamation class by free amalgamation with the flexible atom.
Amalgamation

Examples
All finite linear orders, all finite undirected graphs,…

Proposition
Let \mathcal{A} be a finite relation algebra with a flexible atom.
Then \mathcal{A} has a normal representation Γ (and $\text{CSP}(\Gamma)$ is in NP).

Proof:
- The class of atomic \mathcal{A}-networks is an amalgamation class by \textit{free amalgamation} with the flexible atom.
- Fraisse’s Theorem states that a countable, homogeneous limit structure Γ exists and is unique up to isomorphism.
Amalgamation

Examples
All finite linear orders, all finite undirected graphs,…

Proposition
Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ (and CSP(Γ) is in NP).

Proof:
- The class of atomic \mathcal{A}-networks is an amalgamation class by free amalgamation with the flexible atom.
- Fraisse’s Theorem states that a countable, homogeneous limit structure Γ exists and is unique up to isomorphism.
- This structure is fully-universal since the age of Γ contains all atomic \mathcal{A}-networks.
Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and CSP(Γ) is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:
- Finitely bounded structures: Nice description for Γ.
- Fraisse’s Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^n \rightarrow \Gamma$ (Polymorphisms).
- Ramsey theory: Γ with a generic order is a Ramsey structure by a result of Hubička and Nešetřil (2016).
Universal Algebra

Definition

A function $f : A^k \to A$ preserves a relation $R \subseteq A^s$ if for every $r_1, \ldots, r_k \in R$ the tuple $(f(r_1^1, \ldots, r_k^1), \ldots, f(r_1^s, \ldots, r_k^s))$ is in the relation R.

A function $f : A^k \to A$ is called a polymorphism of a τ-structure \mathbb{A} if f preserves every relation R_i^A in \mathbb{A}.

Simon Knäuer (TU Dresden)
Relation Algebras and CSPs
QuantLA Workshop 2019
20 / 27
Universal Algebra

Definition

A function $f: A^k \rightarrow A$ preserves a relation $R \subseteq A^s$ if for every $r_1, \ldots, r_k \in R$ the tuple $(f(r_1^1, \ldots r_k^1), \ldots, f(r_1^s, \ldots r_k^s))$ is in the relation R.

A function $f: A^k \rightarrow A$ is called a polymorphism of a τ-structure \mathbb{A} if f preserves every relation R_i^A in \mathbb{A}.

$$
\begin{align*}
 f(\bullet & \bullet) = \bullet \\
 f(\bullet & \bullet \ldots \bullet) = \bullet \\
 \vdots & \vdots \\
 f(\bullet & \bullet) = \bullet \\
 \in R & \in R \quad \in R \quad \Rightarrow \quad \in R
\end{align*}
$$
Universal Algebra

Definition

A function \(f : A^k \to A \) preserves a relation \(R \subseteq A^s \) if for every \(r_1, \ldots, r_k \in R \) the tuple \((f(r_1^1, \ldots, r_1^k), \ldots, f(r_s^1, \ldots, r_k^s)) \) is in the relation \(R \).

A function \(f : A^k \to A \) is called a polymorphism of a \(\tau \)-structure \(A \) if \(f \) preserves every relation \(R_i^A \) in \(A \).

Proposition

Let \(A \) and \(B \) be \(\omega \)-categorical structures. If \(\text{Pol}(A) \subseteq \text{Pol}(B) \) holds, then there exists a polynomial-time reduction from \(\text{CSP}(B) \) to \(\text{CSP}(A) \).
Canonical Polymorphisms

Motivation: Reduction of infinite-domain CSPs to finite-domain CSPs.

Definition

Let X be a subset of the set of atomic relations Y of Γ. Then a polymorphism $\Gamma_n \rightarrow \Gamma$ is called X-canonical if it induces a function $X_n \rightarrow Y$.

If X is the set of all atomic relations, f is called canonical.

Observation

A polymorphism of a normal representation is edge conservative: Let $a_1, \ldots, a_n, b_1, \ldots, b_n \in V$ with $X_i(a_i, b_i)$ for atomic relations X_i, then $(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in X_1 \cup \ldots \cup X_n$.
Canonical Polymorphisms

Motivation: Reduction of infinite-domain CSPs to finite-domain CSPs.

Definition

Let X be a subset of the set of atomic relations Y of Γ. Then a polymorphism $\Gamma^n \rightarrow \Gamma$ is called X-canonical if it induces a function $X^n \rightarrow Y$. If X is the set of all atomic relations, f is called canonical.
Canonical Polymorphisms

Motivation: Reduction of infinite-domain CSPs to finite-domain CSPs.

Definition

Let X be a subset of the set of atomic relations Y of Γ. Then a polymorphism $\Gamma^n \to \Gamma$ is called X-canonical if it induces a function $X^n \to Y$. If X is the set of all atomic relations, f is called canonical.

\[
\begin{align*}
 f(\bullet \bullet \bullet) &= \bullet \\
 f(\bullet \bullet \bullet) &= \bullet \\
 \Rightarrow \text{Not } \{R, B, G\}-\text{canonical!}
\end{align*}
\]
Canonical Polymorphisms

Motivation: Reduction of infinite-domain CSPs to finite-domain CSPs.

Definition
Let X be a subset of the set of atomic relations Y of Γ. Then a polymorphism $\Gamma^n \rightarrow \Gamma$ is called X-canonical if it induces a function $X^n \rightarrow Y$. If X is the set of all atomic relations, f is called canonical.

$$f(\bullet \bullet \bullet) = \bullet$$
$$\Rightarrow \text{Not } \{R, G\}\text{-canonical!}$$
Canonical Polymorphisms

Motivation: Reduction of infinite-domain CSPs to finite-domain CSPs.

Definition

Let X be a subset of the set of atomic relations Y of Γ. Then a polymorphism $\Gamma^n \rightarrow \Gamma$ is called X-canonical if it induces a function $X^n \rightarrow Y$. If X is the set of all atomic relations, f is called canonical.

Observation

A polymorphism of a normal representation is edge conservative:

Let $a_1, \ldots, a_n, b_1, \ldots b_n \in V$ with $X_i(a_i, b_i)$ for atomic relations X_i, then

$$(f(a_1, \ldots, a_n), f(b_1, \ldots b_n)) \in X_1 \cup \ldots \cup X_n.$$
Definition

Let X be a subset of the set of atomic relations Y of Γ. Then a polymorphism $\Gamma^n \to \Gamma$ is called X-canonical if it induces a function $X^n \to Y$. If X is the set of all atomic relations, f is called canonical.

Observation

A polymorphism of a normal representation is edge conservative:
Let $a_1, \ldots, a_n, b_1, \ldots b_n \in V$ with $X_i(a_i, b_i)$ for atomic relations X_i, then

$$(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in X_1 \cup \ldots \cup X_n.$$
Canonical Polymorphisms

Motivation: Reduction of infinite-domain CSPs to finite-domain CSPs.

Definition

Let X be a subset of the set of atomic relations Y of Γ. Then a polymorphism $\Gamma^n \to \Gamma$ is called X-canonical if it induces a function $X^n \to Y$.

If X is the set of all atomic relations, f is called canonical.

Observation

A polymorphism of a normal representation is edge conservative:

Let $a_1, \ldots, a_n, b_1, \ldots b_n \in V$ with $X_i(a_i, b_i)$ for atomic relations X_i, then

$$(f(a_1, \ldots, a_n), f(b_1, \ldots b_n)) \in X_1 \cup \ldots \cup X_n.$$

\[f(\begin{array}{c} \text{•} \\ \text{•} \end{array}) = \begin{array}{c} \text{•} \\ \text{•} \end{array} \quad \Rightarrow \text{Not conservative!} \]

\[f(\begin{array}{c} \text{•} \\ \text{•} \\ \text{•} \end{array}) = \begin{array}{c} \text{•} \\ \text{•} \end{array} \]
Theorem

Let Γ be a normal representation of a finite relation algebra with a flexible atom. If $\text{CSP}(\Gamma)$ is not NP-complete then for every two atomic relations A and B there exists an $\{A, B\}$-canonical polymorphism $f_{A,B}$ of Γ such that the induced function on $\{A, B\}$ is one of the following:

- A binary symmetric function;
- The Boolean majority function;
- The Boolean minority function.

We call these functions of Schaefer-type.
Analysis of Atomic Relations

Theorem

Let Γ be a normal representation of a finite relation algebra with a flexible atom. If $\text{CSP}(\Gamma)$ is not NP-complete then for every two atomic relations A and B there exists an $\{A, B\}$-canonical polymorphism $f_{A,B}$ of Γ such that the induced function on $\{A, B\}$ is one of the following:

- A binary symmetric function;
- The Boolean majority function;
- The Boolean minority function.

We call these functions of Schaefer-type.

These functions give tractability results for finite-domain CSPs!
Result restated

Theorem

Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and $\text{CSP}(\Gamma)$ is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:

- Finitely bounded structures: Nice description for Γ.
- Fraisse’s Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^n \rightarrow \Gamma$ (Polymorphisms).
- Ramsey theory: Γ with a generic order is a Ramsey structure by a result of Hubička and Nešetřil (2016).
Ramsey Theory

The essence of this part is the following deletion:

Theorem
Let Γ be a normal representation of a finite relation algebra with a flexible atom. If $CSP(\Gamma)$ is not NP-complete then for every two atomic relations A and B there exists a $\{A, B\}$-canonical polymorphism $f_{A,B}$ of Γ such that the induced function on $\{A, B\}$ is one of the following:

- A binary symmetric function;
- The Boolean majority function;
- The Boolean minority function.
Ramsey Theory

The essence of this part is the following deletion:

Theorem

Let Γ be a normal representation of a finite relation algebra with a flexible atom. If \(\text{CSP}(\Gamma)\) is not NP-complete then for every two atomic relations A and B there exists an \(\{A, B\}\)-canonical polymorphism $f_{A,B}$ of Γ such that the induced function on \(\{A, B\}\) is one of the following:

- A binary symmetric function;
- The Boolean majority function;
- The Boolean minority function.
The essence of this part is the following deletion:

Theorem

Let Γ be a normal representation of a finite relation algebra with a flexible atom. If $\text{CSP}(\Gamma)$ is not NP-complete then for every two atomic relations A and B there exists a canonical polymorphism $f_{A,B}$ of Γ such that the induced function on $\{A, B\}$ is one of the following:

- A binary symmetric function;
- The Boolean majority function;
- The Boolean minority function.
Theorem
Let \mathcal{A} be a finite relation algebra with a flexible atom. Then \mathcal{A} has a normal representation Γ and CSP(Γ) is in P or NP-complete. Moreover, it is decidable which of the two cases holds.

Proof:

- Finitely bounded structures: Nice description for Γ.
- Fraïssé’s Theorem: Γ exists, because of free amalgamation.
- Universal algebra: Study homomorphisms $\Gamma^n \to \Gamma$ (Polymorphisms).
- Ramsey theory: Γ with a generic order is a Ramsey structure by a result of Hubička and Nešetřil (2016).
Reduction to Finite-Domain CSP

Theorem (Bodirsky and Mottet ’18 + Finite-domain Dichotomy ’17)

Let \(\Gamma \) be a finitely bounded homogeneous structure and suppose that \(\Gamma \) has a Siggers polymorphism \(f \) modulo operations from \(\text{End}(\Gamma) \) such that \(f \) is canonical. Then \(\text{CSP}(\Gamma) \) is in \(\text{P} \).
Reduction to Finite-Domain CSP

Theorem (Bodirsky and Mottet ’18 + Finite-domain Dichotomy ’17)

Let Γ be a finitely bounded homogeneous structure and suppose that Γ has a Siggers polymorphism f modulo operations from $\text{End}(\Gamma)$ such that f is canonical. Then CSP(Γ) is in P.

Definition

A function f is Siggers modulo operations from $\text{End}(\Gamma)$ if there exist $e_1, e_2 \in \text{End}(\Gamma)$ such that the following holds:

$$\forall x, y, z : e_1(f(x, y, x, z, y, z)) = e_2(f(z, z, y, y, x, x))$$
Reduction to Finite-Domain CSP

Theorem (Bodirsky and Mottet ’18 + Finite-domain Dichotomy ’17)

Let Γ be a finitely bounded homogeneous structure and suppose that Γ has a Siggers polymorphism f modulo operations from $\text{End}(\Gamma)$ such that f is canonical. Then $\text{CSP}(\Gamma)$ is in P.

Proposition

Let Γ be a normal representation of a finite relation algebra with a flexible atom. Assume that Γ has for every two atomic relations A and B a polymorphism that is canonical and of Schaefer-type on $\{A, B\}$. Then Γ has a polymorphism that is Siggers modulo operations from $\text{End}(\Gamma)$.
Thank you for your attention!
Result

Theorem

Let Γ be a normal representation of a finite relation algebra with a flexible atom. One of the following holds:

1. There exists for every two atoms A and B of the algebra a polymorphism $f_{A,B}$ of Γ that is canonical and the induced function on $\{A, B\}$ is of Schaefer-type, then Γ has a canonical pseudo-Siggers polymorphism. Then CSP(Γ) is in P.

2. CSP(Γ) is NP-complete.