

Constraint Satisfaction Problems of First-Order Expansions of Algebraic Products

Žaneta Semanišinová

with Manuel Bodirsky, Peter Jonsson, Barnaby Martin, Antoine Mottet

Institute of Algebra
TU Dresden

AAA, 25.6.2022

Constraint Satisfaction Problems

(relational) structure $\mathfrak{A} = (A; R^{\mathfrak{A}} : R \in \tau)$; **finite** signature τ

Definition (CSP)

\mathfrak{B} – τ -structure

Constraint Satisfaction Problem for \mathfrak{B} (CSP(\mathfrak{B})):

Input: finite τ -structure \mathfrak{A}

Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?

Example: complete graph on 3 vertices

$$K_3 = (\{0, 1, 2\}; \neq)$$

$\text{CSP}(K_3) =$ 3-colorability problem for graphs

more generally: $\text{CSP}(K_n) = n$ -colorability problem

Complexity dichotomy

Theorem (Bulatov (2017), Zhuk (2017))

For every *finite structure* \mathfrak{B} with finite signature, $\text{CSP}(\mathfrak{B})$ is in P or NP -complete.

Conjecture (Bodirsky, Pinsker (2011))

For a *reduct* \mathfrak{B} of a *finitely bounded homogeneous structure*, $\text{CSP}(\mathfrak{B})$ is in P or NP -complete.

Interesting infinite examples in the scope of the conjecture:

fo-expansions of (algebraic powers of) $(\mathbb{Q}; <)$

Primitive positive interpretations

primitive positive formula: $\exists y_1, \dots, y_l (\psi_1 \wedge \dots \wedge \psi_m)$, ψ_i atomic formulas

Example: $\phi(x, y) = \exists z R(x, y, z) \wedge R(x, x, z)$

Primitive positive interpretations

primitive positive formula: $\exists y_1, \dots, y_l (\psi_1 \wedge \dots \wedge \psi_m)$, ψ_i atomic formulas

Example: $\phi(x, y) = \exists z R(x, y, z) \wedge R(x, x, z)$

Definition (pp-interpretation)

Primitive positive interpretation of \mathfrak{C} in \mathfrak{B} :

a *partial surjection* I from B^d to C (for some d) such that for every k -ary relation R defined by an atomic formula in \mathfrak{C} , $I^{-1}(R)$ as a dk -ary relation over B is *pp-definable* in \mathfrak{B}

Example: closed intervals $[a, b]$ over \mathbb{Q} are elements of \mathbb{Q}^2 such that $a < b$

Primitive positive interpretations

primitive positive formula: $\exists y_1, \dots, y_l (\psi_1 \wedge \dots \wedge \psi_m)$, ψ_i atomic formulas

Example: $\phi(x, y) = \exists z R(x, y, z) \wedge R(x, x, z)$

Definition (pp-interpretation)

Primitive positive interpretation of \mathfrak{C} in \mathfrak{B} :

a *partial surjection* I from B^d to C (for some d) such that for every k -ary relation R defined by an atomic formula in \mathfrak{C} , $I^{-1}(R)$ as a dk -ary relation over B is *pp-definable* in \mathfrak{B}

Example: closed intervals $[a, b]$ over \mathbb{Q} are elements of \mathbb{Q}^2 such that $a < b$

Proposition (folklore)

If \mathfrak{C} has a *pp-interpretation* (in particular, *pp-definition*) in \mathfrak{B} , then there is a *poly-time reduction* from $\text{CSP}(\mathfrak{C})$ to $\text{CSP}(\mathfrak{B})$.

Cardinal Direction Calculus

- $\mathfrak{C} = (\mathbb{Q}^2; N, E, S, W, NE, SE, SW, NW)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

Cardinal Direction Calculus

- $\mathfrak{C} = (\mathbb{Q}^2; N, E, S, W, NE, SE, SW, NW)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=, >)$	$(>, =)$	$(=, <)$	$(<, =)$	$(>, >)$	$(>, <)$	$(<, <)$	$(<, >)$

- denote $(<, \top)$ by $<_1$ and similarly for $=_1, <_2, =_2$
- these relations are **pp-definable** in \mathfrak{C}
- view **fo-expansions** of \mathfrak{C} as **fo-expansions** of $(\mathbb{Q}^2; <_1, =_1, <_2, =_2)$

Cardinal Direction Calculus

- $\mathfrak{C} = (\mathbb{Q}^2; N, E, S, W, NE, SE, SW, NW)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=, >)$	$(>, =)$	$(=, <)$	$(<, =)$	$(>, >)$	$(>, <)$	$(<, <)$	$(<, >)$

- denote $(<, \top)$ by $<_1$ and similarly for $=_1, <_2, =_2$
- these relations are **pp-definable** in \mathfrak{C}
- view **fo-expansions** of \mathfrak{C} as **fo-expansions** of $(\mathbb{Q}^2; <_1, =_1, <_2, =_2)$
- **CDC**: relations are unions of the relations above – **fo-expansions** of \mathfrak{C}
- natural generalization: **CDC_n** with the domain \mathbb{Q}^n

Open problem (Balbiani, Condotta, 2002): **complexity classification** of the **CSPs** of reducts of **CDC_n**

→ we **solve** it by classifying fo-expansions of $(\mathbb{Q}^n; <_1, =_1, \dots, <_n, =_n)$

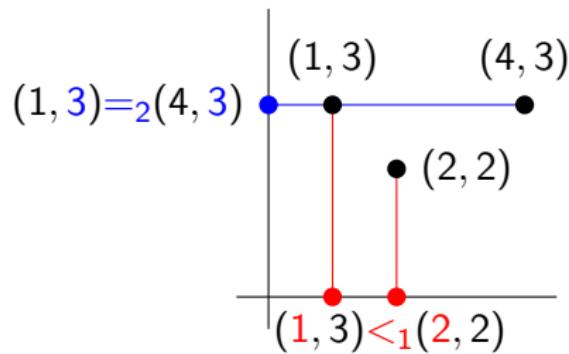
Algebraic products

Definition (algebraic product)

Let \mathfrak{A}_1 and \mathfrak{A}_2 be structures with signatures τ_1 and τ_2 , respectively. The **algebraic product** $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$ is the structure with the domain $A_1 \times A_2$ which has the following relations:

- for every $R \in \tau_1 \cup \{=\}$, the relation $R_1 = (R, \top)$;
- for every $R \in \tau_2 \cup \{=\}$, the relation $R_2 = (\top, R)$.

Example: $(\mathbb{Q}; <) \boxtimes (\mathbb{Q}; <) = (\mathbb{Q}^2; <_1, =_1, <_2, =_2)$



Definition (algebraic product)

Let \mathfrak{A}_1 and \mathfrak{A}_2 be structures with signatures τ_1 and τ_2 , respectively. The **algebraic product** $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$ is the structure with the domain $A_1 \times A_2$ which has the following relations:

- for every $R \in \tau_1 \cup \{=\}$, the relation $R_1 = (R, \top)$;
- for every $R \in \tau_2 \cup \{=\}$, the relation $R_2 = (\top, R)$.

→ natural generalization to ***n*-fold** algebraic products

Observation: Complexity classification of **CSPs** of **fo-expansions** of

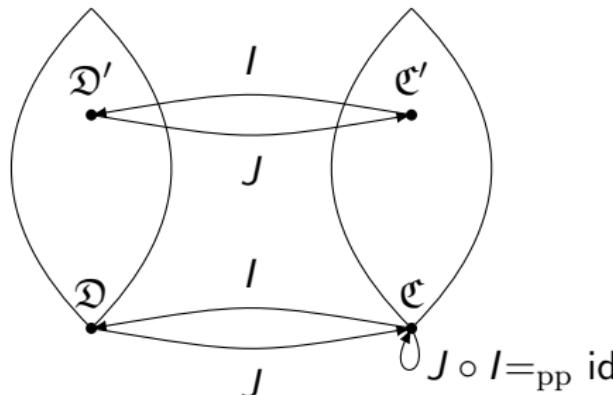
$$\underbrace{(\mathbb{Q}; <) \boxtimes \cdots \boxtimes (\mathbb{Q}; <)}_n = (\mathbb{Q}^n; <_1, =_1, \dots, <_n, =_n)$$

leads to classification for reducts of ***CDC_n***!

Complexity classification transfer

- I – pp-interpretation of \mathfrak{D} in \mathfrak{C}
- J – pp-interpretation of \mathfrak{C} in \mathfrak{D}
- $J \circ I$ is pp-homotopic to the identity interpretation of \mathfrak{C}
(i.e., $\{(\bar{x}, \bar{y}) \mid J \circ I(\bar{x}) = \bar{y}\}$ is pp-definable in \mathfrak{C})

fo-expansions of \mathfrak{D} fo-expansions of \mathfrak{C}



⇒ for every fo-expansion \mathfrak{C}' of \mathfrak{C} there is an fo-expansion \mathfrak{D}' of \mathfrak{D} such that $\text{CSP}(\mathfrak{C}')$ and $\text{CSP}(\mathfrak{D}')$ are poly-time equivalent

Allen's Interval Algebra and Block Algebra

Allen's Interval Algebra:

- $\mathbb{I} = \{(a, b) \in \mathbb{Q}^2 \mid a < b\}$ – closed intervals
- 13 basic relations correspond to relative positions of intervals, e.g.:

$s(X, Y):$	XXX	$f(X, Y):$	XXX	$m(X, Y):$	XXXX
<i>starts</i>	YYYYYY	<i>finishes</i>	YYYYYY	<i>meets</i>	YYYY

- all relations: unions of basic relations

Allen's Interval Algebra and Block Algebra

Allen's Interval Algebra:

- $\mathbb{I} = \{(a, b) \in \mathbb{Q}^2 \mid a < b\}$ – closed intervals
- 13 basic relations correspond to relative positions of intervals, e.g.:

$s(X, Y):$	XXX	$f(X, Y):$	XXX	$m(X, Y):$	XXXX
<i>starts</i>	YYYYYY	<i>finishes</i>	YYYYYY	<i>meets</i>	YYYY

- all relations: unions of basic relations

Block Algebra:

- domain: \mathbb{I}^n
- basic relations: n -tuples of Allen's basic relations
- all relations: unions of basic relations

Open problem (Balbiani, Condotta, del Cerro, 1999 ($n = 2$) and 2002 ($n \geq 2$)): complexity classification of the **CSPs** of reducts of the n -dim. Block Algebra

Solution:

- Block Algebra with the **basic** relations is **pp-interpretable** in $(\mathbb{Q}^n; <_1, =_1, \dots, <_n, =_n)$ and vice versa
- **all** relations are **fo-definable** in **basic** relations
- we **solve** the problem by **transferring** the **complexity classification** for fo-expansions of $(\mathbb{Q}^n; <_1, =_1, \dots, <_n, =_n)$

Polymorphisms

Definition (polymorphism)

An operation $f : A^k \rightarrow A$ is a **polymorphism** of (or **preserves**) a structure \mathfrak{A} if for every relation R of \mathfrak{A} and for all tuples $\bar{r}_1, \dots, \bar{r}_k \in R$ also $f(\bar{r}_1, \dots, \bar{r}_k) \in R$ (computed row-wise).

$\text{Pol}(\mathfrak{A})$ – the set of all polymorphisms of \mathfrak{A}

Example: $+$ is a polymorphism of $(\mathbb{Q}; <)$

$$\begin{pmatrix} 1 \\ \wedge \\ 5 \end{pmatrix} + \begin{pmatrix} 2 \\ \wedge \\ 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 \\ \wedge \\ 8 \end{pmatrix}$$

Polymorphisms

Definition (polymorphism)

An operation $f : A^k \rightarrow A$ is a **polymorphism** of (or **preserves**) a structure \mathfrak{A} if for every relation R of \mathfrak{A} and for all tuples $\bar{r}_1, \dots, \bar{r}_k \in R$ also $f(\bar{r}_1, \dots, \bar{r}_k) \in R$ (computed row-wise).

$\text{Pol}(\mathfrak{A})$ – the set of all polymorphisms of \mathfrak{A}

Example: $+$ is a polymorphism of $(\mathbb{Q}; <)$

$$\begin{pmatrix} 1 \\ \wedge \\ 5 \end{pmatrix} + \begin{pmatrix} 2 \\ \wedge \\ 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 \\ \wedge \\ 8 \end{pmatrix}$$

Theorem (Bodirsky, Nešetřil (2006))

A relation $R \subseteq A^l$ is **preserved** by **all polymorphisms** of an ω -categorical structure \mathfrak{A} iff R is has a **pp-definition** in \mathfrak{A} .

Complexity of CSPs of (fo-expansions) of alg. products

$\mathfrak{A}_1, \mathfrak{A}_2$ – countable ω -categorical structures

$\text{Pol}(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2) = \text{Pol}(\mathfrak{A}_1) \times \text{Pol}(\mathfrak{A}_2) \Rightarrow$ the complexity of the CSP (of an fo-expansion) of $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$ is related to “the complexity in each dimension”

Proposition

If $\text{CSP}(\mathfrak{A}_1)$ is in P and $\text{CSP}(\mathfrak{A}_2)$ is in P , then $\text{CSP}(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2)$ is in P .

Complexity of CSPs of (fo-expansions) of alg. products

$\mathfrak{A}_1, \mathfrak{A}_2$ – countable ω -categorical structures

$\text{Pol}(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2) = \text{Pol}(\mathfrak{A}_1) \times \text{Pol}(\mathfrak{A}_2) \Rightarrow$ the complexity of the CSP (of an fo-expansion) of $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$ is related to “the complexity in each dimension”

Proposition

If $\text{CSP}(\mathfrak{A}_1)$ is in P and $\text{CSP}(\mathfrak{A}_2)$ is in P , then $\text{CSP}(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2)$ is in P .

$\theta_i : \text{Pol}(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2) \rightarrow \text{Pol}(\mathfrak{A}_i)$ (projects on the i -th coordinate)

Follows from the results by Barto, Opršal, Pinsker (2018):

Proposition

Let \mathfrak{D} be an fo-expansion of $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$. Let i be such that $\theta_i(\text{Pol}(\mathfrak{D}))$ has a uniformly continuous minor-preserving map to $\text{Pol}(K_3)$. Then $\text{Pol}(\mathfrak{D})$ has a uniformly continuous minor-preserving map to $\text{Pol}(K_3)$ as well and $\text{CSP}(\mathfrak{D})$ is NP-complete.

CSPs of fo-expansions of $(\mathbb{Q}^n; <_1, =_1, \dots, <_n, =_n)$

pwnu polymorphism = pseudo weak near unanimity polymorphism

Theorem (Bodirsky, Kára (2009, 2010))

Let \mathfrak{B} be an fo-expansion of $(\mathbb{Q}; <)$. If \mathfrak{B} contains a *pwnu polymorphism*, then $\text{CSP}(\mathfrak{B})$ is in *P*. Otherwise, $\text{Pol}(\mathfrak{B})$ has a *uniformly continuous minor-preserving map* to $\text{Pol}(K_3)$ and $\text{CSP}(\mathfrak{B})$ is *NP-complete*.

CSPs of fo-expansions of $(\mathbb{Q}^n; <_1, =_1, \dots, <_n, =_n)$

pwnu polymorphism = pseudo weak near unanimity polymorphism

Theorem (Bodirsky, Kára (2009, 2010))

Let \mathfrak{B} be an fo-expansion of $(\mathbb{Q}; <)$. If \mathfrak{B} contains a *pwnu polymorphism*, then $\text{CSP}(\mathfrak{B})$ is in *P*. Otherwise, $\text{Pol}(\mathfrak{B})$ has a *uniformly continuous minor-preserving map* to $\text{Pol}(K_3)$ and $\text{CSP}(\mathfrak{B})$ is *NP-complete*.

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. (2022))

Let \mathfrak{D} be an fo-expansion of $(\mathbb{Q}^n; <_1, =_1, \dots, <_n, =_n)$. Exactly one of the following two cases applies.

- $\theta_i(\text{Pol}(\mathfrak{D}))$ contains a *pwnu polymorphism* for each i . In this case \mathfrak{D} has a *pwnu polymorphism* and $\text{CSP}(\mathfrak{D})$ is in *P*.
- There is i such that $\theta_i(\text{Pol}(\mathfrak{D}))$ has a *uniformly continuous minor-preserving map* to $\text{Pol}(K_3)$ and $\text{CSP}(\mathfrak{D})$ is *NP-complete*.

Proof idea for $n = 2$

NP-complete:

- follows directly from the previous proposition

NP-complete:

- follows directly from the previous proposition

P:

- relations of \mathfrak{D} are defined by **fo-formulas** in $<$; and $=$;
- we may assume **quantifier-free** definitions in **conjunctive normal form**
- key: have conjunctions of clauses which are (almost) **i -determined** (contains literals only with index i)
- aim is to run the **poly-time algorithm** to **decide** satisfiability of:
 - ① the **1-determined** constraints
 - ② the (possibly modified) **2-determined** constraints
- **existence** of such **poly-time algorithms** follows from the theorem for $(\mathbb{Q}; <)$

What is next

Classify the **complexity** of:

- CSPs of (reducts) of fo-expansions of

$$\underbrace{(\{0, 1\}; \{0\}, \{1\}) \boxtimes \cdots \boxtimes (\{0, 1\}; \{0\}, \{1\})}_{n} \boxtimes (\mathbb{Q}; <)$$

for $n = 1$ and general n

- more generally: CSPs of fo-expansions of $\mathfrak{B} \boxtimes (\mathbb{Q}; <)$, where \mathfrak{B} is a **finite structure**
- challenge: CSPs of structures **fo-interpretable** over $(\mathbb{Q}; <)$

All of the above is in the scope of the **infinite-domain dichotomy conjecture**.

Thank you for your attention