Constraint Satisfaction Problems of First-Order Expansions of Algebraic Products

Žaneta Semanišinová
with Manuel Bodirsky, Peter Jonsson, Barnaby Martin, Antoine Mottet

Institute of Algebra
TU Dresden
AAA, 25.6.2022

Constraint Satisfaction Problems

(relational) structure $\mathfrak{A}=\left(A ; R^{\mathfrak{A}}: R \in \tau\right)$; finite signature τ

Definition (CSP)

$\mathfrak{B}-\tau$-structure
Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: finite τ-structure \mathfrak{A}
Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?
Example: complete graph on 3 vertices

$$
K_{3}=(\{0,1,2\} ; \neq)
$$

$\operatorname{CSP}\left(K_{3}\right)=3$-colorability problem for graphs more generally: $\operatorname{CSP}\left(K_{n}\right)=n$-colorability problem

Complexity dichotomy

Theorem (Bulatov (2017), Zhuk (2017))
For every finite structure \mathfrak{B} with finite signature, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Conjecture (Bodirsky, Pinsker (2011))

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Interesting infinite examples in the scope of the conjecture: fo-expansions of (algebraic powers of) $(\mathbb{Q}$; $<)$

Primitive positive interpretations

primitive positive formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic formulas Example: $\phi(x, y)=\exists z R(x, y, z) \wedge R(x, x, z)$

Primitive positive interpretations

primitive positive formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic formulas Example: $\phi(x, y)=\exists z R(x, y, z) \wedge R(x, x, z)$

Definition (pp-interpretation)

Primitive positive interpretation of \mathfrak{C} in \mathfrak{B} :
a partial surjection I from B^{d} to C (for some d) such that for every k-ary relation R defined by an atomic formula in $\mathfrak{C}, I^{-1}(R)$ as a $d k$-ary relation over B is pp-definable in \mathfrak{B}

Example: closed intervals $[a, b]$ over \mathbb{Q} are elements of \mathbb{Q}^{2} such that $a<b$

Primitive positive interpretations

primitive positive formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic formulas Example: $\phi(x, y)=\exists z R(x, y, z) \wedge R(x, x, z)$

Definition (pp-interpretation)

Primitive positive interpretation of \mathfrak{C} in \mathfrak{B} :
a partial surjection I from B^{d} to C (for some d) such that for every k-ary relation R defined by an atomic formula in $\mathfrak{C}, I^{-1}(R)$ as a $d k$-ary relation over B is pp-definable in \mathfrak{B}

Example: closed intervals $[a, b]$ over \mathbb{Q} are elements of \mathbb{Q}^{2} such that $a<b$

Proposition (folklore)

If \mathfrak{C} has a pp-interpretation (in particular, pp-definition) in \mathfrak{B}, then there is a poly-time reduction from $\operatorname{CSP}(\mathfrak{C})$ to $\operatorname{CSP}(\mathfrak{B})$.

Cardinal Direction Calculus

- $\mathfrak{C}=\left(\mathbb{Q}^{2} ; N, E, S, W, N E, S E, S W, N W\right)(N o r t h, ~ E a s t, ~ e t c)$.

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

Cardinal Direction Calculus

- $\mathfrak{C}=\left(\mathbb{Q}^{2} ; N, E, S, W, N E, S E, S W, N W\right)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

- denote $(<, \top)$ by $<_{1}$ and similarly for $={ }_{1},<_{2},={ }_{2}$
- these relations are pp-definable in \mathfrak{C}
- view fo-expansions of \mathfrak{C} as fo-expansions of $\left(\mathbb{Q}^{2} ;<_{1},==_{1},<_{2},==_{2}\right)$

Cardinal Direction Calculus

- $\mathfrak{C}=\left(\mathbb{Q}^{2} ; N, E, S, W, N E, S E, S W, N W\right)$ (North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

- denote $(<, \top)$ by $<_{1}$ and similarly for $={ }_{1},<_{2},={ }_{2}$
- these relations are pp-definable in \mathfrak{C}
- view fo-expansions of \mathfrak{C} as fo-expansions of $\left(\mathbb{Q}^{2} ;<_{1},==_{1},<_{2},==_{2}\right)$
- CDC: relations are unions of the relations above - fo-expansions of \mathfrak{C}
- natural generalization: CDC_{n} with the domain \mathbb{Q}^{n}

Open problem (Balbiani, Condotta, 2002): complexity classification of the CSPs of reducts of CDC_{n}
\longrightarrow we solve it by classifying fo-expansions of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$

Algebraic products

Definition (algebraic product)

Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be structures with signatures τ_{1} and τ_{2}, respectively. The algebraic product $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ is the structure with the domain $A_{1} \times A_{2}$ which has the following relations:

- for every $R \in \tau_{1} \cup\{=\}$, the relation $R_{1}=(R, \top)$;
- for every $R \in \tau_{2} \cup\{=\}$, the relation $R_{2}=(\top, R)$.

Example: $(\mathbb{Q} ;<) \boxtimes(\mathbb{Q} ;<)=\left(\mathbb{Q}^{2} ;<_{1},={ }_{1},<_{2},={ }_{2}\right)$

Algebraic products

Definition (algebraic product)

Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be structures with signatures τ_{1} and τ_{2}, respectively. The algebraic product $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ is the structure with the domain $A_{1} \times A_{2}$ which has the following relations:

- for every $R \in \tau_{1} \cup\{=\}$, the relation $R_{1}=(R, \top)$;
- for every $R \in \tau_{2} \cup\{=\}$, the relation $R_{2}=(\top, R)$.
\longrightarrow natural generalization to n-fold algebraic products
Observation: Complexity classification of CSPs of fo-expansions of

$$
\underbrace{(\mathbb{Q} ;<) \boxtimes \cdots \boxtimes(\mathbb{Q} ;<)}_{n}=\left(\mathbb{Q}^{n} ;<_{1},==_{1}, \ldots,<_{n},={ }_{n}\right)
$$

leads to classification for reducts of CDC_{n} !

Complexity classification transfer

- I - pp-interpretation of \mathfrak{D} in \mathfrak{C}
- J - pp-interpretation of \mathfrak{C} in \mathfrak{D}
- $J \circ \boldsymbol{I}$ is pp-homotopic to the identity interpretation of \mathfrak{C} (i.e., $\{(\bar{x}, \bar{y}) \mid J \circ I(\bar{x})=\bar{y}\}$ is pp-definable in \mathfrak{C})

\Rightarrow for every fo-expansion \mathfrak{C}^{\prime} of \mathfrak{C} there is an fo-expansion \mathfrak{D}^{\prime} of \mathfrak{D} such that $\operatorname{CSP}\left(\mathfrak{C}^{\prime}\right)$ and $\operatorname{CSP}\left(\mathfrak{D}^{\prime}\right)$ are poly-time equivalent

Allen's Interval Algebra and Block Algebra

Allen's Interval Algebra:

- $\mathbb{I}=\left\{(a, b) \in \mathbb{Q}^{2} \mid a<b\right\}$ - closed intervals
- 13 basic relations correspond to relative positions of intervals, e.g.:

$s(X, Y):$	XXX	$f(X, Y):$	XXX	$m(X, Y):$	XXXX
starts	YYYYYY	finishes	YYYYYY	meets	YYYY

- all relations: unions of basic relations

Allen's Interval Algebra and Block Algebra

Allen's Interval Algebra:

- $\mathbb{I}=\left\{(a, b) \in \mathbb{Q}^{2} \mid a<b\right\}$ - closed intervals
- 13 basic relations correspond to relative positions of intervals, e.g.:

$s(X, Y):$	XXX	$f(X, Y):$	XXX	$m(X, Y):$	XXXX
starts	YYYYYY	finishes	YYYYYY	meets	YYYY

- all relations: unions of basic relations

Block Algebra:

- domain: \mathbb{I}^{n}
- basic relations: n-tuples of Allen's basic relations
- all relations: unions of basic relations

Complexity classification transfer for Block Algebras

Open problem (Balbiani, Condotta, del Cerro, $1999(n=2)$ and 2002 $(n \geq 2))$: complexity classification of the CSPs of reducts of the n-dim. Block Algebra

Solution:

- Block Algebra with the basic relations is pp-interpretable in $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$ and vice versa
- all relations are fo-definable in basic relations
- we solve the problem by transfering the complexity classification for fo-expansions of $\left(\mathbb{Q}^{n} ;<_{1},=1, \ldots,<_{n},={ }_{n}\right)$

Polymorphisms

Definition (polymorphism)

An operation $f: A^{k} \rightarrow A$ is a polymorphism of (or preserves) a structure \mathfrak{A} if for every relation R of \mathfrak{A} and for all tuples $\overline{r_{1}}, \ldots, \overline{r_{k}} \in R$ also $f\left(\bar{r}_{1}, \ldots, \bar{r}_{k}\right) \in R$ (computed row-wise).
$\operatorname{Pol}(\mathfrak{A})$ - the set of all polymorphisms of \mathfrak{A}
Example: + is a polymorphism of $(\mathbb{Q} ;<)$

$$
\left(\begin{array}{l}
1 \\
\wedge \\
5
\end{array}\right)+\left(\begin{array}{l}
2 \\
\wedge \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
3 \\
\wedge \\
8
\end{array}\right)
$$

Polymorphisms

Definition (polymorphism)

An operation $f: A^{k} \rightarrow A$ is a polymorphism of (or preserves) a structure \mathfrak{A} if for every relation R of \mathfrak{A} and for all tuples $\overline{r_{1}}, \ldots, \overline{r_{k}} \in R$ also $f\left(\bar{r}_{1}, \ldots, \bar{r}_{k}\right) \in R$ (computed row-wise).
$\operatorname{Pol}(\mathfrak{A})$ - the set of all polymorphisms of \mathfrak{A}
Example: + is a polymorphism of $(\mathbb{Q} ;<)$

$$
\left(\begin{array}{l}
1 \\
\wedge \\
5
\end{array}\right)+\left(\begin{array}{l}
2 \\
\wedge \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
3 \\
\wedge \\
8
\end{array}\right)
$$

Theorem (Bodirsky, Nešetřil (2006))

A relation $R \subseteq A^{\prime}$ is preserved by all polymorphisms of an ω-categorical structure \mathfrak{A} iff R is has a pp-definition in \mathfrak{A}.

Complexity of CSPs of (fo-expansions) of alg. products

$\mathfrak{A}_{1}, \mathfrak{A}_{2}$ - countable ω-categorical structures
$\operatorname{Pol}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right)=\operatorname{Pol}\left(\mathfrak{A}_{1}\right) \times \operatorname{Pol}\left(\mathfrak{A}_{2}\right) \Rightarrow$ the complexity of the CSP (of an fo-expansion) of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ is related to "the complexity in each dimension"

Proposition

If $\operatorname{CSP}\left(\mathfrak{A}_{1}\right)$ is in P and $\operatorname{CSP}\left(\mathfrak{A}_{2}\right)$ is in P, then $\operatorname{CSP}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right)$ is in P.

Complexity of CSPs of (fo-expansions) of alg. products

$\mathfrak{A}_{1}, \mathfrak{A}_{2}$ - countable ω-categorical structures
$\operatorname{Pol}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right)=\operatorname{Pol}\left(\mathfrak{A}_{1}\right) \times \operatorname{Pol}\left(\mathfrak{A}_{2}\right) \Rightarrow$ the complexity of the CSP (of an fo-expansion) of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ is related to "the complexity in each dimension"

Proposition

 If $\operatorname{CSP}\left(\mathfrak{A}_{1}\right)$ is in P and $\operatorname{CSP}\left(\mathfrak{A}_{2}\right)$ is in P, then $\operatorname{CSP}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right)$ is in P.$\theta_{i}: \operatorname{Pol}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right) \rightarrow \operatorname{Pol}\left(\mathfrak{A}_{i}\right)$ (projects on the i-th coordinate)
Follows from the results by Barto, Opršal, Pinsker (2018):

Proposition

Let \mathfrak{D} be an fo-expansion of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$. Let i be such that $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}\left(K_{3}\right)$. Then $\operatorname{Pol}(\mathfrak{D})$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}\left(K_{3}\right)$ as well and $\operatorname{CSP}(\mathfrak{D})$ is NP-complete.

CSPs of fo-expansions of $\left(\mathbb{Q}^{n} ;<_{1},==_{1}, \ldots,<_{n},==_{n}\right)$

pwnu polymorphism $=$ pseudo weak near unaminity polymorphism

```
Theorem (Bodirsky, Kára (2009, 2010))
Let }\mathfrak{B}\mathrm{ be an fo-expansion of (Q:<). If }\mathfrak{B}\mathrm{ contains a pwnu polymorphism, then \(\operatorname{CSP}(\mathfrak{B})\) is in \(P\). Otherwise, \(\operatorname{Pol}(\mathfrak{B})\) has a uniformly continuous minor-preserving map to \(\operatorname{Pol}\left(K_{3}\right)\) and \(\operatorname{CSP}(\mathfrak{B})\) is NP-complete.
```


CSPs of fo-expansions of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$

pwnu polymorphism $=$ pseudo weak near unaminity polymorphism

Theorem (Bodirsky, Kára $(2009,2010)$)

Let \mathfrak{B} be an fo-expansion of $(\mathbb{Q} ;<)$. If \mathfrak{B} contains a pwnu polymorphism, then $\operatorname{CSP}(\mathfrak{B})$ is in P. Otherwise, $\operatorname{Pol}(\mathfrak{B})$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}\left(K_{3}\right)$ and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete.

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. (2022))

Let \mathfrak{D} be an fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$. Exactly one of the following two cases applies.

- $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ contains a pwnu polymorphism for each i. In this case \mathfrak{D} has a pwnu polymorphism and $\operatorname{CSP}(\mathfrak{D})$ is in P.
- There is i such that $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}\left(K_{3}\right)$ and $\operatorname{CSP}(\mathfrak{D})$ is NP-complete.

Proof idea for $n=2$

NP-complete:

- follows directly from the previous proposition

Proof idea for $n=2$

NP-complete:

- follows directly from the previous proposition

P:

- relations of \mathfrak{D} are defined by fo-formulas in $<_{i}$ and $=_{i}$
- we may assume quantifier-free definitions in conjunctive normal form
- key: have conjunctions of clauses which are (almost) i-determined (contains literals only with index i)
- aim is to run the poly-time algorithm to decide satisfiability of:
(1) the 1-determined constraints
(2) the (possibly modified) 2-determined constraints
- existence of such poly-time algorithms follows from the theorem for $(\mathbb{Q} ;<)$

What is next

Classify the complexity of:

- CSPs of (reducts) of fo-expansions of

$$
\underbrace{(\{0,1\} ;\{0\},\{1\}) \boxtimes \cdots \boxtimes(\{0,1\} ;\{0\},\{1\})}_{n} \boxtimes(\mathbb{Q} ;<)
$$

for $n=1$ and general n

- more generally: CSPs of fo-expansions of $\mathfrak{B} \boxtimes(\mathbb{Q} ;<)$, where \mathfrak{B} is a finite structure
- challenge: CSPs of structures fo-interpretable over $(\mathbb{Q} ;<)$

All of the above is in the scope of the infinite-domain dichotomy conjecture.

Thank you for your attention

