Valued Constraints over Infinite Domains

Žaneta Semanišinová joint work with Manuel Bodirsky, Édouard Bonnet, and Carsten Lutz

Institute of Algebra TU Dresden

Research Seminar in Discrete Mathematics and Algebra
TU Freiberg
5 Feb 2025

ERC Synergy Grant POCOCOP (GA 101071674)

Outline

- Introduction to VCSPs
- 2 Tools for VCSPs
- 3 Temporal VCSPs
- 4 Resilience problems
- Outlook to the future

Outline

- Introduction to VCSPs
- 2 Tools for VCSPs
- 3 Temporal VCSPs
- 4 Resilience problems
- 5 Outlook to the future

least correlation clustering

Input: constraints of the form x = y and $x \neq y$, threshold u **Output**: Can we assign values to the variables violating at most u constraints?

least correlation clustering

Input: constraints of the form x = y and $x \neq y$, threshold u **Output**: Can we assign values to the variables violating at most u constraints?

minimum feedback arc set

Input: a directed multigraph G, threshold u

Output: Can we remove at most u edges from G destroying all directed cycles?

least correlation clustering

Input: constraints of the form x = y and $x \neq y$, threshold u **Output**: Can we assign values to the variables violating at most u constraints?

minimum feedback arc set

Input: a directed multigraph G, threshold u

Output: Can we remove at most u edges from G destroying all directed cycles?

resilience

Fixed: conjunctive query *q*

Input: a database \mathfrak{A} , threshold u

Output: Can we remove at most u tuples from \mathfrak{A} so that $\mathfrak{A} \not\models q$?

least correlation clustering

NP-complete

Input: constraints of the form x = y and $x \neq y$, threshold u

Output: Can we assign values to the variables violating at most u constraints?

minimum feedback arc set

NP-complete

Input: a directed multigraph G, threshold u

Output: Can we remove at most u edges from G destroying all directed cycles?

resilience

in NP, depends on q

Fixed: conjunctive query *q*

Input: a database \mathfrak{A} , threshold u

Output: Can we remove at most u tuples from $\mathfrak A$ so that $\mathfrak A \not\models q$?

P = class of efficiently solvable problems

NP = class of problems with efficiently verifiable solution

NP-complete problems = hardest problems in NP

B – fixed relational structureInput: list of constraints

3 – fixed relational structure

Input: list of constraints

Output:

• CSP: Decide whether there is a solution that satisfies all constraints.

3 – fixed relational structure

Input: list of constraints

Output:

- CSP: Decide whether there is a solution that satisfies all constraints.
- MinCSP: Find the minimal number of constraints to violate so that the remaining constraints are satisfiable simultaneously.

3 - fixed relational structure

Input: list of constraints

Output:

- CSP: Decide whether there is a solution that satisfies all constraints.
- MinCSP: Find the minimal number of constraints to violate so that the remaining constraints are satisfiable simultaneously.
- VCSP: Find the minimal cost with which the constraints can be satisfied (each constraint comes with a cost depending on the chosen values).

3 – fixed relational structure

Input: list of constraints

Output:

- CSP: Decide whether there is a solution that satisfies all constraints.
- MinCSP: Find the minimal number of constraints to violate so that the remaining constraints are satisfiable simultaneously.
- VCSP: Find the minimal cost with which the constraints can be satisfied (each constraint comes with a cost depending on the chosen values).

Observation: VCSP generalizes CSP and MinCSP.

Proof: Model the tuples in relations with cost 0 and outside with cost 1 (for MinCSP) or ∞ (for CSP).

Valued Constraint Satisfaction Problem

Valued Constraint Satisfaction Problem

A valued structure Γ consists of:

- (countable) domain D
- ullet (finite, relational) signature au
- for each $R \in \tau$ of arity k, a function $R^{\Gamma}: D^k \to \mathbb{Q} \cup \{\infty\}$

Valued Constraint Satisfaction Problem

A valued structure Γ consists of:

- (countable) domain D
- ullet (finite, relational) signature au
- for each $R \in \tau$ of arity k, a function $R^{\Gamma}: D^k \to \mathbb{Q} \cup \{\infty\}$

Definition $(VCSP(\Gamma))$

Input: $u \in \mathbb{Q}$, an expression

$$\phi(x_1,\ldots,x_n)=\sum_i\psi_i,$$

where each ψ_i is an atomic τ -formula

Output: Is

$$\inf_{t\in D^n}\phi(t)\leq u \text{ in } \Gamma?$$

Input: G = (V, E) – finite directed (multi)graph

Goal: Find a partition $A \cup B$ of V such that $E \cap (A \times B)$ is maximal.

Equivalently: $E \cap (A^2 \cup B^2 \cup B \times A)$ is minimal.

Input: G = (V, E) – finite directed (multi)graph

Goal: Find a partition $A \cup B$ of V such that $E \cap (A \times B)$ is maximal.

Equivalently: $E \cap (A^2 \cup B^2 \cup B \times A)$ is minimal.

Let Γ_{MC} be a valued structure where:

•
$$D = \{0, 1\}$$

•
$$\tau = \{R\}$$
, R binary

$$R(x,y) = \begin{cases} 0 \text{ if } x = 0 \text{ and } y = 1\\ 1 \text{ otherwise} \end{cases}$$

Input: G = (V, E) – finite directed (multi)graph

Goal: Find a partition $A \cup B$ of V such that $E \cap (A \times B)$ is maximal.

Equivalently: $E \cap (A^2 \cup B^2 \cup B \times A)$ is minimal.

Let Γ_{MC} be a valued structure where:

•
$$D = \{0, 1\}$$

• $\tau = \{R\}$, R binary

$$R(x,y) = \begin{cases} 0 \text{ if } x = 0 \text{ and } y = 1\\ 1 \text{ otherwise} \end{cases}$$

Take vertices of G as variables. The size of a maximal cut of G is

 $\min_{x \in D^n} \sum_{(x_i, x_i) \in E} R(x_i, x_j).$ The partition of V is given by the values 0 and 1.

Input: G = (V, E) – finite directed (multi)graph

Goal: Find a partition $A \cup B$ of V such that $E \cap (A \times B)$ is maximal.

Equivalently: $E \cap (A^2 \cup B^2 \cup B \times A)$ is minimal.

Let Γ_{MC} be a valued structure where:

•
$$D = \{0, 1\}$$

• $\tau = \{R\}$, R binary

$$R(x,y) = \begin{cases} 0 \text{ if } x = 0 \text{ and } y = 1\\ 1 \text{ otherwise} \end{cases}$$

Take vertices of G as variables. The size of a maximal cut of G is

$$\min_{x \in D^n} \sum_{(x_i, x_i) \in E} R(x_i, x_j)$$
. The partition of V is given by the values 0 and 1.

every instance of VCSP(Γ_{MC}) corresponds to a directed multigraph \sim VCSP(Γ_{MC}) is the Max-Cut problem (NP-hard)

Revisiting problems from the start

• least correlation clustering = VCSP(\mathbb{N} ; (=) $_0^1$, (\neq) $_0^1$)

Input: constraints of the form x = y and $x \neq y$, threshold u

Output: Can we assign values to the variables violating at most u constraints?

Revisiting problems from the start

• least correlation clustering = VCSP(\mathbb{N} ; $(=)_0^1, (\neq)_0^1$)

Input: constraints of the form x = y and $x \neq y$, threshold u

Output: Can we assign values to the variables violating at most u constraints?

• minimum feedback arc set = $VCSP(\mathbb{Q}; (<)_0^1)$

Input: a directed multigraph G, threshold u

Output: Can we remove at most u edges from G destroying all directed cycles?

Revisiting problems from the start

• least correlation clustering = VCSP(\mathbb{N} ; $(=)_0^1, (\neq)_0^1$)

Input: constraints of the form x = y and $x \neq y$, threshold u

Output: Can we assign values to the variables violating at most u constraints?

• minimum feedback arc set = $VCSP(\mathbb{Q}; (<)_0^1)$

Input: a directed multigraph G, threshold u

Output: Can we remove at most u edges from G destroying all directed cycles?

resilience

Fixed: conjunctive query *q*

Input: a database \mathfrak{A} , threshold u

Output: Can we remove at most u tuples from \mathfrak{A} so that $\mathfrak{A} \not\models q$?

→ not obvious how to model as a VCSP

Theorem (Kozik, Ochremiak '15; Kolmogorov, Rolínek, Krokhin '15; Bulatov '17; Zhuk '17)

Let Γ be a valued structure with a finite domain. Then VCSP(Γ) is in P or NP-complete.

Theorem (Kozik, Ochremiak '15; Kolmogorov, Rolínek, Krokhin '15; Bulatov '17; Zhuk '17)

Let Γ be a valued structure with a finite domain. Then VCSP(Γ) is in P or NP-complete.

Goal: Study complexity of 'tame enough' infinite-domain VCSPs.

Theorem (Kozik, Ochremiak '15; Kolmogorov, Rolínek, Krokhin '15; Bulatov '17; Zhuk '17)

Let Γ be a valued structure with a finite domain. Then VCSP(Γ) is in P or NP-complete.

Goal: Study complexity of 'tame enough' infinite-domain VCSPs.

Definition

- Γ valued structure on a countable domain C over a signature au
 - automorphism of Γ permutation α of C such that for $R \in \tau$ of arity k and every $t \in C^k$, $R(\alpha(t)) = R(t)$

Theorem (Kozik, Ochremiak '15; Kolmogorov, Rolínek, Krokhin '15; Bulatov '17; Zhuk '17)

Let Γ be a valued structure with a finite domain. Then VCSP(Γ) is in P or NP-complete.

Goal: Study complexity of 'tame enough' infinite-domain VCSPs.

Definition

- Γ valued structure on a countable domain C over a signature au
 - automorphism of Γ permutation α of C such that for $R \in \tau$ of arity k and every $t \in C^k$, $R(\alpha(t)) = R(t)$
 - Aut(Γ) is oligomorphic the action of Aut(Γ) on C^n has finitely many orbits for every $n \ge 1$

Theorem (Kozik, Ochremiak '15; Kolmogorov, Rolínek, Krokhin '15; Bulatov '17; Zhuk '17)

Let Γ be a valued structure with a finite domain. Then VCSP(Γ) is in P or NP-complete.

Goal: Study complexity of 'tame enough' infinite-domain VCSPs.

Definition

- Γ valued structure on a countable domain C over a signature au
 - automorphism of Γ permutation α of C such that for $R \in \tau$ of arity k and every $t \in C^k$, $R(\alpha(t)) = R(t)$
 - Aut(Γ) is oligomorphic the action of Aut(Γ) on C^n has finitely many orbits for every $n \ge 1$

Example: $Aut(\mathbb{Q};(<)_0^1) = Aut(\mathbb{Q};<)$ is oligomorphic.

Outline

- 1 Introduction to VCSPs
- 2 Tools for VCSPs
- 3 Temporal VCSPs
- 4 Resilience problems
- 5 Outlook to the future

Definition

Let R, R' be valued relations over set C. R' is expressed from R by

• projecting if $R'(x) = \inf_{y} R(x, y)$;

Definition

Let R, R' be valued relations over set C. R' is expressed from R by

- projecting if $R'(x) = \inf_{y} R(x, y)$;
- non-negative scaling if R' = aR for some $a \in \mathbb{Q}_{\geq 0}$;

Definition

Let R, R' be valued relations over set C. R' is expressed from R by

- projecting if $R'(x) = \inf_{y} R(x, y)$;
- non-negative scaling if R' = aR for some $a \in \mathbb{Q}_{\geq 0}$;
- shifting if R' = R + b for some $b \in \mathbb{Q}$.

Definition

Let R, R' be valued relations over set C. R' is expressed from R by

- projecting if $R'(x) = \inf_{y} R(x, y)$;
- non-negative scaling if R' = aR for some $a \in \mathbb{Q}_{\geq 0}$;
- shifting if R' = R + b for some $b \in \mathbb{Q}$.

$$\mathsf{Feas}(R) := \{t \mid R(t) < \infty\}$$

Definition

Let R, R' be valued relations over set C. R' is expressed from R by

- projecting if $R'(x) = \inf_{y} R(x, y)$;
- non-negative scaling if R' = aR for some $a \in \mathbb{Q}_{\geq 0}$;
- shifting if R' = R + b for some $b \in \mathbb{Q}$.

```
\operatorname{Feas}(R) := \{ t \mid R(t) < \infty \}
\operatorname{Opt}(R) := \{ t \in \operatorname{Feas}(R) \mid R(t) < R(s) \}
```

 $\operatorname{Opt}(R) := \{ t \in \operatorname{Feas}(R) \mid R(t) \leq R(s) \text{ for every } s \in C^k \}$

Definition

Let R, R' be valued relations over set C. R' is expressed from R by

- projecting if $R'(x) = \inf_{y} R(x, y)$;
- non-negative scaling if R' = aR for some $a \in \mathbb{Q}_{\geq 0}$;
- shifting if R' = R + b for some $b \in \mathbb{Q}$.

$$\begin{aligned} \mathsf{Feas}(R) &:= \{ t \mid R(t) < \infty \} \\ \mathsf{Opt}(R) &:= \{ t \in \mathsf{Feas}(R) \mid R(t) \le R(s) \text{ for every } s \in C^k \} \end{aligned}$$

 $\langle \Gamma \rangle$ – smallest superset of valued relations of Γ closed under forming sums of atomic expressions, projecting, shifting, non-negative scaling, Feas, Opt \hookrightarrow valued relations expressible in Γ

Definition

Let R, R' be valued relations over set C. R' is expressed from R by

- projecting if $R'(x) = \inf_{y} R(x, y)$;
- non-negative scaling if R' = aR for some $a \in \mathbb{Q}_{\geq 0}$;
- shifting if R' = R + b for some $b \in \mathbb{Q}$.

$$\begin{aligned} \mathsf{Feas}(R) &:= \{ t \mid R(t) < \infty \} \\ \mathsf{Opt}(R) &:= \{ t \in \mathsf{Feas}(R) \mid R(t) \le R(s) \text{ for every } s \in C^k \} \end{aligned}$$

 $\langle \Gamma \rangle$ – smallest superset of valued relations of Γ closed under forming sums of atomic expressions, projecting, shifting, non-negative scaling, Feas, Opt \hookrightarrow valued relations expressible in Γ

$$\langle \Gamma \rangle_0^{\infty} := \{ R \in \langle \Gamma \rangle \mid \forall t \colon R(t) \in \{0, \infty\} \}$$

Definition

Let R, R' be valued relations over set C. R' is expressed from R by

- projecting if $R'(x) = \inf_{y} R(x, y)$;
- non-negative scaling if R' = aR for some $a \in \mathbb{Q}_{\geq 0}$;
- shifting if R' = R + b for some $b \in \mathbb{Q}$.

$$\begin{aligned} \mathsf{Feas}(R) &:= \{ t \mid R(t) < \infty \} \\ \mathsf{Opt}(R) &:= \{ t \in \mathsf{Feas}(R) \mid R(t) \le R(s) \text{ for every } s \in C^k \} \end{aligned}$$

 $\langle \Gamma \rangle$ – smallest superset of valued relations of Γ closed under forming sums of atomic expressions, projecting, shifting, non-negative scaling, Feas, Opt \hookrightarrow valued relations expressible in Γ

$$\langle \Gamma \rangle_0^{\infty} := \{ R \in \langle \Gamma \rangle \mid \forall t \colon R(t) \in \{0, \infty\} \}$$

Fact (Bodirsky, S., Lutz '24): If Aut(Γ) is oligomorphic and $R \in \langle \Gamma \rangle$, VCSP(Γ ; R) reduces to VCSP(Γ) in poly-time.

pp-construction – a notion of 'translating' relations of one valued structure into relations of another (generalizes expressibility to different domains)

pp-construction – a notion of 'translating' relations of one valued structure into relations of another (generalizes expressibility to different domains) **Fact**: If $Aut(\Gamma)$ is oligomorphic and Γ pp-constructs Δ , then $VCSP(\Delta)$ reduces to $VCSP(\Gamma)$ in poly-time.

pp-construction – a notion of 'translating' relations of one valued structure into relations of another (generalizes expressibility to different domains)

Fact: If $Aut(\Gamma)$ is oligomorphic and Γ pp-constructs Δ , then $VCSP(\Delta)$ reduces to $VCSP(\Gamma)$ in poly-time.

 K_3 is the valued structure on $\{0,1,2\}$ with single binary relation E defined:

$$E(x,y) = \begin{cases} 0 \text{ if } x \neq y \\ \infty \text{ if } x = y \end{cases}$$

Observation: VCSP(K_3) is the 3-colorability problem and hence NP-hard.

pp-construction – a notion of 'translating' relations of one valued structure into relations of another (generalizes expressibility to different domains)

Fact: If $Aut(\Gamma)$ is oligomorphic and Γ pp-constructs Δ , then $VCSP(\Delta)$ reduces to $VCSP(\Gamma)$ in poly-time.

 K_3 is the valued structure on $\{0,1,2\}$ with single binary relation E defined:

$$E(x,y) = \begin{cases} 0 \text{ if } x \neq y \\ \infty \text{ if } x = y \end{cases}$$

Observation: VCSP(K_3) is the 3-colorability problem and hence NP-hard.

Corollary (Bodirsky, S., Lutz '24)

If $Aut(\Gamma)$ is oligomorphic and Γ pp-constructs K_3 , then $VCSP(\Gamma)$ is NP-hard.

polymorphism of a relational structure $\mathfrak{A} - f : A^n \to A$ such that for all relations R of \mathfrak{A} and $t^1, \ldots, t^n \in R$, $f(t^1, \ldots, t^n) \in R$ (applied row-wise)

polymorphism of a relational structure $\mathfrak{A}-f:A^n\to A$ such that for all relations R of \mathfrak{A} and $t^1,\ldots,t^n\in R$, $f(t^1,\ldots,t^n)\in R$ (applied row-wise)

Example: The operation min is a polymorphism of $(\mathbb{Q}; <)$.

$$\begin{pmatrix} 1 \\ \land \\ 5 \end{pmatrix} \quad \begin{pmatrix} 2 \\ \land \\ 3 \end{pmatrix} \stackrel{\min}{\underset{min}{\longrightarrow}} \begin{pmatrix} 1 \\ \land \\ 3 \end{pmatrix}$$

polymorphism of a relational structure $\mathfrak{A}-f:A^n\to A$ such that for all relations R of \mathfrak{A} and $t^1,\ldots,t^n\in R$, $f(t^1,\ldots,t^n)\in R$ (applied row-wise)

Example: The operation min is a polymorphism of $(\mathbb{Q}; <)$.

$$\begin{pmatrix} 1\\ \land\\ 5 \end{pmatrix} \quad \begin{pmatrix} 2\\ \land\\ 3 \end{pmatrix} \stackrel{\text{min}}{\underset{\longrightarrow}{\text{min}}} \begin{pmatrix} 1\\ \land\\ 3 \end{pmatrix}$$

Definition (fractional polymorphism)

A fractional polymorphism of Γ of arity n is a probability distribution ω on the maps $f: C^n \to C$ such that for every k-ary $R \in \tau$ and $t^1, \ldots, t^n \in C^k$

$$E_{\omega}[f \mapsto R(f(t^1,\ldots,t^n))] \leq \frac{1}{n} \sum_{j=1}^n R(t^j) \ (\omega \text{ improves } R).$$

```
Pol(\mathfrak{A}) – set of all polymorphisms of \mathfrak{A} fPol(\Gamma) – set of all fractional polymorphisms of \Gamma
```

```
 {\sf Pol}(\mathfrak{A}) - {\sf set\ of\ all\ polymorphisms\ of\ } \mathfrak{A}   {\sf fPol}(\Gamma) - {\sf set\ of\ all\ fractional\ polymorphisms\ of\ } \Gamma
```

Example:

 π_i^n (*n*-ary projection to *i*-th coordinate) $\in Pol(\mathfrak{A})$ for every \mathfrak{A} .

```
 {\sf Pol}(\mathfrak{A}) - {\sf set\ of\ all\ polymorphisms\ of\ } \mathfrak{A}   {\sf fPol}(\Gamma) - {\sf set\ of\ all\ fractional\ polymorphisms\ of\ } \Gamma
```

Example:

 π_i^n (n-ary projection to i-th coordinate) $\in \operatorname{Pol}(\mathfrak{A})$ for every \mathfrak{A} . Id_n – fractional operation such that $\operatorname{Id}_n(\pi_i^n) = 1/n$ for every i

 $\operatorname{Pol}(\mathfrak{A})$ – set of all polymorphisms of \mathfrak{A} fPol(Γ) – set of all fractional polymorphisms of Γ

Example:

 π_i^n (n-ary projection to i-th coordinate) $\in \operatorname{Pol}(\mathfrak{A})$ for every \mathfrak{A} . Id_n – fractional operation such that $\operatorname{Id}_n(\pi_i^n) = 1/n$ for every i $\operatorname{Id}_n \in \operatorname{fPol}(\Gamma)$ for every Γ .

$$E_{\omega}[f \mapsto R(f(a^1,\ldots,a^n))] = \frac{1}{n}\sum_{i=1}^n R(\pi_i^n(a^1,\ldots,a^n)) = \frac{1}{n}\sum_{i=1}^n R(a^i).$$

 $Pol(\mathfrak{A})$ – set of all polymorphisms of \mathfrak{A} $fPol(\Gamma)$ – set of all fractional polymorphisms of Γ

Example:

 π_i^n (n-ary projection to i-th coordinate) $\in \operatorname{Pol}(\mathfrak{A})$ for every \mathfrak{A} . Id_n – fractional operation such that $\operatorname{Id}_n(\pi_i^n) = 1/n$ for every i $\operatorname{Id}_n \in \operatorname{fPol}(\Gamma)$ for every Γ .

$$E_{\omega}[f \mapsto R(f(a^1,\ldots,a^n))] = \frac{1}{n}\sum_{i=1}^n R(\pi_i^n(a^1,\ldots,a^n)) = \frac{1}{n}\sum_{i=1}^n R(a^i).$$

Proposition (Bodirsky, S., Lutz '24)

If $Aut(\Gamma)$ is oligomorphic and $R \in \langle \Gamma \rangle$, then $fPol(\Gamma)$ improves R.

Outline

- 1 Introduction to VCSPs
- 2 Tools for VCSPs
- 3 Temporal VCSPs
- 4 Resilience problems
- 5 Outlook to the future

Definition

A relational structure $\mathfrak A$ is

• an equality structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;=)\Leftrightarrow \operatorname{Aut}(\mathfrak A)=\operatorname{Aut}(\mathbb Q;=)=\operatorname{Sym}(\mathbb Q);$

Definition

A relational structure $\mathfrak A$ is

- an equality structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;=)\Leftrightarrow \operatorname{Aut}(\mathfrak A)=\operatorname{Aut}(\mathbb Q;=)=\operatorname{Sym}(\mathbb Q);$
- a temporal structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;<)\Leftrightarrow \operatorname{Aut}(\mathbb Q;<)\subseteq\operatorname{Aut}(\mathfrak A).$

Definition

A relational structure $\mathfrak A$ is

- an equality structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;=)\Leftrightarrow \operatorname{Aut}(\mathfrak A)=\operatorname{Aut}(\mathbb Q;=)=\operatorname{Sym}(\mathbb Q);$
- a temporal structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;<)\Leftrightarrow \operatorname{Aut}(\mathbb Q;<)\subseteq\operatorname{Aut}(\mathfrak A).$

A valued structure Γ is

- an equality structure if $Aut(\Gamma) = Sym(\mathbb{Q})$;
- a temporal structure if $Aut(\mathbb{Q}; <) \subseteq Aut(\Gamma)$.

Definition

A relational structure $\mathfrak A$ is

- an equality structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;=)\Leftrightarrow \operatorname{Aut}(\mathfrak A)=\operatorname{Aut}(\mathbb Q;=)=\operatorname{Sym}(\mathbb Q);$
- a temporal structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;<)\Leftrightarrow \operatorname{Aut}(\mathbb Q;<)\subseteq\operatorname{Aut}(\mathfrak A).$

A valued structure Γ is

- an equality structure if Aut(Γ) = Sym(ℚ);
- a temporal structure if $Aut(\mathbb{Q}; <) \subseteq Aut(\Gamma)$.

Example:

• equality: $(\mathbb{Q}; (=)_0^1, (\neq)_0^1)$ (models least correlation clustering)

Definition

A relational structure $\mathfrak A$ is

- an equality structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;=)\Leftrightarrow \operatorname{Aut}(\mathfrak A)=\operatorname{Aut}(\mathbb Q;=)=\operatorname{Sym}(\mathbb Q);$
- a temporal structure if $\mathfrak A$ is fo-definable in $(\mathbb Q;<)\Leftrightarrow \operatorname{Aut}(\mathbb Q;<)\subseteq\operatorname{Aut}(\mathfrak A).$

A valued structure Γ is

- an equality structure if Aut(Γ) = Sym(ℚ);
- a temporal structure if $Aut(\mathbb{Q}; <) \subseteq Aut(\Gamma)$.

Example:

- equality: $(\mathbb{Q}; (=)_0^1, (\neq)_0^1)$ (models least correlation clustering)
- temporal: $(\mathbb{Q};(<)^1_0)$ (models minimum feedback arc set problem)

Classification of equality VCSPs

Known for CSPs:

Theorem (Bodirsky, Kára '08)

If $\mathfrak A$ is an equality relational structure, then exactly one of the following:

- $Pol(\mathfrak{A})$ contains a unary constant operation or a binary injection and $CSP(\mathfrak{A})$ is in P.
- \mathfrak{A} pp-constructs K_3 and $\mathsf{CSP}(\mathfrak{A})$ is NP-complete.

Classification of equality VCSPs

Known for CSPs:

Theorem (Bodirsky, Kára '08)

If $\mathfrak A$ is an equality relational structure, then exactly one of the following:

- $Pol(\mathfrak{A})$ contains a unary constant operation or a binary injection and $CSP(\mathfrak{A})$ is in P.
- \mathfrak{A} pp-constructs K_3 and $\mathsf{CSP}(\mathfrak{A})$ is NP-complete.

Theorem (Bodirsky, Bonnet, S. '24)

If Γ is an equality valued structure, then exactly one of the following:

- $\mathsf{fPol}(\Gamma)$ contains a unary constant operation or a binary injection and $\mathsf{VCSP}(\Gamma)$ is in P.
- Γ pp-constructs K_3 and VCSP(Γ) is NP-complete.
- \hookrightarrow the considered probability distributions put all weight on one operation

Classification of temporal CSPs

Theorem (Bodirsky, Kára '10)

Let $\mathfrak A$ be a temporal relational structure. Then exactly one of the following holds:

- At least one of the operations const, min, mx, mi, II, or one of their duals lies in $Pol(\mathfrak{A})$ and $CSP(\mathfrak{A})$ is P.
- \mathfrak{A} pp-constructs K_3 and $CSP(\mathfrak{A})$ is NP-complete.

Classification of temporal CSPs

Theorem (Bodirsky, Kára '10)

Let $\mathfrak A$ be a temporal relational structure. Then exactly one of the following holds:

- At least one of the operations const, min, mx, mi, II, or one of their duals lies in $Pol(\mathfrak{A})$ and $CSP(\mathfrak{A})$ is P.
- \mathfrak{A} pp-constructs K_3 and $CSP(\mathfrak{A})$ is NP-complete.
- \hookrightarrow const is the unary constant 0 operation
- \hookrightarrow the remaining polymorphisms are tailored to the structure ($\mathbb{Q};<$)

lex :
$$\mathbb{Q}^2 \to \mathbb{Q}$$
 is an operation satisfying $\operatorname{lex}(a,b) < \operatorname{lex}(c,d)$ iff $a < c$ or $(a = c) \land b < d$

Remark: $lex \in Pol(\mathfrak{A})$ does not imply tractability of $CSP(\mathfrak{A})!$

lex :
$$\mathbb{Q}^2 \to \mathbb{Q}$$
 is an operation satisfying $\operatorname{lex}(a,b) < \operatorname{lex}(c,d)$ iff $a < c$ or $(a=c) \land b < d$

Remark: $lex \in Pol(\mathfrak{A})$ does not imply tractability of $CSP(\mathfrak{A})!$

essentially crisp valued structure – every relation attains ≤ 1 finite value

lex : $\mathbb{Q}^2 \to \mathbb{Q}$ is an operation satisfying

$$\operatorname{lex}(a,b) < \operatorname{lex}(c,d)$$
 iff $a < c$ or $(a = c) \land b < d$

Remark: $lex \in Pol(\mathfrak{A})$ does not imply tractability of $CSP(\mathfrak{A})!$

essentially crisp valued structure – every relation attains ≤ 1 finite value

Theorem (Bodirsky, Bonnet, S. '24)

Let Γ be a temporal valued structure. Then at least one of the following:

• Γ pp-constructs K_3 and VCSP(Γ) is NP-complete.

lex : $\mathbb{Q}^2 \to \mathbb{Q}$ is an operation satisfying

$$lex(a, b) < lex(c, d)$$
 iff $a < c$ or $(a = c) \land b < d$

Remark: $lex \in Pol(\mathfrak{A})$ does not imply tractability of $CSP(\mathfrak{A})!$

essentially crisp valued structure – every relation attains ≤ 1 finite value

Theorem (Bodirsky, Bonnet, S. '24)

Let Γ be a temporal valued structure. Then at least one of the following:

- Γ pp-constructs K_3 and VCSP(Γ) is NP-complete.
- Γ is essentially crisp, $\text{fPol}(\Gamma)$ contains min, mx, mi, II, or one of their duals, and VCSP(Γ) is in P.

lex : $\mathbb{Q}^2 \to \mathbb{Q}$ is an operation satisfying

$$lex(a, b) < lex(c, d)$$
 iff $a < c$ or $(a = c) \land b < d$

Remark: $lex \in Pol(\mathfrak{A})$ does not imply tractability of $CSP(\mathfrak{A})!$

essentially crisp valued structure – every relation attains ≤ 1 finite value

Theorem (Bodirsky, Bonnet, S. '24)

Let Γ be a temporal valued structure. Then at least one of the following:

- Γ pp-constructs K_3 and VCSP(Γ) is NP-complete.
- Γ is essentially crisp, $\text{fPol}(\Gamma)$ contains min, mx, mi, II, or one of their duals, and VCSP(Γ) is in P.
- const \in fPol(Γ) and VCSP(Γ) is in P.

lex : $\mathbb{Q}^2 \to \mathbb{Q}$ is an operation satisfying

$$lex(a, b) < lex(c, d)$$
 iff $a < c$ or $(a = c) \land b < d$

Remark: $lex \in Pol(\mathfrak{A})$ does not imply tractability of $CSP(\mathfrak{A})!$

essentially crisp valued structure – every relation attains ≤ 1 finite value

Theorem (Bodirsky, Bonnet, S. '24)

Let Γ be a temporal valued structure. Then at least one of the following:

- Γ pp-constructs K_3 and VCSP(Γ) is NP-complete.
- Γ is essentially crisp, $\text{fPol}(\Gamma)$ contains min, mx, mi, II, or one of their duals, and VCSP(Γ) is in P.
- const \in fPol(Γ) and VCSP(Γ) is in P.
- lex \in fPol(Γ), Pol(\mathbb{Q} ; $\langle \Gamma \rangle_0^{\infty}$) contains min, mx, mi, II, or one of their duals, and VCSP(Γ) is in P.

Classification of temporal VCSPs

Theorem (Bodirsky, Bonnet, S. '24)

Let Γ be a temporal valued structure. Then at least one of the following:

- Γ pp-constructs K_3 and VCSP(Γ) is NP-complete.
- Γ is essentially crisp, $\text{fPol}(\Gamma)$ contains min, mx, mi, II, or one of their duals, and $\text{VCSP}(\Gamma)$ is in P.
- const \in fPol(Γ) and VCSP(Γ) is in P.
- lex \in fPol(Γ), Pol(\mathbb{Q} ; $\langle \Gamma \rangle_0^{\infty}$) contains min, mx, mi, II, or one of their duals, and VCSP(Γ) is in P.

Corollary (non-trivial): The complexity of VCSP(Γ) is determined by the complexity of CSP(\mathbb{Q} ; $\langle \Gamma \rangle_0^{\infty}$).

Classification of temporal VCSPs

Theorem (Bodirsky, Bonnet, S. '24)

Let Γ be a temporal valued structure. Then at least one of the following:

- Γ pp-constructs K_3 and VCSP(Γ) is NP-complete.
- Γ is essentially crisp, $\text{fPol}(\Gamma)$ contains min, mx, mi, II, or one of their duals, and $\text{VCSP}(\Gamma)$ is in P.
- const \in fPol(Γ) and VCSP(Γ) is in P.
- lex \in fPol(Γ), Pol(\mathbb{Q} ; $\langle \Gamma \rangle_0^{\infty}$) contains min, mx, mi, II, or one of their duals, and VCSP(Γ) is in P.

Corollary (non-trivial): The complexity of VCSP(Γ) is determined by the complexity of CSP(\mathbb{Q} ; $\langle \Gamma \rangle_0^{\infty}$).

Corollary (of the proof): Given a temporal valued structure Γ , it is decidable whether VCSP(Γ) is in P or NP-complete.

Outline

- 1 Introduction to VCSPs
- 2 Tools for VCSPs
- 3 Temporal VCSPs
- 4 Resilience problems
- 5 Outlook to the future

database – a relational structure \mathfrak{A} conjunctive query – a formula q of the form $\exists y_1, \ldots, y_l \ (\psi_1 \land \cdots \land \psi_m)$, where ψ_i are atomic

database – a relational structure \mathfrak{A} conjunctive query – a formula q of the form $\exists y_1, \ldots, y_l \ (\psi_1 \land \cdots \land \psi_m)$, where ψ_i are atomic

Definition (resilience)

Fixed conjunctive query q.

Input: a finite database \mathfrak{A} , $u \in \mathbb{N}$

Output: Can we remove $\leq u$ tuples from relations of $\mathfrak A$ so that $\mathfrak A \not\models q$?

Appears first in [Meliou, Gatterbauer, Moore, Suciu '10].

database – a relational structure \mathfrak{A} conjunctive query – a formula q of the form $\exists y_1, \ldots, y_l \ (\psi_1 \land \cdots \land \psi_m)$, where ψ_i are atomic

Definition (resilience)

Fixed conjunctive query q.

Input: a finite database \mathfrak{A} , $u \in \mathbb{N}$

Output: Can we remove $\leq u$ tuples from relations of \mathfrak{A} so that $\mathfrak{A} \not\models q$?

Appears first in [Meliou, Gatterbauer, Moore, Suciu '10].

Example: The resilience of

$$q = \exists x, y, z (R(x, y) \land R(y, z))$$

with respect to $\mathfrak A$ is 1 - remove (C, E).

database – a relational structure \mathfrak{A} conjunctive query – a formula q of the form $\exists y_1, \ldots, y_l \ (\psi_1 \land \cdots \land \psi_m)$, where ψ_i are atomic

Definition (resilience)

Fixed conjunctive query q.

Input: a finite database \mathfrak{A} , $u \in \mathbb{N}$

Output: Can we remove $\leq u$ tuples from relations of \mathfrak{A} so that $\mathfrak{A} \not\models q$?

Appears first in [Meliou, Gatterbauer, Moore, Suciu '10].

Example: The resilience of

$$q = \exists x, y, z (R(x, y) \land R(y, z))$$

with respect to \mathfrak{A} is 1 – remove (C, E).

Goal: Classify complexity of resilience for all q.

Homomorphism duality

Example (canonical structure):
$$\exists x, y (R(x, y) \land S(y)) \leadsto \frac{R}{x}$$

For a query q, take its canonical structure \mathfrak{Q} . Search for a structure \mathfrak{B}_q such that for every finite \mathfrak{A} :

$$\mathfrak{A}\not\models q \Leftrightarrow \mathfrak{Q} \not\rightarrow \mathfrak{A} \Leftrightarrow \mathfrak{A} \rightarrow \mathfrak{B}_q$$

 \sim corresponds to $\mathsf{CSP}(\mathfrak{B}_q)$ (if we represent the constraints by their canonical structure)

Homomorphism duality

Example (canonical structure):
$$\exists x, y (R(x, y) \land S(y)) \leadsto \frac{R}{X}$$

For a query q, take its canonical structure \mathfrak{Q} . Search for a structure \mathfrak{B}_q such that for every finite \mathfrak{A} :

$$\mathfrak{A}\not\models q\Leftrightarrow \mathfrak{Q}
eq \mathfrak{A} \Leftrightarrow \mathfrak{A}
ightarrow \mathfrak{B}_q$$

 \sim corresponds to $\mathsf{CSP}(\mathfrak{B}_q)$ (if we represent the constraints by their canonical structure)

Example: For every finite directed graph G we have:

Homomorphism duality

Example (canonical structure):
$$\exists x, y (R(x, y) \land S(y)) \leadsto \frac{R}{x}$$

For a query q, take its canonical structure \mathfrak{Q} . Search for a structure \mathfrak{B}_q such that for every finite \mathfrak{A} :

$$\mathfrak{A}\not\models q \Leftrightarrow \mathfrak{Q} \not\rightarrow \mathfrak{A} \Leftrightarrow \mathfrak{A} \rightarrow \mathfrak{B}_q$$

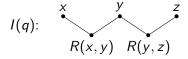
 \sim corresponds to $\mathsf{CSP}(\mathfrak{B}_q)$ (if we represent the constraints by their canonical structure)

Example: For every finite directed graph *G* we have:

 \sim existence of \mathfrak{B}_q enables studying resilience of q using the results about (valued) constraint satisfaction problems

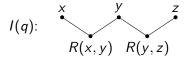
Existence of dual structures

Example (incidence graph): $q := \exists x, y, z (R(x, y) \land R(y, z))$



Existence of dual structures

Example (incidence graph): $q := \exists x, y, z (R(x, y) \land R(y, z))$

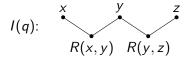


Theorem (Nešetřil, Tardiff '00; Larose, Loten, Tardiff '07)

A conjunctive query q has a finite dual if and only if it is homomorphically equivalent to q' such that I(q') is a tree.

Existence of dual structures

Example (incidence graph): $q := \exists x, y, z (R(x, y) \land R(y, z))$



Theorem (Nešetřil, Tardiff '00; Larose, Loten, Tardiff '07)

A conjunctive query q has a finite dual if and only if it is homomorphically equivalent to q' such that I(q') is a tree.

Theorem (Cherlin, Shelah, Shi '99)

If I(q) is connected, then q has a countable dual \mathfrak{B}_q , which can be chosen so that $\operatorname{Aut}(\mathfrak{B}_q)$ is oligomorphic.

query q with I(q) connected (WLOG) \sim obtain the dual structure $\mathfrak{B}_q \sim$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

query q with I(q) connected (WLOG) \sim obtain the dual structure $\mathfrak{B}_q \sim$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Theorem (Bodirsky, S., Lutz '24)

The resilience problem for q equals $VCSP(\Gamma_q)$.

query q with I(q) connected (WLOG) \sim obtain the dual structure $\mathfrak{B}_q \sim$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Theorem (Bodirsky, S., Lutz '24)

The resilience problem for q equals $VCSP(\Gamma_q)$.

Remark: We have to consider bag databases – a database $\mathfrak A$ might contain a tuple with multiplicity >1 (differs from the original setting).

Example: Input R(x, y) + R(x, y) for VCSP(Γ) corresponds to a database with multiplicity 2 for R(x, y).

query q with I(q) connected (WLOG) \sim obtain the dual structure $\mathfrak{B}_q \sim$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Theorem (Bodirsky, S., Lutz '24)

The resilience problem for q equals $VCSP(\Gamma_q)$.

Example: $q := \exists x, y, z (R(x, y) \land R(y, z))$

For every finite G:

 $\mathfrak{B}_q \sim \Gamma_{\mathsf{MC}} = (\{0,1\};R)$ Resilience of $q = \mathsf{VCSP}(\Gamma_{\mathsf{MC}}) = \mathsf{Max\text{-}Cut}$ is NP-hard

query q with I(q) connected (WLOG) \sim obtain the dual structure $\mathfrak{B}_q \sim$ turn it into a valued structure Γ_q with cost functions taking values 0 and 1

Theorem (Bodirsky, S., Lutz '24)

The resilience problem for q equals $VCSP(\Gamma_q)$.

Combined with the theorem on finite duals and the complexity dichotomy for finite-domain VCSPs this yields:

Corollary (Bodirsky, S., Lutz '24)

Let q be a conjunctive query such that I(q) is acyclic. Then the resilience problem for q in bag semantics is in P or NP-complete.

Sufficient condition for tractability

A more concrete version of the finite-domain VCSP dichotomy:

Theorem

- Γ a finite-domain valued structure
 - If Γ does not pp-construct K_3 , then Γ has cyclic fractional polymorphism (essentially [Kozik, Ochremiak '15]).
 - If Γ has a cyclic fractional polymorphism, then VCSP(Γ) is in P [Kolmogorov, Krokhin, Rolínek '15].

Sufficient condition for tractability

A more concrete version of the finite-domain VCSP dichotomy:

Theorem

- Γ a finite-domain valued structure
 - If Γ does not pp-construct K_3 , then Γ has cyclic fractional polymorphism (essentially [Kozik, Ochremiak '15]).
 - If Γ has a cyclic fractional polymorphism, then VCSP(Γ) is in P [Kolmogorov, Krokhin, Rolínek '15].

Theorem (Bodirsky, S., Lutz '24)

If Γ_q has a fractional polymorphism which is canonical and pseudo cyclic with respect to $\operatorname{Aut}(\Gamma_q)$, then $\operatorname{VCSP}(\Gamma_q)$ and hence resilience of q is in P.

Example:

$$q := \exists x, y \big(S(x) \land R(x,y) \land R(y,x) \land R(y,y) \big)$$

Example:

$$q := \exists x, y \big(S(x) \land R(x,y) \land R(y,x) \land R(y,y) \big)$$

• complexity of resilience of *q* left open in [Freire, Gatterbauer, Immerman, Meliou '20]

Example:

$$q := \exists x, y \big(S(x) \land R(x, y) \land R(y, x) \land R(y, y) \big)$$

- complexity of resilience of *q* left open in [Freire, Gatterbauer, Immerman, Meliou '20]
- ullet there is Γ_q with a canonical and pseudo cyclic fractional polymorphism

Example:

$$q := \exists x, y \big(S(x) \land R(x,y) \land R(y,x) \land R(y,y) \big)$$

Immerman, Meliou '20]

complexity of resilience of q left open in [Freire, Gatterbauer,

- ullet there is Γ_q with a canonical and pseudo cyclic fractional polymorphism
- VCSP(Γ_q) and hence the resilience of q are tractable

Example:

$$q := \exists x, y \big(S(x) \land R(x, y) \land R(y, x) \land R(y, y) \big)$$

- complexity of resilience of q left open in [Freire, Gatterbauer, Immerman, Meliou '20]
- ullet there is Γ_q with a canonical and pseudo cyclic fractional polymorphism
- VCSP(Γ_q) and hence the resilience of q are tractable

Conjecture: If every Γ_q does not pp-construct K_3 , then there exists Γ_q to which the tractability theorem applies. In this case, VCSP(Γ_q) and hence resilience of q is in P.

Example:

$$q := \exists x, y \big(S(x) \land R(x,y) \land R(y,x) \land R(y,y) \big)$$

- complexity of resilience of q left open in [Freire, Gatterbauer, Immerman, Meliou '20]
- ullet there is Γ_q with a canonical and pseudo cyclic fractional polymorphism
- VCSP(Γ_q) and hence the resilience of q are tractable

Conjecture: If every Γ_q does not pp-construct K_3 , then there exists Γ_q to which the tractability theorem applies. In this case, VCSP(Γ_q) and hence resilience of q is in P.

- the conjecture is true for all queries with finite duals
- verified also for a lot of examples with cycles

Outline

- 1 Introduction to VCSPs
- 2 Tools for VCSPs
- 3 Temporal VCSPs
- 4 Resilience problems
- 5 Outlook to the future

Classification goals

Resilience:

- Classify the complexity of resilience problems depending on q.
- Prove or disprove the conjecture.

Classification goals

Resilience:

- Classify the complexity of resilience problems depending on q.
- Prove or disprove the conjecture.

Graph VCSPs:

- Classify the complexity of VCSPs of valued structures Γ such that Aut(Γ) contains the automorphism group of the countable random graph.
- Is VCSP(Γ) in P whenever Γ does not pp-construct K_3 ?

Algebraic properties

Questions:

• If $\operatorname{Aut}(\Gamma)$ is oligomorphic, is it true that if a valued relation R on the domain of Γ is improved by $\operatorname{fPol}(\Gamma)$, then $R \in \langle \Gamma \rangle$?

Algebraic properties

Questions:

- If $\operatorname{Aut}(\Gamma)$ is oligomorphic, is it true that if a valued relation R on the domain of Γ is improved by $\operatorname{fPol}(\Gamma)$, then $R \in \langle \Gamma \rangle$?
- Is it necessary to consider arbitrary probability distributions for fractional polymorphisms? Can we restrict to discrete (i.e., countably additive) ones?

Thank you for your attention

Funding statement: Funded by the European Union (ERC, POCOCOP, 101071674).

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.