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Optimization problems

least correlation clustering

NP-complete

Input: constraints of the form x = y and x ̸= y , threshold u

Output: Can we assign values to the variables violating at most u
constraints?

minimum feedback arc set

NP-complete

Input: a directed multigraph G , threshold u

Output: Can we remove at most u edges from G destroying all
directed cycles?

resilience

in NP, depends on q

Fixed: conjunctive query q

Input: a database A, threshold u

Output: Can we remove at most u tuples from A so that A ̸|= q?

P = class of efficiently solvable problems
NP = class of problems with efficiently verifiable solution
NP-complete problems = hardest problems in NP
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Constraint satisfaction variants

B – fixed relational structure
Input: list of constraints

Output:

CSP: Decide whether there is a solution that satisfies all constraints.

MinCSP: Find the minimal number of constraints to violate so that
the remaining constraints are satisfiable simultaneously.

VCSP: Find the minimal cost with which the constraints can be
satisfied (each constraint comes with a cost depending on the chosen
values).

Observation: VCSP generalizes CSP and MinCSP.
Proof: Model the tuples in relations with cost 0 and outside with cost 1
(for MinCSP) or ∞ (for CSP).
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Valued Constraint Satisfaction Problem

A valued structure Γ consists of:

(countable) domain D

(finite, relational) signature τ

for each R ∈ τ of arity k, a function RΓ: Dk → Q ∪ {∞}

Definition (VCSP(Γ))

Input: u ∈ Q, an expression
ϕ(x1, . . . , xn) =

∑
i

ψi ,

where each ψi is an atomic τ -formula
Output: Is

inf
t∈Dn

ϕ(t) ≤ u in Γ?
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Max-Cut as a VCSP

Example:
Input: G = (V ,E ) – finite directed (multi)graph
Goal: Find a partition A ∪ B of V such that E ∩ (A× B) is maximal.
Equivalently: E ∩ (A2 ∪ B2 ∪ B × A) is minimal.

Let ΓMC be a valued structure where:

D = {0, 1}
τ = {R}, R binary

R(x , y) =

{
0 if x = 0 and y = 1

1 otherwise

Take vertices of G as variables. The size of a maximal cut of G is

min
x∈Dn

∑
(xi ,xj )∈E

R(xi , xj). The partition of V is given by the values 0 and 1.

every instance of VCSP(ΓMC) corresponds to a directed multigraph
; VCSP(ΓMC) is the Max-Cut problem (NP-hard)

Žaneta Semanǐsinová (TU Dresden) Valued Constraints over Infinite Domains Algebra seminar, 25 Oct 2024 7 / 32



Max-Cut as a VCSP

Example:
Input: G = (V ,E ) – finite directed (multi)graph
Goal: Find a partition A ∪ B of V such that E ∩ (A× B) is maximal.
Equivalently: E ∩ (A2 ∪ B2 ∪ B × A) is minimal.
Let ΓMC be a valued structure where:

D = {0, 1}
τ = {R}, R binary

R(x , y) =

{
0 if x = 0 and y = 1

1 otherwise

Take vertices of G as variables. The size of a maximal cut of G is

min
x∈Dn

∑
(xi ,xj )∈E

R(xi , xj). The partition of V is given by the values 0 and 1.

every instance of VCSP(ΓMC) corresponds to a directed multigraph
; VCSP(ΓMC) is the Max-Cut problem (NP-hard)
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Revisiting problems from the beginning

least correlation clustering = VCSP(N; (=)10, (̸=)10)

Input: constraints of the form x = y and x ̸= y , threshold u

Output: Can we assign values to the variables violating at most u
constraints?

minimum feedback arc set = VCSP(Q; (<)10)

Input: a directed multigraph G , threshold u

Output: Can we remove at most u edges from G destroying all
directed cycles?

resilience

Fixed: conjunctive query q

Input: a database A, threshold u

Output: Can we remove at most u tuples from A so that A ̸|= q?

↪→ not obvious how to model as a VCSP
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Complexity of VCSPs

Theorem (Kozik, Ochremiak ’15; Kolmogorov, Roĺınek, Krokhin ’15;
Bulatov ’17; Zhuk ’17)

Let Γ be a valued structure with a finite domain. Then VCSP(Γ) is in P or
NP-complete.

Goal: Study complexity of ‘tame enough’ infinite-domain VCSPs.

Definition

Γ – valued structure on a countable domain C over a signature τ

automorphism of Γ – permutation α of C such that for R ∈ τ of arity
k and every t ∈ C k , R(α(t)) = R(t)

Aut(Γ) is oligomorphic – the action of Aut(Γ) on Cn has finitely many
orbits for every n ≥ 1

Example: Aut(Q; (<)10) = Aut(Q;<) is oligomorphic.
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Expressibility for valued relations

Definition

Let R, R ′ be valued relations over set C . R ′ is expressed from R by

projecting if R ′(x) = infy R(x , y);

non-negative scaling if R ′ = aR for some a ∈ Q≥0;

shifting if R ′ = R + b for some b ∈ Q.

Feas(R) := {t | R(t) <∞}
Opt(R) := {t ∈ Feas(R) | R(t) ≤ R(s) for every s ∈ C k}

⟨Γ⟩ – smallest superset of valued relations of Γ closed under forming sums
of atomic expressions, projecting, shifting, non-negative scaling, Feas, Opt
↪→ valued relations expressible in Γ
⟨Γ⟩∞0 := {R ∈ ⟨Γ⟩ | ∀t : R(t) ∈ {0,∞}}

Fact (Bodirsky, S., Lutz ’24): If Aut(Γ) is oligomorphic and R ∈ ⟨Γ⟩,
VCSP(Γ;R) reduces to VCSP(Γ) in poly-time.
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Expressibility for valued relations

Definition
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Pp-constructability

pp-construction – a notion of ‘translating’ relations of one valued structure
into relations of another (generalizes expressibility to different domains)

Fact: If Aut(Γ) is oligomorphic and Γ pp-constructs ∆, then VCSP(∆)
reduces to VCSP(Γ) in poly-time.

K3 is the valued structure on {0, 1, 2} with single binary relation E defined:

E (x , y) =

{
0 if x ̸= y

∞ if x = y
0 1

2

Observation: VCSP(K3) is the 3-colorability problem and hence NP-hard.

Corollary (Bodirsky, S., Lutz ’24)

If Aut(Γ) is oligomorphic and Γ pp-constructs K3, then VCSP(Γ) is
NP-hard.
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Fractional polymorphisms

polymorphism of a relational structure A – f : An → A such that for all
relations R of A and t1, . . . , tn ∈ R, f (t1, . . . , tn) ∈ R (applied row-wise)

Example: The operation min is a polymorphism of (Q;<).1

>

5

 2

>

3

min→

min→

1

>

3


Definition (fractional polymorphism)

A fractional polymorphism of Γ of arity n is a probability distribution ω on
the maps f : Cn → C such that for every k-ary R ∈ τ and t1, . . . , tn ∈ C k

Eω[f 7→ R(f (t1, . . . , tn))] ≤ 1

n

n∑
j=1

R(t j) (ω improves R).
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Fractional polymorphisms

Pol(A) – set of all polymorphisms of A
fPol(Γ) – set of all fractional polymorphisms of Γ

Example:
πni (n-ary projection to i-th coordinate) ∈ Pol(A) for every A.
Idn – fractional operation such that Idn(π

n
i ) = 1/n for every i

Idn ∈ fPol(Γ) for every Γ.

Eω[f 7→ R(f (a1, . . . , an))] =
1

n

n∑
i=1

R(πni (a
1, . . . , an)) =

1

n

n∑
i=1

R(ai ).

Proposition (Bodirsky, S., Lutz ’24)

If Aut(Γ) is oligomorphic and R ∈ ⟨Γ⟩, then fPol(Γ) improves R.
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Outline

1 Introduction to VCSPs

2 Tools for VCSPs

3 Temporal VCSPs

4 Resilience problems

5 Outlook to the future
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Equality and temporal valued structures

Definition

A relational structure A is

an equality structure if A is fo-definable in (Q; =) ⇔
Aut(A) = Aut(Q; =) = Sym(Q);

a temporal structure if A is fo-definable in (Q;<) ⇔
Aut(Q;<) ⊆ Aut(A).

A valued structure Γ is

an equality structure if Aut(Γ) = Sym(Q);

a temporal structure if Aut(Q;<) ⊆ Aut(Γ).

Example:

equality: (Q; (=)10, (̸=)10) (models least correlation clustering)

temporal: (Q; (<)10) (models minimum feedback arc set problem)
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Classification of equality VCSPs

Known for CSPs:

Theorem (Bodirsky, Kára ’08)

If A is an equality relational structure, then exactly one of the following:

Pol(A) contains a unary constant operation or a binary injection and
CSP(A) is in P.

A pp-constructs K3 and CSP(A) is NP-complete.

Theorem (Bodirsky, Bonnet, S. ’24)

If Γ is an equality valued structure, then exactly one of the following:

fPol(Γ) contains a unary constant operation or a binary injection and
VCSP(Γ) is in P.

Γ pp-constructs K3 and VCSP(Γ) is NP-complete.

↪→ the considered probability distributions put all weight on one operation
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Classification of temporal CSPs

Theorem (Bodirsky, Kára ’10)

Let A be a temporal relational structure. Then exactly one of the
following holds:

At least one of the operations const, min, mx, mi, ll, or one of their
duals lies in Pol(A) and CSP(A) is P.

A pp-constructs K3 and CSP(A) is NP-complete.

↪→ const is the unary constant 0 operation
↪→ the remaining polymorphisms are tailored to the structure (Q;<)
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Classification of temporal CSPs

Theorem (Bodirsky, Kára ’10)

Let A be a temporal relational structure. Then exactly one of the
following holds:

At least one of the operations const, min, mx, mi, ll, or one of their
duals lies in Pol(A) and CSP(A) is P.

A pp-constructs K3 and CSP(A) is NP-complete.
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Temporal valued structures

lex : Q2 → Q is an operation satisfying

lex(a, b) < lex(c , d) iff a < c or (a = c) ∧ b < d

Remark: lex ∈ Pol(A) does not imply tractability of CSP(A)!

essentially crisp valued structure – every relation attains ≤ 1 finite value

Theorem (Bodirsky, Bonnet, S. ’24)

Let Γ be a temporal valued structure. Then at least one of the following:

Γ pp-constructs K3 and VCSP(Γ) is NP-complete.

Γ is essentially crisp, fPol(Γ) contains min, mx, mi, ll, or one of their
duals, and VCSP(Γ) is in P.

const ∈ fPol(Γ) and VCSP(Γ) is in P.

lex ∈ fPol(Γ), Pol(Q; ⟨Γ⟩∞0 ) contains min, mx, mi, ll, or one of their
duals, and VCSP(Γ) is in P.
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Classification of temporal VCSPs

Theorem (Bodirsky, Bonnet, S. ’24)

Let Γ be a temporal valued structure. Then at least one of the following:

Γ pp-constructs K3 and VCSP(Γ) is NP-complete.

Γ is essentially crisp, fPol(Γ) contains min, mx, mi, ll, or one of their
duals, and VCSP(Γ) is in P.

const ∈ fPol(Γ) and VCSP(Γ) is in P.

lex ∈ fPol(Γ), Pol(Q; ⟨Γ⟩∞0 ) contains min, mx, mi, ll, or one of their
duals, and VCSP(Γ) is in P.

Corollary (non-trivial): The complexity of VCSP(Γ) is determined by the
complexity of CSP(Q; ⟨Γ⟩∞0 ).

Corollary (of the proof): Given a temporal valued structure Γ, it is
decidable whether VCSP(Γ) is in P or NP-complete.
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Resilience of queries

database – a relational structure A
conjunctive query – a formula q of the form ∃y1, . . . , yl (ψ1 ∧ · · · ∧ ψm),
where ψi are atomic

Definition (resilience)

Fixed conjunctive query q.
Input: a finite database A, u ∈ N
Output: Can we remove ≤ u tuples from relations of A so that A ̸|= q?

Appears first in [Meliou, Gatterbauer, Moore, Suciu ’10].

Example: The resilience of

q = ∃x , y , z(R(x , y) ∧ R(y , z))

with respect to A is 1 – remove (C ,E ).

A
A B

C D

E
Goal: Classify complexity of resilience for all q.
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Homomorphism duality

Example (canonical structure): ∃x , y(R(x , y) ∧ S(y)) ;
x y

S
R

For a query q, take its canonical structure Q.
Search for a structure Bq such that for every finite A:

A ̸|= q ⇔ Q ̸→ A ⇔ A → Bq

; corresponds to CSP(Bq) (if we represent the constraints by their
canonical structure)

Example: For every finite directed graph G we have:

̸→ G ⇔ G →

; existence of Bq enables studying resilience of q using the results about
(valued) constraint satisfaction problems
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Existence of dual structures

Example (incidence graph): q := ∃x , y , z(R(x , y) ∧ R(y , z))

x y z

R(x , y) R(y , z)

I (q):

Theorem (Nešeťril,Tardiff ’00; Larose, Loten, Tardiff ’07)

A conjunctive query q has a finite dual if and only if it is homomorphically
equivalent to q′ such that I (q′) is a tree.

Theorem (Cherlin, Shelah, Shi ’99)

If I(q) is connected, then q has a countable dual Bq, which can be chosen
so that Aut(Bq) is oligomorphic.
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Connection of resilience and VCSPs

query q with I (q) connected (WLOG) ; obtain the dual structure Bq ;
turn it into a valued structure Γq with cost functions taking values 0 and 1

Theorem (Bodirsky, S., Lutz ’24)

The resilience problem for q equals VCSP(Γq).

Example: q := ∃x , y , z(R(x , y) ∧ R(y , z))
For every finite G :

Q = ̸→ G ⇔ G → = Bq

Bq ; ΓMC = ({0, 1};R)
Resilience of q = VCSP(ΓMC) = Max-Cut is NP-hard
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Connection of resilience and VCSPs

query q with I (q) connected (WLOG) ; obtain the dual structure Bq ;
turn it into a valued structure Γq with cost functions taking values 0 and 1

Theorem (Bodirsky, S., Lutz ’24)

The resilience problem for q equals VCSP(Γq).

Remark: We have to consider bag databases – a database A might
contain a tuple with multiplicity > 1 (differs from the original setting).

Example: Input R(x , y) + R(x , y) for VCSP(Γ) corresponds to a database
with multiplicity 2 for R(x , y).
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Complexity dichotomy for resilience of acyclic queries

Corollary (Bodirsky, S., Lutz ’24)

Let q be a conjunctive query such that I(q) is acyclic. Then the resilience
problem for q in bag semantics is in P or NP-complete.

Proof idea:

WLOG: I (q) is a tree.

Obtain the finite dual structure Bq.

Turn it into a valued structure Γq with cost functions taking values 0
and 1.

The resilience of q is the same problem as VCSP(Γq) if considering
bag databases.

VCSP(Γq) is in P or NP-complete by the dichotomy theorem for
finite-domain VCSPs.
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Žaneta Semanǐsinová (TU Dresden) Valued Constraints over Infinite Domains Algebra seminar, 25 Oct 2024 26 / 32



Complexity dichotomy for resilience of acyclic queries

Corollary (Bodirsky, S., Lutz ’24)

Let q be a conjunctive query such that I(q) is acyclic. Then the resilience
problem for q in bag semantics is in P or NP-complete.

Proof idea:

WLOG: I (q) is a tree.

Obtain the finite dual structure Bq.

Turn it into a valued structure Γq with cost functions taking values 0
and 1.

The resilience of q is the same problem as VCSP(Γq) if considering
bag databases.

VCSP(Γq) is in P or NP-complete by the dichotomy theorem for
finite-domain VCSPs.
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Sufficient condition for tractability

A more concrete version of the finite-domain VCSP dichotomy:

Theorem

Γ – a finite-domain valued structure

If Γ does not pp-construct K3, then Γ has cyclic fractional
polymorphism (essentially [Kozik, Ochremiak ’15]).

If Γ has a cyclic fractional polymorphism, then VCSP(Γ) is in P
[Kolmogorov, Krokhin, Roĺınek ’15].

Theorem (Bodirsky, S., Lutz ’24)

If Γq has a fractional polymorphism which is canonical and pseudo cyclic
with respect to Aut(Γq), then VCSP(Γq) and hence resilience of q is in P.
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Tractability conjecture

Example:

x y
q := ∃x , y

(
S(x) ∧ R(x , y) ∧ R(y , x) ∧ R(y , y)

)

complexity of resilience of q left open in [Freire, Gatterbauer,
Immerman, Meliou ’20]

there is Γq with a canonical and pseudo cyclic fractional polymorphism

VCSP(Γq) and hence the resilience of q are tractable

Conjecture: If every Γq does not pp-construct K3, then there exists Γq to
which the tractability theorem applies. In this case, VCSP(Γq) and hence
resilience of q is in P.

the conjecture is true for all queries with finite duals

verified also for a lot of examples with cycles
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Classification goals

Resilience:

Classify the complexity of resilience problems depending on q.

Prove or disprove the conjecture.

Graph VCSPs:

Classify the complexity of VCSPs of valued structures Γ such that
Aut(Γ) contains the automorphism group of the countable random
graph.

Is VCSP(Γ) in P whenever Γ does not pp-construct K3?
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Algebraic properties

Questions:

If Aut(Γ) is oligomorphic, is it true that if a valued relation R on the
domain of Γ is improved by fPol(Γ), then R ∈ ⟨Γ⟩?

Is the union of the conditions for tractability in the temporal VCSP
classification disjoint from the hardness condition (regardless of
P ̸= NP)?

Is it necessary to consider arbitrary probability distributions for
fractional polymorphisms? Can we restrict to discrete (i.e., countably
additive) ones?
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