Complexity Classification Transfer for CSPs via Algebraic Products

Žaneta Semanišinová
with Manuel Bodirsky, Peter Jonsson, Barnaby Martin, Antoine Mottet
Institute of Algebra
TU Dresden

PALS, 31 January 2023

Outline

(1) Constraint satisfaction problems
(2) Open problems from complexity of spatial reasoning

- n-dimensional Cardinal Direction Calculus
- n-dimensional Block Algebra
(3) Classification of CSPs of first-order expansions of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$

Constraint Satisfaction Problems

(relational) structure $\mathfrak{A}=\left(A ; R^{\mathfrak{A}}: R \in \tau\right)$; finite signature τ

Definition (CSP)

$\mathfrak{B}-\tau$-structure
Constraint Satisfaction Problem for $\mathfrak{B}(\operatorname{CSP}(\mathfrak{B}))$:
Input: finite τ-structure \mathfrak{A}
Question: Is there a homomorphism from \mathfrak{A} to \mathfrak{B} ?
Example: complete graph on 3 vertices

$$
K_{3}=(\{0,1,2\} ; \neq)
$$

$\operatorname{CSP}\left(K_{3}\right)=3$-colorability problem for graphs more generally: $\operatorname{CSP}\left(K_{n}\right)=n$-colorability problem

Complexity dichotomy

Theorem (Bulatov (2017), Zhuk (2017))

For every finite structure \mathfrak{B} with finite signature, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Complexity dichotomy

Theorem (Bulatov (2017), Zhuk (2017))

For every finite structure \mathfrak{B} with finite signature, $\operatorname{CSP}(\mathfrak{B})$ is in P or $N P$-complete.
τ-structure \mathfrak{B} is:

- finitely bounded if there exists a universal τ-sentence ϕ such that a finite structure \mathfrak{A} embeds into \mathfrak{B} iff $\mathfrak{A} \models \phi$
- homogeneous if every isomorphism between finite substructures of \mathfrak{B} can be extended to an automorphism of \mathfrak{B}

Conjecture (Bodirsky, Pinsker (2011))

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

Complexity dichotomy

Theorem (Bulatov (2017), Zhuk (2017))

For every finite structure \mathfrak{B} with finite signature, $\operatorname{CSP}(\mathfrak{B})$ is in P or $N P$-complete.
τ-structure \mathfrak{B} is:

- finitely bounded if there exists a universal τ-sentence ϕ such that a finite structure \mathfrak{A} embeds into \mathfrak{B} iff $\mathfrak{A} \models \phi$
- homogeneous if every isomorphism between finite substructures of \mathfrak{B} can be extended to an automorphism of \mathfrak{B}

Conjecture (Bodirsky, Pinsker (2011))

For a reduct \mathfrak{B} of a finitely bounded homogeneous structure, $\operatorname{CSP}(\mathfrak{B})$ is in P or NP-complete.

In the scope: fo-expansions of (algebraic powers of) $(\mathbb{Q} ;<)$
\rightarrow applications in temporal and spatial reasoning

Cardinal Direction Calculus

$\mathfrak{C}=\left(\mathbb{Q}^{2} ; \mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}, \mathrm{NE}, \mathrm{SE}, \mathrm{SW}, \mathrm{NW}\right)($ North, East, etc.)

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

Cardinal Direction Calculus (CDC): relations are unions of the relations above - (reducts of) fo-expansions of \mathfrak{C}

Cardinal Direction Calculus

$$
\mathfrak{C}=\left(\mathbb{Q}^{2} ; \mathrm{N}, \mathrm{E}, \mathrm{~S}, \mathrm{~W}, \mathrm{NE}, \mathrm{SE}, \mathrm{SW}, \mathrm{NW}\right)(\text { North, East, etc. })
$$

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

Cardinal Direction Calculus (CDC): relations are unions of the relations above - (reducts of) fo-expansions of \mathfrak{C}

Ord-Horn formula: A conjunction of clauses of the form

$$
x_{1} \neq y_{1} \vee \cdots \vee x_{m} \neq y_{m} \vee z_{1} \circ z_{0}, \text { where } \circ \in\{<, \leq,=\}
$$

Theorem (Ligozat (1998)): CSP of a reduct of CDC that contains the basic relations is in P if all relations can be defined by Ord-Horn formulas, and is NP-hard otherwise.

Cardinal Direction Calculus

$$
\mathfrak{C}=\left(\mathbb{Q}^{2} ; \mathrm{N}, \mathrm{E}, \mathrm{~S}, \mathrm{~W}, \mathrm{NE}, \mathrm{SE}, \mathrm{SW}, \mathrm{NW}\right)(\text { North, East, etc. })
$$

N	E	S	W	NE	SE	SW	NW
$(=,>)$	$(>,=)$	$(=,<)$	$(<,=)$	$(>,>)$	$(>,<)$	$(<,<)$	$(<,>)$

Cardinal Direction Calculus (CDC): relations are unions of the relations above - (reducts of) fo-expansions of \mathfrak{C}

Ord-Horn formula: A conjunction of clauses of the form

$$
x_{1} \neq y_{1} \vee \cdots \vee x_{m} \neq y_{m} \vee z_{1} \circ z_{0}, \text { where } \circ \in\{<, \leq,=\}
$$

Theorem (Ligozat (1998)): CSP of a reduct of CDC that contains the basic relations is in P if all relations can be defined by Ord-Horn formulas, and is NP-hard otherwise.
natural generalization: CDC_{n} with the domain \mathbb{Q}^{n}
CDC conjecture (Balbiani, Condotta (2002)): The theorem also holds for the n-dimensional case.

Complexity of CDC

 primitive positive formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic formulas example: $\phi(x, y)=\exists z R(x, y, z) \wedge R(x, x, z)$
Complexity of CDC

primitive positive formula: $\exists y_{1}, \ldots, y_{l}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right), \psi_{i}$ atomic formulas example: $\phi(x, y)=\exists z R(x, y, z) \wedge R(x, x, z)$

- denote $(<, \top)$ by $<_{1}$ and similarly for $={ }_{1},<_{2},=2$
- $<_{1},==_{1},<_{2},=2$ are definable in \mathfrak{C} by a pp-formula, e.g.

$$
x<_{1} y \Leftrightarrow \exists z(x(\mathrm{SW}) z \wedge z(\mathrm{NW}) y)
$$

- $\mathrm{N}, \ldots, \mathrm{NW}$ are definable in $\left(\mathbb{Q}^{2} ;<_{1},==_{1},<_{2},==_{2}\right)$ by a pp-formula

Complexity of CDC

Proposition (Jeavons (1998))

Let \mathfrak{A} and \mathfrak{B} be structures with the same domain. If every relation of \mathfrak{A} has a pp-definition in \mathfrak{B}, then there is a poly-time reduction from $\operatorname{CSP}(\mathfrak{A})$ to $\operatorname{CSP}(\mathfrak{B})$.

Complexity of CDC

Proposition (Jeavons (1998))

Let \mathfrak{A} and \mathfrak{B} be structures with the same domain. If every relation of \mathfrak{A} has a pp-definition in \mathfrak{B}, then there is a poly-time reduction from $\operatorname{CSP}(\mathfrak{A})$ to $\operatorname{CSP}(\mathfrak{B})$.

- fo-expansions of \mathfrak{C} are primitively positively interdefinable with fo-expansions of ($\mathbb{Q}^{2} ;<_{1},==_{1},<_{2},=2$)
\rightarrow their CSPs have the same complexity
- we prove the CDC conjecture by classifying fo-expansions of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$

Algebraic products

Definition (algebraic product)

Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be structures with signatures τ_{1} and τ_{2}, respectively. The algebraic product $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ is the structure with the domain $A_{1} \times A_{2}$ which has the following relations:

- for every $R \in \tau_{1} \cup\{=\}$, the relation $R_{1}=(R, \top)$,
- for every $R \in \tau_{2} \cup\{=\}$, the relation $R_{2}=(\top, R)$.

Example: $(\mathbb{Q} ;<) \boxtimes(\mathbb{Q} ;<)=\left(\mathbb{Q}^{2} ;<_{1},={ }_{1},<_{2},==_{2}\right)$

Algebraic products

Definition (algebraic product)

Let \mathfrak{A}_{1} and \mathfrak{A}_{2} be structures with signatures τ_{1} and τ_{2}, respectively. The algebraic product $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ is the structure with the domain $A_{1} \times A_{2}$ which has the following relations:

- for every $R \in \tau_{1} \cup\{=\}$, the relation $R_{1}=(R, \top)$,
- for every $R \in \tau_{2} \cup\{=\}$, the relation $R_{2}=(\top, R)$.
\longrightarrow natural generalization to n-fold algebraic products
Observation: Complexity classification of CSPs of fo-expansions of

$$
\underbrace{(\mathbb{Q} ;<) \boxtimes \cdots \boxtimes(\mathbb{Q} ;<)}_{n}=\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)
$$

leads to classification for CDC_{n} !

Primitive positive interpretations

generalizing pp-definitions \rightarrow more applications

Definition (pp-interpretation)

Primitive positive interpretation of \mathfrak{C} in \mathfrak{B} :
a partial surjection I from B^{d} to C (for some d) such that for every k-ary relation R defined by an atomic formula in $\mathfrak{C}, I^{-1}(R)$ as a $d k$-ary relation over B is definable in \mathfrak{B} by a pp-formula.

Example: closed intervals $[a, b]$ over \mathbb{Q} are elements of \mathbb{Q}^{2} such that $a<b$

Primitive positive interpretations

generalizing pp-definitions \rightarrow more applications

Definition (pp-interpretation)

Primitive positive interpretation of \mathfrak{C} in \mathfrak{B} :
a partial surjection I from B^{d} to C (for some d) such that for every k-ary relation R defined by an atomic formula in $\mathfrak{C}, I^{-1}(R)$ as a $d k$-ary relation over B is definable in \mathfrak{B} by a pp-formula.

Example: closed intervals $[a, b]$ over \mathbb{Q} are elements of \mathbb{Q}^{2} such that $a<b$

Proposition (folklore)

If \mathfrak{C} has a pp-interpretation in \mathfrak{B}, then there is a poly-time reduction from $\operatorname{CSP}(\mathfrak{C})$ to $\operatorname{CSP}(\mathfrak{B})$.

Complexity classification transfer

- I - pp-interpretation of \mathfrak{D} in \mathfrak{C}
- J - pp-interpretation of \mathfrak{C} in \mathfrak{D}
- $J \circ I$ is pp-homotopic to the identity interpretation of \mathfrak{C} (i.e., $\{(\bar{x}, \bar{y}) \mid J \circ I(\bar{x})=\bar{y}\}$ is pp-definable in \mathfrak{C})

\Rightarrow for every fo-expansion \mathfrak{C}^{\prime} of \mathfrak{C} there is an fo-expansion \mathfrak{D}^{\prime} of \mathfrak{D} such that $\operatorname{CSP}\left(\mathfrak{C}^{\prime}\right)$ and $\operatorname{CSP}\left(\mathfrak{D}^{\prime}\right)$ are poly-time equivalent

Allen's Interval Algebra and Block Algebra

Allen's Interval Algebra:

- $\mathbb{I}=\left\{(a, b) \in \mathbb{Q}^{2} \mid a<b\right\}$ - closed intervals
- 13 basic relations correspond to relative positions of intervals, e.g.:

$s(X, Y):$	XXX	$f(X, Y):$	XXX	$m(X, Y):$	XXXX
starts	YYYYYY	finishes	YYYYYY	meets	YYYY

- all relations: unions of basic relations

Allen's Interval Algebra and Block Algebra

Allen's Interval Algebra:

- $\mathbb{I}=\left\{(a, b) \in \mathbb{Q}^{2} \mid a<b\right\}$ - closed intervals
- 13 basic relations correspond to relative positions of intervals, e.g.:

$s(X, Y):$	XXX	$f(X, Y):$	XXX	$m(X, Y):$	XXXX
starts	YYYYYY	finishes	YYYYYY	meets	YYYY

- all relations: unions of basic relations

Block Algebra (BA):

- domain: \mathbb{I}^{n}
- basic relations: n-tuples of Allen's basic relations
- all relations: unions of basic relations

Known results and open problems

- Bürckert, Nebel (1995): complexity classification for the CSPs for all subsets of Allen's relations that contain the basic relations

Known results and open problems

- Bürckert, Nebel (1995): complexity classification for the CSPs for all subsets of Allen's relations that contain the basic relations \rightarrow such a CSP is in P if all its relations are definable by Ord-Horn formulas and NP-hard otherwise

Known results and open problems

- Bürckert, Nebel (1995): complexity classification for the CSPs for all subsets of Allen's relations that contain the basic relations \rightarrow such a CSP is in P if all its relations are definable by Ord-Horn formulas and NP-hard otherwise
- Krokhin, Jeavons, Jonsson (2003): complexity classification for the CSPs for all subsets of Allen's relations

Known results and open problems

- Bürckert, Nebel (1995): complexity classification for the CSPs for all subsets of Allen's relations that contain the basic relations \rightarrow such a CSP is in P if all its relations are definable by Ord-Horn formulas and NP-hard otherwise
- Krokhin, Jeavons, Jonsson (2003): complexity classification for the CSPs for all subsets of Allen's relations
- BA conjecture (Balbiani, Condotta, del Cerro (2002)): The set of Ord-Horn relations is the unique maximal tractable subset of the block algebra that contains the basic relations.

Complexity classification transfer for Block Algebras

- Block Algebra with the basic relations is pp-interpretable in ($\mathbb{Q}^{n} ;<_{1},=1, \ldots,<_{n},={ }_{n}$) and vice versa for $n=2$:

$$
\begin{aligned}
& I:\left(\mathbb{Q}^{2}\right)^{2} \rightarrow \mathbb{I}^{2}, a<_{1} b, a<_{2} b \\
& I\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \\
& J: \mathbb{I}^{2} \rightarrow \mathbb{Q}^{2} \\
& J\left(\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right)\right)=\left(p_{1}, q_{1}\right)
\end{aligned}
$$

Complexity classification transfer for Block Algebras

- Block Algebra with the basic relations is pp-interpretable in $\left(\mathbb{Q}^{n} ;<_{1},==_{1}, \ldots,<_{n},={ }_{n}\right)$ and vice versa for $n=2$:

$$
\begin{aligned}
& I:\left(\mathbb{Q}^{2}\right)^{2} \rightarrow \mathbb{I}^{2}, a<_{1} b, a<_{2} b \\
& I\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \\
& J: \mathbb{I}^{2} \rightarrow \mathbb{Q}^{2} \\
& J\left(\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right)\right)=\left(p_{1}, q_{1}\right)
\end{aligned}
$$

- all relations are fo-definable in basic relations

Complexity classification transfer for Block Algebras

- Block Algebra with the basic relations is pp-interpretable in ($\mathbb{Q}^{n} ;<_{1},=1, \ldots,<_{n},={ }_{n}$) and vice versa for $n=2$:

$$
\begin{aligned}
& I:\left(\mathbb{Q}^{2}\right)^{2} \rightarrow \mathbb{I}^{2}, a<_{1} b, a<_{2} b \\
& I\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \\
& J: \mathbb{I}^{2} \rightarrow \mathbb{Q}^{2} \\
& J\left(\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right)\right)=\left(p_{1}, q_{1}\right)
\end{aligned}
$$

- all relations are fo-definable in basic relations
- the interpretations satisfy the assumptions for complexity classification transfer
- we prove the BA conjecture by transferring the classification of fo-expansions of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$

Polymorphisms

Definition (polymorphism)

An operation $f: A^{k} \rightarrow A$ is a polymorphism of (or preserves) a structure \mathfrak{A} if for every relation R of \mathfrak{A} and for all tuples $\overline{r_{1}}, \ldots, \overline{r_{k}} \in R$ also $f\left(\bar{r}_{1}, \ldots, \bar{r}_{k}\right) \in R$ (computed row-wise).
$\operatorname{Pol}(\mathfrak{A})$ - the set of all polymorphisms of \mathfrak{A}
Example: + is a polymorphism of $(\mathbb{Q} ;<)$

$$
\left(\begin{array}{l}
1 \\
\wedge \\
5
\end{array}\right)+\left(\begin{array}{l}
2 \\
\wedge \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
3 \\
\wedge \\
8
\end{array}\right)
$$

Polymorphisms

Definition (polymorphism)

An operation $f: A^{k} \rightarrow A$ is a polymorphism of (or preserves) a structure \mathfrak{A} if for every relation R of \mathfrak{A} and for all tuples $\overline{r_{1}}, \ldots, \overline{r_{k}} \in R$ also $f\left(\bar{r}_{1}, \ldots, \bar{r}_{k}\right) \in R$ (computed row-wise).
$\operatorname{Pol}(\mathfrak{A})$ - the set of all polymorphisms of \mathfrak{A}
Example: + is a polymorphism of $(\mathbb{Q} ;<)$

$$
\left(\begin{array}{l}
1 \\
\wedge \\
5
\end{array}\right)+\left(\begin{array}{l}
2 \\
\wedge \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
3 \\
\wedge \\
8
\end{array}\right)
$$

Theorem (Bodirsky, Nešetřil (2006))

A relation $R \subseteq A^{\prime}$ is preserved by all polymorphisms of an ω-categorical structure \mathfrak{A} iff R is pp-definable in \mathfrak{A}.

Properties of algebraic products

- $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ homogeneous $\Rightarrow \mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ homogeneous
- $\mathfrak{A}_{1}, \mathfrak{A}_{2} \omega$-categorical $\Rightarrow \mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2} \omega$-categorical

Properties of algebraic products

- $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ homogeneous $\Rightarrow \mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ homogeneous
- $\mathfrak{A}_{1}, \mathfrak{A}_{2} \omega$-categorical $\Rightarrow \mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2} \omega$-categorical
- $\operatorname{Pol}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right)=\operatorname{Pol}\left(\mathfrak{A}_{1}\right) \times \operatorname{Pol}\left(\mathfrak{A}_{2}\right)$
- more generally: fo-expansions of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ contain the relations $={ }_{i}$ \Rightarrow all polymorphisms are of the form $\left(f_{1}, f_{2}\right), f_{i} \in \operatorname{Pol}\left(\mathfrak{A}_{i}\right)$

Properties of algebraic products

- $\mathfrak{A}_{1}, \mathfrak{A}_{2}$ homogeneous $\Rightarrow \mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ homogeneous
- $\mathfrak{A}_{1}, \mathfrak{A}_{2} \omega$-categorical $\Rightarrow \mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2} \omega$-categorical
- $\operatorname{Pol}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right)=\operatorname{Pol}\left(\mathfrak{A}_{1}\right) \times \operatorname{Pol}\left(\mathfrak{A}_{2}\right)$
- more generally: fo-expansions of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$ contain the relations $={ }_{i}$ \Rightarrow all polymorphisms are of the form $\left(f_{1}, f_{2}\right), f_{i} \in \operatorname{Pol}\left(\mathfrak{A}_{i}\right)$

Observation: $\operatorname{CSP}\left(\mathfrak{A}_{1}\right), \operatorname{CSP}\left(\mathfrak{A}_{2}\right)$ in $\mathrm{P} \Rightarrow \operatorname{CSP}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right)$ in P
Proof: Given input \mathfrak{A} for $\operatorname{CSP}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right)$, run the algorithm for $\operatorname{CSP}\left(\mathfrak{A}_{i}\right)$ on the respective reducts of \mathfrak{A}.

Complexity of CSPs of (fo-expansions) of alg. products

$\mathfrak{A}_{1}, \mathfrak{A}_{2}$ - countable ω-categorical structures
$\theta_{i}: \operatorname{Pol}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right) \rightarrow \operatorname{Pol}\left(\mathfrak{A}_{i}\right)$ (projects on the i-th coordinate)
Follows from the results by Barto, Opršal, Pinsker (2018):

Proposition

Let \mathfrak{D} be an fo-expansion of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$. Let i be such that $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ has a uniformly continuous minor-preserving (UCMP) map to $\operatorname{Pol}\left(K_{3}\right)$. Then $\operatorname{Pol}(\mathfrak{D})$ has a UCMP map to $\operatorname{Pol}\left(K_{3}\right)$ as well and $\operatorname{CSP}(\mathfrak{D})$ is NP-hard.
$\rightarrow \operatorname{CSP}(\mathfrak{D})$ computationally hard in one coordinate implies $\operatorname{CSP}(\mathfrak{D})$ computationally hard!

Complexity of CSPs of (fo-expansions) of alg. products

$\mathfrak{A}_{1}, \mathfrak{A}_{2}$ - countable ω-categorical structures
$\theta_{i}: \operatorname{Pol}\left(\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}\right) \rightarrow \operatorname{Pol}\left(\mathfrak{A}_{i}\right)$ (projects on the i-th coordinate)
Follows from the results by Barto, Opršal, Pinsker (2018):

Proposition

Let \mathfrak{D} be an fo-expansion of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$. Let i be such that $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ has a uniformly continuous minor-preserving (UCMP) map to $\operatorname{Pol}\left(K_{3}\right)$. Then $\operatorname{Pol}(\mathfrak{D})$ has a UCMP map to $\operatorname{Pol}\left(K_{3}\right)$ as well and $\operatorname{CSP}(\mathfrak{D})$ is NP-hard.
$\rightarrow \operatorname{CSP}(\mathfrak{D})$ computationally hard in one coordinate implies $\operatorname{CSP}(\mathfrak{D})$ computationally hard!

Question: If $\operatorname{CSP}(\mathfrak{D})$ is tractable in both coordinates, is then $\operatorname{CSP}(\mathfrak{D})$ tractable?

Tractable algebraic products

Finite-domain case:

- cyclic operation is an operation satisfying the identity

$$
c\left(x_{1}, \ldots, x_{k}\right)=c\left(x_{2}, x_{3}, \ldots, x_{k}, x_{1}\right)
$$

- $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ does not have an UCMP map to $\operatorname{Pol}\left(K_{3}\right)$ $\Rightarrow \exists c_{i} \in \operatorname{Pol}(\mathfrak{D})$ such that $\theta_{i}\left(c_{i}\right)$ is cyclic (Barto, Kozik (2012))

Tractable algebraic products

Finite-domain case:

- cyclic operation is an operation satisfying the identity

$$
c\left(x_{1}, \ldots, x_{k}\right)=c\left(x_{2}, x_{3}, \ldots, x_{k}, x_{1}\right)
$$

- $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ does not have an UCMP map to $\operatorname{Pol}\left(K_{3}\right)$ $\Rightarrow \exists c_{i} \in \operatorname{Pol}(\mathfrak{D})$ such that $\theta_{i}\left(c_{i}\right)$ is cyclic (Barto, Kozik (2012))
- then $\operatorname{Pol}(\mathfrak{D})$ contains the cyclic operation

$$
c_{1}\left(c_{2}\left(x_{1}, \ldots, x_{k}\right), c_{2}\left(x_{2}, \ldots, x_{k}, x_{1}\right), \ldots, c_{2}\left(x_{k}, x_{1}, \ldots, x_{k-1}\right)\right)
$$

- hence $\operatorname{CSP}(\mathfrak{D})$ is in P (Bulatov (2017); Zhuk (2017))

Tractable algebraic products

Finite-domain case:

- cyclic operation is an operation satisfying the identity

$$
c\left(x_{1}, \ldots, x_{k}\right)=c\left(x_{2}, x_{3}, \ldots, x_{k}, x_{1}\right)
$$

- $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ does not have an UCMP map to $\operatorname{Pol}\left(K_{3}\right)$ $\Rightarrow \exists c_{i} \in \operatorname{Pol}(\mathfrak{D})$ such that $\theta_{i}\left(c_{i}\right)$ is cyclic (Barto, Kozik (2012))
- then $\operatorname{Pol}(\mathfrak{D})$ contains the cyclic operation

$$
c_{1}\left(c_{2}\left(x_{1}, \ldots, x_{k}\right), c_{2}\left(x_{2}, \ldots, x_{k}, x_{1}\right), \ldots, c_{2}\left(x_{k}, x_{1}, \ldots, x_{k-1}\right)\right)
$$

- hence $\operatorname{CSP}(\mathfrak{D})$ is in P (Bulatov (2017); Zhuk (2017))

Powers of $(\mathbb{Q} ;<)$:

- a candidate polymorphism f - pseudo weak near unanimity (pwnu):

$$
e_{1}(f(y, x, \ldots, x))=e_{2}(f(x, y, \ldots, x))=\cdots=e_{k}(f(x, \ldots, x, y))
$$

for some fixed $e_{1}, \ldots, e_{k} \in \operatorname{End}(\mathfrak{D})$

CSPs of fo-expansions of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$

Theorem (Bodirsky, Kára $(2009,2010)$)

Let \mathfrak{B} be an fo-expansion of $(\mathbb{Q} ;<)$. If \mathfrak{B} contains a pwnu polymorphism, then $\operatorname{CSP}(\mathfrak{B})$ is in P. Otherwise, $\operatorname{Pol}(\mathfrak{B})$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}\left(K_{3}\right)$ and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete.

CSPs of fo-expansions of $\left(\mathbb{Q}^{n} ;<_{1},==_{1}, \ldots,<_{n},==_{n}\right)$

Theorem (Bodirsky, Kára $(2009,2010)$)

Let \mathfrak{B} be an fo-expansion of $(\mathbb{Q} ;<)$. If \mathfrak{B} contains a pwnu polymorphism, then $\operatorname{CSP}(\mathfrak{B})$ is in P. Otherwise, $\operatorname{Pol}(\mathfrak{B})$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}\left(K_{3}\right)$ and $\operatorname{CSP}(\mathfrak{B})$ is NP-complete.

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. (2022))

Let \mathfrak{D} be an fo-expansion of $\left(\mathbb{Q}^{n} ;<_{1},={ }_{1}, \ldots,<_{n},={ }_{n}\right)$. Exactly one of the following two cases applies:

- $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ contains a pwnu polymorphism for each i. In this case \mathfrak{D} has a pwnu polymorphism and $\operatorname{CSP}(\mathfrak{D})$ is in P.
- There is i such that $\theta_{i}(\operatorname{Pol}(\mathfrak{D}))$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}\left(K_{3}\right)$ and $\operatorname{CSP}(\mathfrak{D})$ is $N P$-complete.

Corollaries of the classification

Using syntactic descriptions of the tractable cases in $(\mathbb{Q} ;<)$ from (Bodirsky, Kára (2010)) and (Bodirsky, Chen, Wrona (2014)) we obtain:

Corollary

Suppose that \mathfrak{D} has a binary signature. Exactly one of the following two cases applies:

- Each relation in \mathfrak{D} has an Ord-Horn definition (viewed as a relation of arity $2 n$ over $\mathbb{Q})$ and $\operatorname{CSP}(\mathfrak{D})$ is in P.
- $\operatorname{Pol}(\mathfrak{D})$ has a UCMP map to $\operatorname{Pol}\left(K_{3}\right)$ and $\operatorname{CSP}(\mathfrak{D})$ is NP-complete.

Corollaries of the classification

Using syntactic descriptions of the tractable cases in $(\mathbb{Q} ;<)$ from (Bodirsky, Kára (2010)) and (Bodirsky, Chen, Wrona (2014)) we obtain:

Corollary

Suppose that \mathfrak{D} has a binary signature. Exactly one of the following two cases applies:

- Each relation in \mathfrak{D} has an Ord-Horn definition (viewed as a relation of arity $2 n$ over $\mathbb{Q})$ and $\operatorname{CSP}(\mathfrak{D})$ is in P.
- $\operatorname{Pol}(\mathfrak{D})$ has a UCMP map to $\operatorname{Pol}\left(K_{3}\right)$ and $\operatorname{CSP}(\mathfrak{D})$ is NP-complete.

Corollary

The CDC conjecture holds for every $n \geq 2$.

Corollary

The BA conjecture holds for every $n \geq 1$.

Proof idea for $n=2$

NP-complete:

- follows directly from the previous proposition

Proof idea for $n=2$

NP-complete:

- follows directly from the previous proposition

P:

- relations of \mathfrak{D} are defined by fo-formulas in $<_{i}$ and $=_{i}$
- we may assume quantifier-free definitions in conjunctive normal form

Proof idea for $n=2$

NP-complete:

- follows directly from the previous proposition

P:

- relations of \mathfrak{D} are defined by fo-formulas in $<_{i}$ and $=_{i}$
- we may assume quantifier-free definitions in conjunctive normal form
- special clauses: i-determined (contain only relations with index i)
- under the assumptions we may restrict to conjunctions of weakly i-determined clauses, i.e.

$$
\psi \vee \bigvee_{k \in\{1, \ldots, n\}} x_{k} \neq j y_{k},
$$

where ψ is i-determined, $j \neq i$

Proof idea for $n=2$

- if all clauses are i-determined, we can run the poly-time algorithms on 1-determined and 2-determined constraints separately
- such poly-time algorithms exist by the theorem for $(\mathbb{Q} ;<)$

Proof idea for $n=2$

- if all clauses are i-determined, we can run the poly-time algorithms on 1-determined and 2-determined constraints separately
- such poly-time algorithms exist by the theorem for $(\mathbb{Q} ;<)$

Proposition

Let \mathfrak{D} be an fo-expansion of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$. TFAE:
(1) Every relation of \mathfrak{D} has a definition by a conjunction of clauses each of which is either 1-determined or 2-determined.
(2) $\operatorname{Pol}(\mathfrak{D})=\theta_{1}(\operatorname{Pol}(\mathfrak{D})) \times \theta_{2}(\operatorname{Pol}(\mathfrak{D}))$.
(3) $\operatorname{Pol}(\mathfrak{D})$ contains $\left(\pi_{1}^{2}, \pi_{2}^{2}\right)$.
\rightarrow we might have also clauses that are not i-determined

Proof idea for $n=2$

- sketch of the algorithm for weakly 1-determined clauses (oversimplified):
(1) compute pairs of variables (x, y) that satisfy $x=2 y$ in all solutions to 2-determined constraints
(2) modify the weakly 1 -determined clauses to obtain 1-determined constraints
(3) solve the 1-determined constraints by the poly-time algorithm from classification for $(\mathbb{Q} ;<)$

Proof idea for $n=2$

- sketch of the algorithm for weakly 1-determined clauses (oversimplified):
(1) compute pairs of variables (x, y) that satisfy $x=2 y$ in all solutions to 2-determined constraints
(2) modify the weakly 1-determined clauses to obtain 1-determined constraints
(3) solve the 1-determined constraints by the poly-time algorithm from classification for $(\mathbb{Q} ;<)$

Question: Is there a polymorphism characterization of relations definable by weakly i-determined clauses?

What is next

Confirm the Bodirsky-Pinsker conjecture for:

- CSPs of fo-expansions of $\mathfrak{B} \boxtimes(\mathbb{Q} ;<)$, where \mathfrak{B} is a finite structure
- more generally: CSPs of structures fo-interpretable over $(\mathbb{Q} ;<)$

Assuming the Bodirsky-Pinsker conjecture:

- classify complexity of CSPs of fo-expansions of $\mathfrak{A}_{1} \boxtimes \mathfrak{A}_{2}$, where \mathfrak{A}_{i} is finitely bounded homogeneous (remains the "tractable in both coordinates" case!)

Thank you for your attention

