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Constraint Satisfaction Problems

(relational) structure A = (A;RA : R ∈ τ); finite signature τ

Definition (CSP)

B – τ -structure
Constraint Satisfaction Problem for B (CSP(B)):

Input: finite τ -structure A
Question: Is there a homomorphism from A to B?

Example: complete graph on 3 vertices

K3 = ({0, 1, 2}; 6=)

CSP(K3) = 3-colorability problem for graphs
more generally: CSP(Kn) = n-colorability problem
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Complexity dichotomy

Theorem (Bulatov (2017), Zhuk (2017))

For every finite structure B with finite signature, CSP(B) is in P or
NP-complete.

τ -structure B is:

finitely bounded if there exists a universal τ -sentence φ such that
a finite structure A embeds into B iff A |= φ

homogeneous if every isomorphism between finite substructures of B
can be extended to an automorphism of B

Conjecture (Bodirsky, Pinsker (2011))

For a reduct B of a finitely bounded homogeneous structure, CSP(B) is in
P or NP-complete.

In the scope: fo-expansions of (algebraic powers of) (Q;<)
→ applications in temporal and spatial reasoning
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Cardinal Direction Calculus

C = (Q2;N,E, S,W,NE, SE, SW,NW) (North, East, etc.)

N E S W NE SE SW NW

(=, >) (>,=) (=, <) (<,=) (>,>) (>,<) (<,<) (<,>)

Cardinal Direction Calculus (CDC): relations are unions of the relations
above – (reducts of) fo-expansions of C

Ord-Horn formula: A conjunction of clauses of the form

x1 6= y1 ∨ · · · ∨ xm 6= ym ∨ z1 ◦ z0, where ◦ ∈ {<,≤,=}.

Theorem (Ligozat (1998)): CSP of a reduct of CDC that contains the
basic relations is in P if all relations can be defined by Ord-Horn formulas,
and is NP-hard otherwise.

natural generalization: CDCn with the domain Qn

CDC conjecture (Balbiani, Condotta (2002)): The theorem also holds for
the n-dimensional case.
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Complexity of CDC

primitive positive formula: ∃y1, . . . , yl(ψ1 ∧ · · · ∧ ψm), ψi atomic formulas
example: φ(x , y) = ∃z R(x , y , z) ∧ R(x , x , z)

denote (<,>) by <1 and similarly for =1, <2,=2

<1,=1, <2,=2 are definable in C by a pp-formula, e.g.

x <1 y ⇔ ∃z
(
x(SW)z ∧ z(NW)y

)
N, . . . ,NW are definable in (Q2;<1,=1, <2,=2) by a pp-formula
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Complexity of CDC

Proposition (Jeavons (1998))

Let A and B be structures with the same domain. If every relation of A
has a pp-definition in B, then there is a poly-time reduction from CSP(A)
to CSP(B).

fo-expansions of C are primitively positively interdefinable with
fo-expansions of (Q2;<1,=1, <2,=2)
→ their CSPs have the same complexity

we prove the CDC conjecture by classifying fo-expansions of
(Qn;<1,=1, . . . , <n,=n)
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Algebraic products

Definition (algebraic product)

Let A1 and A2 be structures with signatures τ1 and τ2, respectively.
The algebraic product A1 � A2 is the structure with the domain A1 × A2

which has the following relations:

for every R ∈ τ1 ∪ {=}, the relation R1 = (R,>),

for every R ∈ τ2 ∪ {=}, the relation R2 = (>,R).

Example: (Q;<) � (Q;<) = (Q2;<1,=1, <2,=2)

(1, 3)<1(2, 2)

(1, 3)=2(4, 3)
(1, 3)

(2, 2)

(4, 3)

Žaneta Semanǐsinová (TU Dresden) Complexity Transfer for CSPs PALS, 31 January 2023 8 / 24



Algebraic products

Definition (algebraic product)

Let A1 and A2 be structures with signatures τ1 and τ2, respectively.
The algebraic product A1 � A2 is the structure with the domain A1 × A2

which has the following relations:

for every R ∈ τ1 ∪ {=}, the relation R1 = (R,>),

for every R ∈ τ2 ∪ {=}, the relation R2 = (>,R).

−→ natural generalization to n-fold algebraic products
Observation: Complexity classification of CSPs of fo-expansions of

(Q;<) � · · ·� (Q;<)︸ ︷︷ ︸
n

= (Qn;<1,=1, . . . , <n,=n)

leads to classification for CDCn!

Žaneta Semanǐsinová (TU Dresden) Complexity Transfer for CSPs PALS, 31 January 2023 8 / 24



Primitive positive interpretations

generalizing pp-definitions → more applications

Definition (pp-interpretation)

Primitive positive interpretation of C in B:
a partial surjection I from Bd to C (for some d) such that for every k-ary
relation R defined by an atomic formula in C, I−1(R) as a dk-ary relation
over B is definable in B by a pp-formula.

Example: closed intervals [a, b] over Q are elements of Q2 such that a < b

Proposition (folklore)

If C has a pp-interpretation in B, then there is a poly-time reduction from
CSP(C) to CSP(B).
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Complexity classification transfer

I – pp-interpretation of D in C

J – pp-interpretation of C in D

J ◦ I is pp-homotopic to the identity interpretation of C
(i.e., {(x̄ , ȳ) | J ◦ I (x̄) = ȳ} is pp-definable in C)

fo-expansions of D

D

D′

fo-expansions of C

C

C′I

J

I

J J ◦ I=pp id

⇒ for every fo-expansion C′ of C there is an fo-expansion D′ of D such
that CSP(C′) and CSP(D′) are poly-time equivalent
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Allen’s Interval Algebra and Block Algebra

Allen’s Interval Algebra:

I = {(a, b) ∈ Q2 | a < b} – closed intervals

13 basic relations correspond to relative positions of intervals, e.g.:

s(X,Y): XXX f(X,Y): XXX m(X,Y): XXXX

starts YYYYYY finishes YYYYYY meets YYYY

all relations: unions of basic relations

Block Algebra (BA):

domain: In

basic relations: n-tuples of Allen’s basic relations

all relations: unions of basic relations
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Known results and open problems

Bürckert, Nebel (1995): complexity classification for the CSPs for all
subsets of Allen’s relations that contain the basic relations

→ such a CSP is in P if all its relations are definable by Ord-Horn
formulas and NP-hard otherwise

Krokhin, Jeavons, Jonsson (2003): complexity classification for the
CSPs for all subsets of Allen’s relations

BA conjecture (Balbiani, Condotta, del Cerro (2002)): The set of
Ord-Horn relations is the unique maximal tractable subset of the
block algebra that contains the basic relations.
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Complexity classification transfer for Block Algebras

Block Algebra with the basic relations is pp-interpretable in
(Qn;<1,=1, . . . , <n,=n) and vice versa
for n = 2:

I : (Q2)2 → I2, a <1 b, a <2 b

I ((a1, a2), (b1, b2)) = ((a1, b1), (a2, b2))

J : I2 → Q2

J((p1, p2), (q1, q2)) = (p1, q1)

all relations are fo-definable in basic relations

the interpretations satisfy the assumptions for complexity
classification transfer

we prove the BA conjecture by transferring the classification of
fo-expansions of (Qn;<1,=1, . . . , <n,=n)
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Polymorphisms

Definition (polymorphism)

An operation f : Ak → A is a polymorphism of (or preserves) a structure A
if for every relation R of A and for all tuples r̄1, . . . , r̄k ∈ R also
f (r̄1, . . . , r̄k) ∈ R (computed row-wise).
Pol(A) – the set of all polymorphisms of A

Example: + is a polymorphism of (Q;<)1
>

5

+

2

>
3

→
→

3

>

8



Theorem (Bodirsky, Nešeťril (2006))

A relation R ⊆ Al is preserved by all polymorphisms of an ω-categorical
structure A iff R is pp-definable in A.
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Properties of algebraic products

A1, A2 homogeneous ⇒ A1 � A2 homogeneous

A1, A2 ω-categorical ⇒ A1 � A2 ω-categorical

Pol(A1 � A2) = Pol(A1)× Pol(A2)

more generally: fo-expansions of A1 � A2 contain the relations =i

⇒ all polymorphisms are of the form (f1, f2), fi ∈ Pol(Ai )

Observation: CSP(A1), CSP(A2) in P ⇒ CSP(A1 � A2) in P

Proof: Given input A for CSP(A1 � A2), run the algorithm for CSP(Ai )
on the respective reducts of A.
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Complexity of CSPs of (fo-expansions) of alg. products

A1,A2 – countable ω-categorical structures
θi : Pol(A1 � A2)→ Pol(Ai ) (projects on the i-th coordinate)

Follows from the results by Barto, Opřsal, Pinsker (2018):

Proposition

Let D be an fo-expansion of A1 � A2. Let i be such that θi (Pol(D)) has
a uniformly continuous minor-preserving (UCMP) map to Pol(K3). Then
Pol(D) has a UCMP map to Pol(K3) as well and CSP(D) is NP-hard.

→ CSP(D) computationally hard in one coordinate implies CSP(D)
computationally hard!

Question: If CSP(D) is tractable in both coordinates, is then CSP(D)
tractable?
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Tractable algebraic products

Finite-domain case:

cyclic operation is an operation satisfying the identity

c(x1, . . . , xk) = c(x2, x3, . . . , xk , x1)

θi (Pol(D)) does not have an UCMP map to Pol(K3)
⇒ ∃ci ∈ Pol(D) such that θi (ci ) is cyclic (Barto, Kozik (2012))

then Pol(D) contains the cyclic operation

c1(c2(x1, . . . , xk), c2(x2, . . . , xk , x1), . . . , c2(xk , x1, . . . , xk−1))

hence CSP(D) is in P (Bulatov (2017); Zhuk (2017))

Powers of (Q;<):

a candidate polymorphism f – pseudo weak near unanimity (pwnu):

e1(f (y , x , . . . , x)) = e2(f (x , y , . . . , x)) = · · · = ek(f (x , . . . , x , y)),

for some fixed e1, . . . , ek ∈ End(D)
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⇒ ∃ci ∈ Pol(D) such that θi (ci ) is cyclic (Barto, Kozik (2012))

then Pol(D) contains the cyclic operation

c1(c2(x1, . . . , xk), c2(x2, . . . , xk , x1), . . . , c2(xk , x1, . . . , xk−1))

hence CSP(D) is in P (Bulatov (2017); Zhuk (2017))

Powers of (Q;<):

a candidate polymorphism f – pseudo weak near unanimity (pwnu):

e1(f (y , x , . . . , x)) = e2(f (x , y , . . . , x)) = · · · = ek(f (x , . . . , x , y)),

for some fixed e1, . . . , ek ∈ End(D)
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CSPs of fo-expansions of (Qn;<1,=1, . . . , <n,=n)

Theorem (Bodirsky, Kára (2009, 2010))

Let B be an fo-expansion of (Q;<). If B contains a pwnu polymorphism,
then CSP(B) is in P. Otherwise, Pol(B) has a uniformly continuous
minor-preserving map to Pol(K3) and CSP(B) is NP-complete.

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. (2022))

Let D be an fo-expansion of (Qn;<1,=1, . . . , <n,=n). Exactly one of the
following two cases applies:

θi (Pol(D)) contains a pwnu polymorphism for each i . In this case D
has a pwnu polymorphism and CSP(D) is in P.

There is i such that θi (Pol(D)) has a uniformly continuous
minor-preserving map to Pol(K3) and CSP(D) is NP-complete.
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Corollaries of the classification

Using syntactic descriptions of the tractable cases in (Q;<) from
(Bodirsky, Kára (2010)) and (Bodirsky, Chen, Wrona (2014)) we obtain:

Corollary

Suppose that D has a binary signature. Exactly one of the following two
cases applies:

Each relation in D has an Ord-Horn definition (viewed as a relation of
arity 2n over Q) and CSP(D) is in P.

Pol(D) has a UCMP map to Pol(K3) and CSP(D) is NP-complete.

Corollary

The CDC conjecture holds for every n ≥ 2.

Corollary

The BA conjecture holds for every n ≥ 1.
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Proof idea for n = 2

NP-complete:

follows directly from the previous proposition

P:

relations of D are defined by fo-formulas in <i and =i

we may assume quantifier-free definitions in conjunctive normal form

special clauses: i-determined (contain only relations with index i)

under the assumptions we may restrict to conjunctions of weakly
i-determined clauses, i.e.

ψ ∨
∨

k∈{1,...,n}

xk 6=j yk ,

where ψ is i-determined, j 6= i
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Žaneta Semanǐsinová (TU Dresden) Complexity Transfer for CSPs PALS, 31 January 2023 20 / 24



Proof idea for n = 2

if all clauses are i-determined, we can run the poly-time algorithms
on 1-determined and 2-determined constraints separately

such poly-time algorithms exist by the theorem for (Q;<)

Proposition

Let D be an fo-expansion of A1 � A2. TFAE:

1 Every relation of D has a definition by a conjunction of clauses each
of which is either 1-determined or 2-determined.

2 Pol(D) = θ1(Pol(D))× θ2(Pol(D)).

3 Pol(D) contains (π2
1, π

2
2).

→ we might have also clauses that are not i-determined
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Žaneta Semanǐsinová (TU Dresden) Complexity Transfer for CSPs PALS, 31 January 2023 21 / 24



Proof idea for n = 2

sketch of the algorithm for weakly 1-determined clauses
(oversimplified):

1 compute pairs of variables (x , y) that satisfy x =2 y in all solutions
to 2-determined constraints

2 modify the weakly 1-determined clauses to obtain 1-determined
constraints

3 solve the 1-determined constraints by the poly-time algorithm from
classification for (Q;<)

Question: Is there a polymorphism characterization of relations definable
by weakly i-determined clauses?
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What is next

Confirm the Bodirsky-Pinsker conjecture for:

CSPs of fo-expansions of B� (Q;<), where B is a finite structure

more generally: CSPs of structures fo-interpretable over (Q;<)

Assuming the Bodirsky-Pinsker conjecture:

classify complexity of CSPs of fo-expansions of A1 � A2, where Ai is
finitely bounded homogeneous
(remains the “tractable in both coordinates” case!)
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Thank you for your attention
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