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Constraint Satisfaction Problems

(relational) structure A = (A;RA : R ∈ τ); finite signature τ

Definition (homomorphism of structures)

Let A and B be τ -structures, then a homomorphism from A to B is a
function h : A→ B that preserves all the relations, that is, if
(a1, . . . , ak) ∈ RA, then (h(a1), . . . , h(ak)) ∈ RB.

Definition (CSP)

Let B be a τ -structure. The constraint satisfaction problem for B,
denoted by CSP(B), is the computational problem of deciding for a given
finite τ -structure A whether A has a homomorphism to B or not.
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Examples of CSPs

The complete graph on 3 vertices is the relational structure

K3 = ({0, 1, 2}; 6=).

CSP(K3) is the 3-colorability problem for graphs (and CSP(Kn) is the
n-colorability problem).

3-SAT is equivalent to

CSP({0, 1};R000;R001;R011;R111),

where Rijk = {0, 1}3 \ {(i , j , k)}.
For example, the clause x ∨ ¬y ∨ z is modelled by R001(x , z , y).
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Primitive positive definitions

Definition (pp-formula)

An atomic formula is a formula of the form x = y , R(x1, . . . , xn), or ⊥.
A primitive positive formula is a formula φ(x1, . . . , xn) of the form

∃y1, . . . , yl(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψk are atomic formulas.

Example: φ(x , y) = ∃z R(x , y , z) ∧ R(x , x , z) is a pp-formula.

Proposition (Jeavons (1998))

Let A and B be structures with the same domain. If every relation of A
has a pp-definition in B, then there is a poly-time reduction from CSP(A)
to CSP(B).
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Žaneta Semanǐsinová (TU Dresden) CSPs of fo-expansions of algebraic products Spring School, 14.5.2022 4 / 15



Polymorphisms

Definition (polymorphism)

An operation f : Ak → A is a polymorphism of (or preserves) a structure A
if for every relation R of A and for all tuples r̄1, . . . , r̄k ∈ R also
f (r̄1, . . . , r̄k) ∈ R (computed row-wise).
The set of all polymorphisms of A will be denoted by Pol(A).
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Theorem (Bodirsky, Nešeťril (2006))

A relation R ⊆ Al is preserved by all polymorphisms of an ω-categorical
structure A if and only if R is has a pp-definition in A.
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Model-theoretical definitions

Definition (first-order expansion)

A first-order expansion (fo-expansion) of A is a structure A′ augmented by
relations that are first-order definable in A.

Definition (ω-categorical structure, homogeneity)

A structure A is

ω-categorical if it is countable and all countable models of the
first-order theory of A are isomorphic;

homogeneous if every isomorphism between finite substructures can
be extended to an automorphism of the structure.

Example: (Q, <) is an ω-categorical homogeneous structure.
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Complexity dichotomy

Theorem (Bulatov (2017), Zhuk (2017))

For every finite structure B with finite signature CSP(B) is in P or
NP-complete.

Conjecture (Bodirsky, Pinsker (2011))

For reduct B of a finitely bounded homogeneous structure CSP(B) is in P
or NP-complete.

Interesting examples of infinite structures that fall into the scope of the
conjecture are e.g. fo-expansions of (algebraic powers of) (Q, <).
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Algebraic products

Definition (algebraic product)

Let A1 and A2 be structures with signatures τ1 and τ2, respectively. The
algebraic product A1 �A2 is the structure with domain A1 × A2 which has
for every atomic τ1-formula φ(x1, . . . , xk) the relation

{((u1, v1), . . . , (uk , vk)) | A1 |= φ(u1, . . . , uk)}

and for every atomic τ2-formula φ(x1, . . . , xk) the relation

{((u1, v1), . . . , (uk , vk)) | A2 |= φ(v1, . . . , vk)}.

Example: (Q, <) � (Q, <) is the structure (Q2;<1,=1, <2,=2), where
e.g. (1, 4) <1 (2, 3) and (−2, 5) =2 (8/3, 5).
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Algebraic powers of (Q, <) in spatial reasoning

Cardinal Direction Calculus:

C = (Q2; N, E, S, W, NE, SE, SW, NW) (North, East, etc.)

N E S W

(=, >) (>,=) (=, <) (<,=)

NE SE SW NW

(>,>) (>,<) (<,<) (<,>)

the relations <i and =i are pp-definable in C

fo-expansions of C can be then viewed as fo-expansions of
(Q2, <1,=1, <2,=2)

we may then classify complexity of CSPs of fo-expansions of C
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Algebraic powers of (Q, <) in temporal reasoning

Allen’s Interval Algebra:

I is the set of all pairs (x , y) ∈ Q2 such that x < y

we view I as the set of all closed intervals [a, b] of rational numbers

basic relations defined on I correspond to relative positions of the
intervals (e. g. meets, starts, finishes)

e.g., s(X ,Y ) corresponds to X starts Y and f(X ,Y ) to X finishes Y

s(X,Y): XXX f(X,Y): XXX

YYYYYY YYYYYY

one may prove that (I, s, f) is isomorphic to a structure that is
pp-interdefinable with (Q2, <1,=1, <2,=2)

complexity classification of CSPs of fo-expansions of (I, s, f) then
follows from the classification for (Q2, <1,=1, <2,=2)
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Complexity of CSPs of (fo-expansions) of alg. products

A1,A2 – countable ω-categorical structures
Pol(A1 � A2) = Pol(A1)× Pol(A2)⇒ the complexity of the CSP (of an
fo-expansion) of A1 � A2 is related to “the complexity in each dimension”

Proposition

If CSP(A1) is in P and CSP(A2) is in P, then CSP(A1 � A2) is in P.

θi : Pol(A1 � A2)→ Pol(Ai ) (projects on the i-th coordinate) Follows

from the results by Barto, Opřsal, Pinsker (2018):

Proposition

Let D be an fo-expansion of A1 �A2. Let i be such that θi (Pol(D)) has a
uniformly continuous minor-preserving map to Pol(K3). Then Pol(D) has
a uniformly continuous minor-preserving map to Pol(K3) as well and
CSP(D) is NP-complete.
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CSPs of fo-expansions of (Q2, <1,=1, <2,=2)

Theorem (Bodirsky, Kára (2009, 2010))

Let B be an fo-expansion of (Q;<). If Pol(B) contains a min-, mx-, mi-,
or ll-operation, or the dual of such an operation, then CSP(B) is in P.
Otherwise, CSP(B) is NP-complete.

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. (2022))

Let D be an fo-expansion of (Q2, <1,=1, <2,=2). Exactly one of the
following two cases applies.

θi (Pol(D)) contains a min-, mx-, mi-, or ll-operation, or the dual of
such an operation, for each i ∈ {1, 2} and CSP(D) is in P.

There is i ∈ {1, 2} such that θi (Pol(D)) has a uniformly continuous
minor-preserving map to Pol(K3) and CSP(D) is NP-complete.
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Proof idea

NP-complete:

follows directly from the previous proposition

P:

relations of D are defined by fo-formulas in <i and =i

we may assume quantifier-free definitions in conjunctive normal form

the key is to have a conjunctions of clauses which are (almost)
i-determined (contains literals only with index i)

we aim to run first the poly-time algorithm to decide satisfiability of
the 1-determined constraints and then the poly-time algorithm to
decide satisfiability of the (possibly modified) 2-determined
constraints

existence of such poly-time algorithms follows from the theorem for
(Q, <)
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What is next

Classify the complexity of:

CSPs of (reducts) of fo-expansions of

({0, 1}; {0}, {1}) � · · ·� ({0, 1}; {0}, {1})︸ ︷︷ ︸
n

�(Q, <)

for n = 1 and general n

more generally: CSPs of fo-expansions of B� (Q, <), where B is a
finite structure

challenge: CSPs of structures fo-interpretable over (Q, <)

All of the above fall into the scope of the infinite-domain dichotomy
conjecture.
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Thank you for your attention
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