Constraint Satisfaction Problems of First-Order Expansions of Algebraic Products

Žaneta Semanišinová with Manuel Bodirsky, Peter Jonsson, Barnaby Martin, Antoine Mottet

> Institute of Algebra TU Dresden

Spring School of Algebra, 14.5.2022

(relational) structure $\mathfrak{A} = (A; R^{\mathfrak{A}} : R \in \tau)$; finite signature τ

Definition (homomorphism of structures)

Let \mathfrak{A} and \mathfrak{B} be τ -structures, then a homomorphism from \mathfrak{A} to \mathfrak{B} is a function $h: A \to B$ that preserves all the relations, that is, if $(a_1, \ldots, a_k) \in R^{\mathfrak{A}}$, then $(h(a_1), \ldots, h(a_k)) \in R^{\mathfrak{B}}$.

Definition (CSP)

Let \mathfrak{B} be a τ -structure. The constraint satisfaction problem for \mathfrak{B} , denoted by $CSP(\mathfrak{B})$, is the computational problem of deciding for a given finite τ -structure \mathfrak{A} whether \mathfrak{A} has a homomorphism to \mathfrak{B} or not.

(日) (四) (日) (日) (日)

The complete graph on 3 vertices is the relational structure

$$K_3 = (\{0, 1, 2\}; \neq).$$

 $CSP(K_3)$ is the 3-colorability problem for graphs (and $CSP(K_n)$ is the *n*-colorability problem).

A B < A B </p>

< < >> < < < < >>

The complete graph on 3 vertices is the relational structure

$$K_3 = (\{0, 1, 2\}; \neq).$$

 $CSP(K_3)$ is the 3-colorability problem for graphs (and $CSP(K_n)$ is the *n*-colorability problem).

3-SAT is equivalent to

```
CSP(\{0,1\}; R_{000}; R_{001}; R_{011}; R_{111}),
```

where $R_{ijk} = \{0, 1\}^3 \setminus \{(i, j, k)\}$. For example, the clause $x \lor \neg y \lor z$ is modelled by $R_{001}(x, z, y)$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition (pp-formula)

An atomic formula is a formula of the form x = y, $R(x_1, ..., x_n)$, or \bot . A primitive positive formula is a formula $\phi(x_1, ..., x_n)$ of the form

$$\exists y_1,\ldots,y_l(\psi_1\wedge\cdots\wedge\psi_m)$$

where ψ_1, \ldots, ψ_k are atomic formulas.

Example: $\phi(x, y) = \exists z \ R(x, y, z) \land R(x, x, z)$ is a pp-formula.

Definition (pp-formula)

An atomic formula is a formula of the form x = y, $R(x_1, ..., x_n)$, or \bot . A primitive positive formula is a formula $\phi(x_1, ..., x_n)$ of the form

$$\exists y_1,\ldots,y_l(\psi_1\wedge\cdots\wedge\psi_m)$$

where ψ_1, \ldots, ψ_k are atomic formulas.

Example: $\phi(x, y) = \exists z \ R(x, y, z) \land R(x, x, z)$ is a pp-formula.

Proposition (Jeavons (1998))

Let \mathfrak{A} and \mathfrak{B} be structures with the same domain. If every relation of \mathfrak{A} has a pp-definition in \mathfrak{B} , then there is a poly-time reduction from $CSP(\mathfrak{A})$ to $CSP(\mathfrak{B})$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Definition (polymorphism)

An operation $f : A^k \to A$ is a polymorphism of (or preserves) a structure \mathfrak{A} if for every relation R of \mathfrak{A} and for all tuples $\overline{r_1}, \ldots, \overline{r_k} \in R$ also $f(\overline{r_1}, \ldots, \overline{r_k}) \in R$ (computed row-wise). The set of all polymorphisms of \mathfrak{A} will be denoted by $Pol(\mathfrak{A})$.

Theorem (Bodirsky, Nešetřil (2006))

A relation $R \subseteq A^{l}$ is preserved by all polymorphisms of an ω -categorical structure \mathfrak{A} if and only if R is has a pp-definition in \mathfrak{A} .

イロト 不得 トイラト イラト 二日

Sac

Definition (first-order expansion)

A first-order expansion (fo-expansion) of \mathfrak{A} is a structure \mathfrak{A}' augmented by relations that are first-order definable in \mathfrak{A} .

Definition (ω -categorical structure, homogeneity)

A structure \mathfrak{A} is

- ω-categorical if it is countable and all countable models of the first-order theory of A are isomorphic;
- homogeneous if every isomorphism between finite substructures can be extended to an automorphism of the structure.

Example: $(\mathbb{Q}, <)$ is an ω -categorical homogeneous structure.

ヘロト 不得 ト イヨト イヨト 二日

Theorem (Bulatov (2017), Zhuk (2017))

For every finite structure \mathfrak{B} with finite signature $CSP(\mathfrak{B})$ is in P or NP-complete.

Conjecture (Bodirsky, Pinsker (2011))

For reduct \mathfrak{B} of a finitely bounded homogeneous structure $CSP(\mathfrak{B})$ is in P or NP-complete.

Interesting examples of infinite structures that fall into the scope of the conjecture are e.g. fo-expansions of (algebraic powers of) (\mathbb{Q} , <).

* E > < E >

Definition (algebraic product)

Let \mathfrak{A}_1 and \mathfrak{A}_2 be structures with signatures τ_1 and τ_2 , respectively. The algebraic product $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$ is the structure with domain $A_1 \times A_2$ which has for every atomic τ_1 -formula $\phi(x_1, \ldots, x_k)$ the relation

$$\{((u_1, v_1), \ldots, (u_k, v_k)) \mid \mathfrak{A}_1 \models \phi(u_1, \ldots, u_k)\}$$

and for every atomic τ_2 -formula $\phi(x_1, \ldots, x_k)$ the relation

$$\{((u_1, v_1), \ldots, (u_k, v_k)) \mid \mathfrak{A}_2 \models \phi(v_1, \ldots, v_k)\}.$$

Example: $(\mathbb{Q}, <) \boxtimes (\mathbb{Q}, <)$ is the structure $(\mathbb{Q}^2; <_1, =_1, <_2, =_2)$, where e.g. $(1, 4) <_1 (2, 3)$ and $(-2, 5) =_2 (8/3, 5)$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Cardinal Direction Calculus:

• $\mathfrak{C} = (\mathbb{Q}^2; N, E, S, W, NE, SE, SW, NW)$ (North, East, etc.)

Ν	Е	S	W
(=,>)	(>,=)	(=,<)	(<, =)

NE	SE	SW	NW
(>,>)	(>,<)	(<,<)	(<,>)

- the relations $<_i$ and $=_i$ are pp-definable in \mathfrak{C}
- fo-expansions of $\mathfrak C$ can be then viewed as fo-expansions of $(\mathbb Q^2,<_1,=_1,<_2,=_2)$
- ullet we may then classify complexity of CSPs of fo-expansions of ${\mathfrak C}$

Algebraic powers of $(\mathbb{Q}, <)$ in temporal reasoning

Allen's Interval Algebra:

- \mathbb{I} is the set of all pairs $(x, y) \in \mathbb{Q}^2$ such that x < y
- we view I as the set of all closed intervals [a, b] of rational numbers
- basic relations defined on I correspond to relative positions of the intervals (e. g. meets, starts, finishes)
- e.g., s(X, Y) corresponds to X starts Y and f(X, Y) to X finishes Y

s(X,Y):	XXX	f(X,Y):	XXX
	YYYYYY		YYYYYY

- one may prove that (I, s, f) is isomorphic to a structure that is pp-interdefinable with $(\mathbb{Q}^2, <_1, =_1, <_2, =_2)$
- complexity classification of CSPs of fo-expansions of (\mathbb{I}, s, f) then follows from the classification for $(\mathbb{Q}^2, <_1, =_1, <_2, =_2)$

・ロット 御 とう ほう く ほう 二日

Complexity of CSPs of (fo-expansions) of alg. products

 $\mathfrak{A}_1, \mathfrak{A}_2$ – countable ω -categorical structures Pol $(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2) = Pol(\mathfrak{A}_1) \times Pol(\mathfrak{A}_2) \Rightarrow$ the complexity of the CSP (of an fo-expansion) of $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$ is related to "the complexity in each dimension"

Proposition

If $CSP(\mathfrak{A}_1)$ is in P and $CSP(\mathfrak{A}_2)$ is in P, then $CSP(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2)$ is in P.

Complexity of CSPs of (fo-expansions) of alg. products

 $\mathfrak{A}_1, \mathfrak{A}_2$ – countable ω -categorical structures Pol $(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2) = Pol(\mathfrak{A}_1) \times Pol(\mathfrak{A}_2) \Rightarrow$ the complexity of the CSP (of an fo-expansion) of $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$ is related to "the complexity in each dimension"

Proposition

If $CSP(\mathfrak{A}_1)$ is in P and $CSP(\mathfrak{A}_2)$ is in P, then $CSP(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2)$ is in P.

 $\theta_i : \mathsf{Pol}(\mathfrak{A}_1 \boxtimes \mathfrak{A}_2) \to \mathsf{Pol}(\mathfrak{A}_i)$ (projects on the *i*-th coordinate) Follows

from the results by Barto, Opršal, Pinsker (2018):

Proposition

Let \mathfrak{D} be an fo-expansion of $\mathfrak{A}_1 \boxtimes \mathfrak{A}_2$. Let *i* be such that $\theta_i(\operatorname{Pol}(\mathfrak{D}))$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}(K_3)$. Then $\operatorname{Pol}(\mathfrak{D})$ has a uniformly continuous minor-preserving map to $\operatorname{Pol}(K_3)$ as well and $\operatorname{CSP}(\mathfrak{D})$ is NP-complete.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Sac

Theorem (Bodirsky, Kára (2009, 2010))

Let \mathfrak{B} be an fo-expansion of $(\mathbb{Q}; <)$. If $\mathsf{Pol}(\mathfrak{B})$ contains a min-, mx-, mi-, or II-operation, or the dual of such an operation, then $\mathsf{CSP}(\mathfrak{B})$ is in *P*. Otherwise, $\mathsf{CSP}(\mathfrak{B})$ is *NP*-complete.

Theorem (Bodirsky, Jonsson, Martin, Mottet, S. (2022))

Let \mathfrak{D} be an fo-expansion of $(\mathbb{Q}^2, <_1, =_1, <_2, =_2)$. Exactly one of the following two cases applies.

- θ_i(Pol(𝔅)) contains a min-, mx-, mi-, or ll-operation, or the dual of such an operation, for each i ∈ {1,2} and CSP(𝔅) is in P.
- There is i ∈ {1,2} such that θ_i(Pol(D)) has a uniformly continuous minor-preserving map to Pol(K₃) and CSP(D) is NP-complete.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Proof idea

NP-complete:

• follows directly from the previous proposition

イロト 不得 トイヨト イヨト

э

590

Proof idea

NP-complete:

• follows directly from the previous proposition

P:

- relations of \mathfrak{D} are defined by fo-formulas in $<_i$ and $=_i$
- we may assume quantifier-free definitions in conjunctive normal form
- the key is to have a conjunctions of clauses which are (almost) *i*-determined (contains literals only with index *i*)
- we aim to run first the poly-time algorithm to decide satisfiability of the 1-determined constraints and then the poly-time algorithm to decide satisfiability of the (possibly modified) 2-determined constraints
- existence of such poly-time algorithms follows from the theorem for $(\mathbb{Q}, <)$

ヘロト 不得 とうほう 不良 とうせい

Classify the complexity of:

• CSPs of (reducts) of fo-expansions of

$$\underbrace{(\{0,1\};\{0\},\{1\})\boxtimes\cdots\boxtimes(\{0,1\};\{0\},\{1\})}_{n}\boxtimes(\mathbb{Q},<)$$

for n = 1 and general n

- more generally: CSPs of fo-expansions of $\mathfrak{B} \boxtimes (\mathbb{Q}, <)$, where \mathfrak{B} is a finite structure
- challenge: CSPs of structures fo-interpretable over $(\mathbb{Q}, <)$

All of the above fall into the scope of the infinite-domain dichotomy conjecture.

Thank you for your attention

Žaneta Semanišinová (TU Dresden) CSPs of fo-expansions of algebraic products Spring School, 14.5.2022 15 / 15

Э

イロト 不得 トイヨト イヨト

Sac