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Optimization problems

least correlation clustering (LCC)

Input: constraints of the form x = y and x ̸= y , threshold u

Output: Can we assign values to the variables violating at most u
constraints?

minimum feedback arc set (MFAS)

Input: a directed multigraph G, threshold u

Output: Can we remove at most u edges from G destroying all
directed cycles?

resilience of a query q (RES(q))

Input: a database A, threshold u

Output: Can we remove at most u facts from A so that A ̸|= q?
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Computational problems

P – efficiently solvable

NP-intermediate

NP-complete – hardest in NP

NP – with efficiently verifiable solution

?

3-SAT

3-colorability

RES(qp)

MFAS LCC

lin. equations mod p

graph connectivity

digraph acyclicity

RES(qc)

2-SAT

halting problem

qp – 2-path query

qc – 2-cycle query
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Constraint satisfaction variants

B – fixed relational structure with a signature τ
Input: list of constraints, e.g., R(x , x , y), S(y , x), S(y , y)

Output:

CSP: Decide whether there is a solution that satisfies all constraints.

MinCSP: Find the minimal number of constraints to violate so that
the remaining constraints are satisfiable simultaneously.

VCSP: Find the minimal cost with which the constraints can be
satisfied (each constraint comes with a cost depending on the chosen
values).

Observation: VCSP generalizes CSP and MinCSP.
Proof: Model the tuples in relations with cost 0 and outside with cost 1
(for MinCSP) or ∞ (for CSP).
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Complexity of CSPs and VCSPs

P

NP-intermediate

NP-complete

3-SAT

3-colorability

RES(qp)

MFAS LCC

lin. equations mod p

graph connectivity

digraph acyclicity

RES(qc)

2-SAT

CSPs

VCSPs

?
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Valued Constraint Satisfaction Problem

A valued structure Γ consists of:

(countable) domain C

(finite, relational) signature τ

for each R ∈ τ of arity k, a function RΓ: C k → Q ∪ {∞}

Definition (VCSP(Γ))

Input: u ∈ Q, an expression
ϕ(x1, . . . , xn) =

∑
i

ψi ,

where each ψi is an atomic τ -formula
Output: Is

inf
t∈Cn

ϕ(t) ≤ u in Γ?

Example: VCSP({0, 1};R) where R(x , y) = 0 if x = 0 and y = 1, and
R(x , y) = 1 otherwise is the Max-Cut problem for directed multigraphs.
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Revisiting problems from the start

least correlation clustering = VCSP(N; (=)10, (̸=)10)

Input: constraints of the form x = y and x ̸= y , threshold u

Output: Can we assign values to the variables violating at most u
constraints?

minimum feedback arc set = VCSP(Q; (<)10)

Input: a directed multigraph G, threshold u

Output: Can we remove at most u edges from G destroying all
directed cycles?

resilience of a query q

Input: a database A, threshold u

Output: Can we remove at most u tuples from A so that A ̸|= q?

↪→ not obvious how to model as a VCSP
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Complexity of VCSPs

Theorem (Kozik, Ochremiak ’15; Kolmogorov, Roĺınek, Krokhin ’15;
Bulatov ’17; Zhuk ’17)

Let Γ be a valued structure with a finite domain. Then VCSP(Γ) is in P or
NP-complete.

Goal: Study complexity of ‘tame enough’ infinite-domain VCSPs.

Γ – valued structure on a countable domain C over a signature τ

automorphism of Γ – permutation α of C such that for R ∈ τ of arity
k and every t ∈ C k , R(α(t)) = R(t)

Aut(Γ) is oligomorphic – the action of Aut(Γ) on Cn has finitely many
orbits for every n ≥ 1

Example: Aut(Q; (<)10) = Aut(Q;<) is oligomorphic.
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Žaneta Semanǐsinová (TU Dresden) Doctoral defense TU Dresden, 30 Apr 2025 10 / 20



Pp-constructability

K3 is the valued structure on {0, 1, 2} with single binary relation E defined:

E (x , y) =

{
0 if x ̸= y

∞ if x = y
0 1

2

Observation: VCSP(K3) is the 3-colorability problem; this problem is
known to be NP-complete.

pp-construction – a notion of ‘translating’ relations of one valued structure
into relations of another

Corollary (Bodirsky, S., Lutz ’24)

If Aut(Γ) is oligomorphic and Γ pp-constructs K3, then VCSP(Γ) is
NP-hard.
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Fractional polymorphisms

Definition (fractional polymorphism)

A fractional polymorphism of Γ of arity n is a probability distribution ω on
the maps f : Cn → C such that for every k-ary R ∈ τ and t1, . . . , tn ∈ C k

Eω[f 7→ R(f (t1, . . . , tn))] ≤ 1

n

n∑
j=1

R(t j) (ω improves R).

fPol(Γ) – set of all fractional polymorphisms of Γ

Example:
πni (n-ary projection to i-th coordinate)
Idn – fractional operation such that Idn(π

n
i ) = 1/n for every i

Idn ∈ fPol(Γ) for every Γ:

Eω[f 7→ R(f (t1, . . . , tn))] =
1

n

n∑
i=1

R(πni (t
1, . . . , tn)) =

1

n

n∑
i=1

R(t i ).
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Žaneta Semanǐsinová (TU Dresden) Doctoral defense TU Dresden, 30 Apr 2025 12 / 20



Fractional polymorphisms

Definition (fractional polymorphism)

A fractional polymorphism of Γ of arity n is a probability distribution ω on
the maps f : Cn → C such that for every k-ary R ∈ τ and t1, . . . , tn ∈ C k

Eω[f 7→ R(f (t1, . . . , tn))] ≤ 1

n

n∑
j=1

R(t j) (ω improves R).

fPol(Γ) – set of all fractional polymorphisms of Γ

Example:
πni (n-ary projection to i-th coordinate)
Idn – fractional operation such that Idn(π

n
i ) = 1/n for every i

Idn ∈ fPol(Γ) for every Γ:

Eω[f 7→ R(f (t1, . . . , tn))] =
1

n

n∑
i=1

R(πni (t
1, . . . , tn)) =

1

n

n∑
i=1

R(t i ).
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Classification of temporal VCSPs

A valued structure Γ is called temporal if Aut(Q;<) ⊆ Aut(Γ).

Example:

(Q; (=)10, (̸=)10) (models least correlation clustering)

(Q; (<)10) (models minimum feedback arc set problem)

Building on the classification of temporal CSPs [Bodirsky, Kára ’10]:

Theorem (Bodirsky, Bonnet, S. ’24)

Let Γ be a temporal valued structure. Then at least one of the following:

Γ pp-constructs K3 and VCSP(Γ) is NP-complete.

Γ is essentially crisp, fPol(Γ) contains min, mx, mi, ll, or one of their
duals, and VCSP(Γ) is in P.

const ∈ fPol(Γ) and VCSP(Γ) is in P.

lex ∈ fPol(Γ), all crisp relations expressible in Γ are preserved by min,
mx, mi, ll, or one of their duals, and VCSP(Γ) is in P.
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Resilience of queries

database – a relational structure A
conjunctive query – a formula q of the form ∃y1, . . . , yl (ψ1 ∧ · · · ∧ ψm),
where ψi are atomic

Definition (resilience)

Fixed conjunctive query q.
Input: a finite database A, u ∈ N
Output: Can we remove ≤ u tuples from relations of A so that A ̸|= q?

Appears first in [Meliou, Gatterbauer, Moore, Suciu ’10].

Example: The resilience of

qp = ∃x , y , z(R(x , y) ∧ R(y , z))

with respect to A is 1 – remove (C ,E ).

A
A B

C D

E
Goal: Classify complexity of resilience for all q.
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Žaneta Semanǐsinová (TU Dresden) Doctoral defense TU Dresden, 30 Apr 2025 15 / 20



Translation to a dual problem

Example:
q := ∃x , y(R(x , y) ∧ S(y))

x y

R(x , y) S(y)

incidence graph I(q)

Theorem (Cherlin, Shelah, Shi ’99)

Let q be a query. If I (q) is connected, then there exists a dual structure
Bq, such that for every finite A:

A ̸|= q ⇔ A maps homomorphically to Bq

Bq can be chosen so that Aut(Bq) is oligomorphic.

Bq can be chosen finite iff I (q) is a tree. (Nešeťril,Tardiff ’00; Larose,
Loten, Tardiff ’07)

Example: For every finite directed graph G we have:
G ̸|= ∃x , y , z(R(x , y) ∧ R(y , z)) ⇔ G maps homomophically to −→

R
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Loten, Tardiff ’07)

Example: For every finite directed graph G we have:
G ̸|= ∃x , y , z(R(x , y) ∧ R(y , z)) ⇔ G maps homomophically to −→

R
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Resilience problems as VCSPs

query q (WLOG I (q) connected) ; dual Bq ; 0-1-valued structure Γq

Example:

q = ∃x , y , z(R(x , y) ∧ R(y , z)) ;

Bq

R
;

Γq

0

11 1

Theorem (Bodirsky, S., Lutz ’24)

The resilience problem for q equals VCSP(Γq).

Remark: We need to consider bag databases: tuples have multiplicity ≥ 1.
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Complexity results for resilience

Direct consequence for queries with a finite dual:

Corollary (Bodirsky, S., Lutz ’24)

Let q be a conjunctive query such that I(q) is acyclic. Then the resilience
problem for q is in P or NP-complete.

General tractability criterion:

Theorem (Bodirsky, S., Lutz ’24)

If Γq has a fractional polymorphism which is canonical and pseudo cyclic
with respect to Aut(Γq), then VCSP(Γq) and hence resilience of q is in P.

Žaneta Semanǐsinová (TU Dresden) Doctoral defense TU Dresden, 30 Apr 2025 18 / 20



Complexity results for resilience

Direct consequence for queries with a finite dual:

Corollary (Bodirsky, S., Lutz ’24)

Let q be a conjunctive query such that I(q) is acyclic. Then the resilience
problem for q is in P or NP-complete.

General tractability criterion:

Theorem (Bodirsky, S., Lutz ’24)

If Γq has a fractional polymorphism which is canonical and pseudo cyclic
with respect to Aut(Γq), then VCSP(Γq) and hence resilience of q is in P.
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Future classification goals

Resilience problems:

Conjecture

For a query q, whenever Γq does not pp-construct K3, it satisfies the
tractability condition from the previous slide.

↪→ the conjecture is true for every Γq on a finite domain

↪→ verified also for numerous examples with infinite Γq

Graph VCSPs:

Classify the complexity of VCSP(Γ) where Aut(Γ) contains the
automorphism group of the countable random graph.

Is VCSP(Γ) in P whenever Γ does not pp-construct K3?
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