Paramedial quasigroups of prime and prime square order

Žaneta Semanišinová

Institute of Algebra
TU Dresden

Fall School of Algebra, 4.11.2021

Definition of a quasigroup

Definition (quasigroup)

Let Q be a set equipped with a binary operation $* .(Q, *)$ is a quasigroup, if for all $a, b \in Q$, there exist unique $x, y \in Q$ such that

$$
a * x=b \text { and } y * a=b
$$

$(Q, *)$ is a quasigroup iff the multiplication table of $*$ is a latin square (possibly infinite).

-	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Table: Multiplication table of $\left(\mathbb{Z}_{3},-\right)$

Paramedial quasigroups

Definition (paramedial quasigroup)

A quasigroup $(Q, *)$ is called paramedial, if for all $x, y, u, v \in Q$ the following holds

$$
(x * y) *(u * v)=(v * y) *(u * x)
$$

Example: If $(G,+,-, 0)$ is an abelian group, then $(G,-)$ is a paramedial quasigroup.

$$
\begin{aligned}
& (x-y)-(u-v)=x-y-u+v \\
& (v-y)-(u-x)=v-y-u+x
\end{aligned}
$$

Motivation

- enumeration of algebraic structures up to isomorphism (groups, quasigroups, medial quasigroups)
- in the case of quasigroups it is natural to focus on a specific class
- inspired by the results of the enumeration of medial quasigroups (Kirnasovsky, Stanovský)

	groups											quasigroups
$1 . .10$	1	1	1	2	1	2	1	5	2	2	1	1
11. 20	1	5	1	2	1	14	1	5	1	5	2	1
21.30	2	2	1	15	2	2	5	4	1	4	3	5
$31 . .40$	1	51	1	2	1	14	1	2	2	14	4	35
41.50	1	6	1	4	2	2	1	52	2	5	5	1411
51.60	1	5	1	15	2	13	2	2	1	13	6	
61.70	1	2	4	267	1	4	1	5	1	4	6	1130531
71.80	1	50	1	2	3	4	1	6	1	52	7	12198455835
81..90	15	2	1	15	1	2	1	12	1	10	8	2697818331680661
$91 . .100$	1	4	2	2	1	231	1	5	2	16	9	15224734061438247321497
											10	2750892211809150446995735533513

Main result

Theorem

Let p be an odd prime. Then the number of paramedial quasigroups (up to isomorphism) of:

- order p is

$$
2 p-1
$$

- $\operatorname{order} p^{2}$ is

$$
6 p^{2}-p-1
$$

The number of paramedial quasigroups of order 2 is 1 and of order 4 is 11.

Main result

Theorem

Let p be an odd prime. Then the number of paramedial quasigroups (up to isomorphism) of:

- order p is

$$
2 p-1
$$

- order p^{2} is

$$
6 p^{2}-p-1
$$

The number of paramedial quasigroups of order 2 is 1 and of order 4 is 11 .

n	2	3	4	5	6	7	8	9	10	11	12	13	14
$\mathrm{pq}(n)$	1	5	11	9	5	13	$?$	50	9	21	55	25	13

Affine representation

Definition (affine quasigroup)

Let $(G,+,-, 0)$ be an abelian group and $\varphi, \psi \in \operatorname{Aut}(G), c \in G$. Define $*$ on G by

$$
x * y=\varphi(x)+\psi(y)+c
$$

The resulting quasigroup $(G, *)$ is said to be affine over $(G,+)$ and denoted by $\operatorname{Aff}(G,+, \varphi, \psi, c)$.

Example: $G=\mathbb{Z}_{5}, \varphi(x)=2 x, \psi(x)=3 x, c=1$
The quasigroup operation $* \operatorname{in} \operatorname{Aff}\left(\mathbb{Z}_{5},+, \varphi, \psi, 1\right)$ is defined by

$$
x * y=2 x+3 y+1
$$

Affine representation

Theorem (T. Kepka, P. Němec, 1971)

A quasigroup $(G, *)$ is paramedial iff it is affine over an abelian group $(G,+)$ and

$$
\varphi^{2}=\psi^{2}
$$

Example (continued): $G=\mathbb{Z}_{5}, \varphi(x)=2 x, \psi=3 x, c=1$
$\varphi^{2}(x)=\psi^{2}(x)$ since $\psi=-\varphi$, and the paramedial identity is satisfied:

$$
\begin{aligned}
& (2 x+3 y+1) *(2 u+3 v+1)=(4 x+y+2)+(u+4 v+3)+1 \\
& (2 v+3 y+1) *(2 u+3 x+1)=(4 v+y+2)+(u+4 x+3)+1
\end{aligned}
$$

which are both equal to $4 x+y+u+4 v+1$.

Properties of counting functions

- $\mathrm{pq}(G)$ - the number of paramedial quasigroups over G
- $\mathrm{pq}(n)$ - the number of paramedial quasigroups of order n

The following holds:

$$
\operatorname{pq}(n)=\sum_{|G|=n} \operatorname{pq}(G)
$$

Properties of counting functions

- $\mathrm{pq}(G)$ - the number of paramedial quasigroups over G
- $\mathrm{pq}(n)$ - the number of paramedial quasigroups of order n

The following holds:

$$
\mathrm{pq}(n)=\sum_{|G|=n} \mathrm{pq}(G)
$$

If H a K are finite abelian groups such that $\operatorname{gcd}(|H|,|K|)=1$, then

$$
\mathrm{pq}(H \times K)=\mathrm{pq}(H) \cdot \mathrm{pq}(K) .
$$

In particular, for $k, l \in \mathcal{N}$ satisfying $\operatorname{gcd}(k, l)=1$ holds

$$
\mathrm{pq}(k \cdot l)=\mathrm{pq}(k) \cdot \mathrm{pq}(/) .
$$

Enumeration algorithm

Algorithm (Drápal, 2009):

Let $(G,+,-, 0)$ be an abelian group.
(1) Choose a set X of orbit representatives of the conjugation action of Aut (G) on itself.
(2) For every $\varphi \in X$:

- Determine the set $S_{\varphi}=\left\{\psi: \psi^{2}=\varphi^{2}\right\}$.
- Choose a set $Y_{\varphi} \subseteq S_{\varphi}$ of orbit representatives of the conjugation action of $C_{\text {Aut }(G)}(\varphi)$ on S_{φ}.
- For every $\psi \in Y_{\varphi}$ choose a set $G_{\varphi, \psi}$ of orbit representatives of the natural action of $C_{\text {Aut }(G)}(\varphi) \cap C_{\text {Aut }(G)}(\psi)$ on $G / \operatorname{Im}(1-\varphi-\psi)$.
(3) The representatives of the isomorphisms classes of paramedial quasigroups over G are

$$
\operatorname{Aff}(G,+, \varphi, \psi, c): \varphi \in X, \psi \in Y_{\varphi}, c \in G_{\varphi, \psi}
$$

Enumeration over cyclic groups

Case $G=\mathbb{Z}_{p^{k}}$:

- $\operatorname{Aut}\left(\mathbb{Z}_{p^{k}}\right) \simeq \mathbb{Z}_{p^{k}}^{*}$, therefore the group is commutative.
- Hence, the conjugation action and centralizers are trivial.
- The first part of calculation reduces to solving the equation $\varphi^{2}=\psi^{2}$ in $\mathbb{Z}_{p^{k}}^{*}$ for a fixed φ.
- Then we determine $\operatorname{Im}(1-\varphi-\psi)$ for the pairs (φ, ψ).
- $\mathbb{Z}_{p^{k}}^{*}$ acts on $\mathbb{Z}_{p^{k}} / \operatorname{Im}(1-\varphi-\psi)$ by multiplication, so we can choose orbit representatives as 0 and the powers of p.

Enumeration over cyclic groups

Case $G=\mathbb{Z}_{p^{k}}$:

- $\operatorname{Aut}\left(\mathbb{Z}_{p^{k}}\right) \simeq \mathbb{Z}_{p^{k}}^{*}$, therefore the group is commutative.
- Hence, the conjugation action and centralizers are trivial.
- The first part of calculation reduces to solving the equation $\varphi^{2}=\psi^{2}$ in $\mathbb{Z}_{p^{k}}^{*}$ for a fixed φ.
- Then we determine $\operatorname{Im}(1-\varphi-\psi)$ for the pairs (φ, ψ).
- $\mathbb{Z}_{p^{k}}^{*}$ acts on $\mathbb{Z}_{p^{k}} / \operatorname{Im}(1-\varphi-\psi)$ by multiplication, so we can choose orbit representatives as 0 and the powers of p.
Result:

$$
\mathrm{pq}\left(\mathbb{Z}_{p^{k}}\right)=2 p^{k}-p^{k-1}+\sum_{i=0}^{k-2} p^{i}
$$

in particular, $\operatorname{pq}(p)=\operatorname{pq}\left(\mathbb{Z}_{p}\right)=2 p-1$.

Enumeration over the group \mathbb{Z}_{p}^{2}

Case $G=\mathbb{Z}_{p}^{2}$:

- $\operatorname{Aut}\left(\mathbb{Z}_{p}^{2}\right) \simeq G L(2, p)$
- We choose the representatives of the conjugacy classes in $G L(2, p)$.

φ	$C(\varphi)$
$\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), a \neq 0$	$G L(2, p)$
$\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), 0<a<b$	$\left\{\left(\begin{array}{ll}u & 0 \\ 0 & v\end{array}\right): u, v \neq 0\right\}$
$\left(\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right), a \neq 0$	$\left\{\left(\begin{array}{ll}u & v \\ 0 & u\end{array}\right): u \neq 0\right\}$
$\left(\begin{array}{ll}0 & 1 \\ a & b\end{array}\right), x^{2}-b x-a$ irreducible	$\left\{\left(\begin{array}{cc}u & v \\ a v & u+b v\end{array}\right): u \neq 0 \vee v \neq 0\right\}$

Enumeration over the group \mathbb{Z}_{p}^{2}

- For a fixed φ we determine the set $S_{\varphi}=\left\{\psi: \psi^{2}=\varphi^{2}\right\}$, i.e., we find the square roots of the matrix φ^{2}.
- Two methods for finding square roots of 2×2 matrices:
- a method based on Cayley-Hamilton theorem (a matrix is a root of its characteristic polynomial) for $\varphi^{2} \neq c l, c \in \mathbb{Z}_{p}$
- a straightforward calculation for the remaining matrices
- Then (if possible) we choose orbit representatives ψ of the conjugation action of $C(\varphi)$ on S_{φ}.
- We discuss the dimension of $\operatorname{Im}(1-\varphi-\psi)$.

Affine forms of paramedial quasigroups over \mathbb{Z}_{p}^{2}

φ	ψ	c	number
$\begin{aligned} & \left(\begin{array}{ll} a & 0 \\ 0 & a \end{array}\right) \\ & a \neq 0 \end{aligned}$	$\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$	$\binom{0}{0}$, if $a \neq 2^{-1}$	$p-2$
		$\binom{0}{0},\binom{1}{0}$, if $a=2^{-1}$	2
	$\left(\begin{array}{cc}-a & 0 \\ 0 & -a\end{array}\right)$	$\binom{0}{0}$	$p-1$
	$\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right)$	$\binom{0}{0}$, if $a \neq 2^{-1}$	$p-2$
		$\binom{0}{0},\binom{1}{0}$, if $a=2^{-1}$	2

φ	ψ	c	number
$\begin{aligned} & \left(\begin{array}{ll} a & 0 \\ 0 & b \end{array}\right) \\ & 0<a<b \end{aligned}$	$\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$	$\binom{0}{0}$, if $a, b \neq 2^{-1}$	$\binom{p-2}{2}$
		$\begin{aligned} & \binom{0}{0},\binom{1}{1}, \\ & \text { if } a=2^{-1} \vee b=2^{-1} \end{aligned}$	$2(p-2)$
	$\left(\begin{array}{cc}-a & 0 \\ 0 & -b\end{array}\right)$	$\binom{0}{0}$	$\binom{p-1}{2}$
	$\left(\begin{array}{cc} \pm a & 0 \\ 0 & \mp b\end{array}\right)$	$\binom{0}{0}$ if $a \neq 2^{-1}$ or $b \neq 2^{-1}$, resp. (depends on the signs)	$2\binom{p-2}{2}+p-2$
		$\binom{0}{0},\binom{1}{1},$ if $a=2^{-1}$ or $b=2^{-1}$, resp. (depends on the signs)	$2(p-2)$

φ	ψ	c	number
$\begin{aligned} & \left(\begin{array}{cc} a & 0 \\ 0 & -a \end{array}\right) \\ & 0<a<-a \end{aligned}$	$\left(\begin{array}{cc} a & 0 \\ 1 & -a \end{array}\right)$	$\binom{0}{0}$, if $a \neq \pm 2^{-1}$	$\frac{p-3}{2}$
		$\binom{0}{0},\binom{1}{0}$ if $a=2^{-1}$ or $a=-2^{-1}$, resp. (must satisfy $0<a<-a$)	2
	$\left(\begin{array}{cc}-a & 0 \\ 1 & a\end{array}\right)$	$\binom{0}{0}$	$\frac{p-1}{2}$
	$\left(\begin{array}{cc}k & 1 \\ a^{2}-k^{2} & -k\end{array}\right)$	$\binom{0}{0}$, if $k \neq 2^{-1} a^{-1}-a$	$\frac{(p-1)^{2}}{2}$
		$\begin{aligned} & \binom{0}{0},\binom{0}{1}, \\ & \text { if } k=2^{-1} a^{-1}-a \end{aligned}$	$p-1$

$\begin{aligned} & \left(\begin{array}{ll} a & 1 \\ 0 & a \end{array}\right) \\ & a \neq 0 \end{aligned}$	$\left(\begin{array}{ll} a & 1 \\ 0 & a \end{array}\right)$	$\binom{0}{0}$, if $a \neq 2^{-1}$	$p-2$
		$\binom{0}{0},\binom{0}{1}$, if $a=2^{-1}$	2
	$\left(\begin{array}{cc}-a & -1 \\ 0 & -a\end{array}\right)$	$\binom{0}{0}$	$p-1$
$\begin{aligned} & \left(\begin{array}{ll} 0 & 1 \\ a & b \end{array}\right) \\ & x^{2}-b x-a \end{aligned}$ irreducible	$\left(\begin{array}{ll}0 & 1 \\ a & b\end{array}\right)$	$\binom{0}{0}$	$\frac{p^{2}-p}{2}$
	$\left(\begin{array}{cc}0 & -1 \\ -a & -b\end{array}\right)$	$\binom{0}{0}$	$\frac{p^{2}-p}{2}$
$\begin{aligned} & \left(\begin{array}{ll} 0 & 1 \\ a & 0 \end{array}\right) \\ & x^{2}-a \end{aligned}$ irreducible	?	$\binom{0}{0}$	$\frac{(p-1)(p-3)}{2}$
	?	$\binom{0}{0}, \mathbf{w}, \mathbf{w} \notin \operatorname{Im}(1-\varphi-\psi)$	$p-1$

Thank you for your attention

