

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Žaneta Semanišinová

Paramedial quasigroups of prime and prime square order

LOOPS 2019

Definition of paramedial quasigroup

Definition (paramedial quasigroup)

A quasigroup (Q, *) is called paramedial, if for all $x, y, u, v \in Q$ the following holds

$$(x * y) * (u * v) = (v * y) * (u * x).$$

Example: If (G, +, -, 0) is an abelian group, then (G, -) is a paramedial quasigroup.

Motivation

Theorem (Kirnasovsky, 1995; Stanovský, 2016)

Let p be a prime. Then the number of medial quasigroups (up to isomorphism) of:

order p is

$$p^2 - p - 1$$
.

• order p^2 is

$$2p^4 - p^3 - p^2 - 3p - 1$$
.

Main result

Theorem

Let p be an odd prime. Then the number of paramedial guasigroups (up to isomorphism) of:

order p is

$$2p - 1$$
.

• order p^2 is

$$\frac{11}{2}p^2 + \frac{3}{2}p - 4.$$

The number of paramedial quasigroups of order 2 is 1 and of order 4 is 11.

Affine representation

Definition (affine quasigroup)

Let (G,+,-,0) be an abelian group and $\varphi,\,\psi\in {\rm Aut}(G),\,c\in G.$ Define * on G by

$$\mathbf{x} * \mathbf{y} = \varphi(\mathbf{x}) + \psi(\mathbf{y}) + \mathbf{c}.$$

The resulting quasigroup (G, *) is said to be affine over (G, +).

Theorem (T. Kepka, P. Němec, 1971)

A quasigroup (G,*) is paramedial iff it is affine over an abelian group (G,+) and

$$\varphi^2 = \psi^2.$$

Properties of counting functions

- pq(G) the number of paramedial quasigroups over G
- \bullet pq(n) the number of paramedial quasigroups of order n

The following holds:

$$pq(n) = \sum_{|G|=n} pq(G),$$

Properties of counting functions

- pq(G) the number of paramedial quasigroups over G
- pq(n) the number of paramedial quasigroups of order n

The following holds:

$$pq(n) = \sum_{|G|=n} pq(G),$$

If H a K are finite abelian groups such that gcd(|H|, |K|) = 1, then

$$pq(H \times K) = pq(H) \cdot pq(K).$$

In particular, for $k, l \in \mathbb{N}$ satisfying gcd(k, l) = 1 holds

$$pq(k \cdot l) = pq(k) \cdot pq(l).$$

Enumeration algorithm

Theorem (A. Drápal, 2009)

Let (G, +, -, 0) be an abelian group. The isomorphism classes of paramedial quasigroups over (G, +) are in one-to-one correspondence with the elements of the set

$$\{(\varphi, \psi, c): \varphi \in X, \psi \in Y_{\varphi}, c \in G_{\varphi, \psi}\},\$$

where

- X is a complete set of orbit representatives of the conjugation action of Aut(G) on itself,
- Y_{φ} is a complete set of orbit representatives of the conjugation action of $C_{\operatorname{Aut}(G)}(\varphi)$ on $S_{\varphi} = \{ \psi \in \operatorname{Aut}(G) : \psi^2 = \varphi^2 \},$
- $G_{\omega,\psi}$ is a complete set of orbit representatives of the natural action of $C_{\text{Aut}(G)}(\varphi) \cap C_{\text{Aut}(G)}(\psi)$ on $G/\text{Im}(1-\varphi-\psi)$.

Enumeration over cyclic groups

Case $G = \mathbb{Z}_{p^k}$:

- Aut $(\mathbb{Z}_{p^k}) \simeq \mathbb{Z}_{p^k}^*$, therefore the group is commutative.
- Hence, the conjugation action and centralizers are trivial, so the first part of calculation reduces to solving the equation $\varphi^2 = \psi^2$ in $\mathbb{Z}_{p^k}^*$ for fixed φ .
- We need to analyze $Im(1 \varphi \psi)$ depending on the pairs (φ, ψ) .
- $\mathbb{Z}_{p^k}^*$ acts on $\mathbb{Z}_{p^k}/\mathrm{Im}(1-\varphi-\psi)$ by multiplication, so we can choose orbit representatives as 0 and the powers of p.

Result:
$$pq(\mathbb{Z}_{p^k}) = 2p^k - p^{k-1} + \sum_{i=0}^{k-2} p^i$$

Enumeration over the group \mathbb{Z}_p^2

Case $G = \mathbb{Z}_p^2$:

- Aut(\mathbb{Z}_p^2) $\simeq GL(2,p)$
- We choose the representatives of the conjugacy classes in GL(2, p).

φ	$C(\varphi)$
$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, a \neq 0$	<i>GL</i> (2, <i>p</i>)
$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, 0 < a < b$	$\left\{ \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} : u, v \neq 0 \right\}$
$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}, a \neq 0$	$\left\{ \begin{pmatrix} u & v \\ 0 & u \end{pmatrix} : u \neq 0 \right\}$
$\begin{pmatrix} 0 & 1 \\ a & b \end{pmatrix}$, $x^2 - bx - a$ irreducible	$\left\{ \begin{pmatrix} u & v \\ av & u+bv \end{pmatrix} : u \neq 0 \lor v \neq 0 \right\}$

Enumeration over the group \mathbb{Z}_p^2

- For a fixed element φ we determine the set S_{φ} of all elements $\psi \in GL(2,p)$ satisfying that $\psi^2 = \varphi^2$, i.e., we find the square roots of the matrix φ^2 .
 - We use two methods for finding square roots of 2 x 2 matrices:
 - a method based on Cayley-Hamilton theorem for the matrices that are not a multiple of identity matrix
 - a straightforward calculation for the remaining matrices
- Then (if possible) we choose orbit representatives ψ of the conjugation action of the centralizer $C(\varphi)$ on S_{φ} .
- We discuss the dimension of $Im(1 \varphi \psi)$.

Affine forms of paramedial quasigroups over \mathbb{Z}_p^2

φ	ψ	С	number
(a 0)	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, if $a \neq 2^{-1}$	p-2
$\begin{pmatrix} 0 & a \end{pmatrix}$ $a \neq 0$	/	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ if } a = 2^{-1}$	2
	$ \left \begin{array}{ccc} -a & 0 \\ 0 & -a \end{array} \right $	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	p – 1
	$\begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, if $a \neq 2^{-1}$	p-2
		$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ if } a = 2^{-1}$	2

φ	ψ	С	number
(a 0)	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, if $a, b \neq 2^{-1}$	$\binom{p-2}{2}$
$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ $0 < a < b$		$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix},$ if $a = 2^{-1} \lor b = 2^{-1}$	2(<i>p</i> – 2)
	$ \begin{array}{c cc} & -a & 0 \\ 0 & -b \end{array} $	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\binom{p-1}{2}$
	$ \begin{pmatrix} \pm a & 0 \\ 0 & \mp b \end{pmatrix} $	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, if $a \neq 2^{-1}$ or $b \neq 2^{-1}$, resp. (depends on the signs)	$\binom{p-2}{2}+p-2$
		$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix},$ if $a = 2^{-1}$ or $b = 2^{-1}$, resp. (depends on the signs)	2(p-2)

φ	ψ	С	number
(a 0 \	$\begin{pmatrix} a & 0 \\ 1 & -a \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, if $a \neq \pm 2^{-1}$	<u>p-3</u>
$ \begin{pmatrix} 0 & -a \\ 0 < a < -a \end{pmatrix} $,	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix},$	2
		if $a = 2^{-1}$ or $a = -2^{-1}$, resp. (must satisfy $0 < a < -a$)	
	$\begin{pmatrix} -a & 0 \\ 1 & a \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	<u>p−1</u> 2
	$\begin{pmatrix} k & 1 \\ a^2 - k^2 & -k \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, if $k \neq 2^{-1}a^{-1} - a$	$\frac{(p-1)^2}{2}$
	,	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix},$	p – 1
		if $k = 2^{-1}a^{-1} - a$	

$ \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} $ $ a \neq 0 $	$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ if } a \neq 2^{-1}$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \text{ if } a = 2^{-1}$	p – 2 2
	$ \begin{pmatrix} -a & -1 \\ 0 & -a \end{pmatrix} $	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	p – 1
$\begin{pmatrix} 0 & 1 \\ a & b \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ a & b \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\frac{p^2-p}{2}$
$\begin{pmatrix} a & b \\ x^2 - bx - a \\ \text{irreducible} \end{pmatrix}$	$ \left \begin{array}{cc} 0 & -1 \\ -a & -b \end{array} \right $	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\frac{p^2-p}{2}$
$ \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix} $?	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	(p-1)(p-3) 2
$x^2 - a$ irreducible	?	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, w , w $\notin \text{Im}(1 - \varphi - \psi)$	p – 1

Thank you for your attention

Žaneta Semanišinová

e-mail: zaneta.semanisinova@gmail.com