

Žaneta Semanišinová

Paramedial quasigroups of prime and prime square order
 LOOPS 2019

9 July 2019

Definition (paramedial quasigroup)

A quasigroup $(Q, *)$ is called paramedial, if for all $x, y, u, v \in Q$ the following holds

$$
(x * y) *(u * v)=(v * y) *(u * x) .
$$

Example: If $(G,+,-, 0)$ is an abelian group, then $(G,-)$ is a paramedial quasigroup.

Theorem (Kirnasovsky, 1995; Stanovský, 2016)

Let p be a prime. Then the number of medial quasigroups (up to isomorphism) of:

- order p is

$$
p^{2}-p-1 .
$$

- order p^{2} is

$$
2 p^{4}-p^{3}-p^{2}-3 p-1 .
$$

Theorem

Let p be an odd prime. Then the number of paramedial quasigroups (up to isomorphism) of:

- order p is

$$
2 p-1 .
$$

- order p^{2} is

$$
\frac{11}{2} p^{2}+\frac{3}{2} p-4
$$

The number of paramedial quasigroups of order 2 is 1 and of order 4 is 11 .

Affine representation

Definition (affine quasigroup)

Let $(G,+,-, 0)$ be an abelian group and $\varphi, \psi \in \operatorname{Aut}(G), c \in G$. Define * on G by

$$
x * y=\varphi(x)+\psi(y)+c .
$$

The resulting quasigroup $(G, *)$ is said to be affine over $(G,+)$.

Theorem (T. Kepka, P. Němec, 1971)

A quasigroup $(G, *)$ is paramedial iff it is affine over an abelian group $(G,+)$ and

$$
\varphi^{2}=\psi^{2} .
$$

- $\mathrm{pq}(G)$ - the number of paramedial quasigroups over G
- $\mathrm{pq}(n)$ - the number of paramedial quasigroups of order n

The following holds:

$$
\mathrm{pq}(n)=\sum_{|G|=n} \mathrm{pq}(G),
$$

- $\mathrm{pq}(G)$ - the number of paramedial quasigroups over G
- $\mathrm{pq}(n)$ - the number of paramedial quasigroups of order n

The following holds:

$$
\mathrm{pq}(n)=\sum_{|G|=n} \mathrm{pq}(G),
$$

If H a K are finite abelian groups such that $\operatorname{gcd}(|H|,|K|)=1$, then

$$
\mathrm{pq}(H \times K)=\mathrm{pq}(H) \cdot \mathrm{pq}(K)
$$

In particular, for $k, I \in \mathbb{N}$ satisfying $\operatorname{gcd}(k, l)=1$ holds

$$
\mathrm{pq}(k \cdot l)=\mathrm{pq}(k) \cdot \mathrm{pq}(I) .
$$

Enumeration algorithm

Theorem (A. Drápal, 2009)

Let $(G,+,-, 0)$ be an abelian group. The isomorphism classes of paramedial quasigroups over $(G,+)$ are in one-to-one correspondence with the elements of the set

$$
\left\{(\varphi, \psi, c): \varphi \in X, \psi \in Y_{\varphi}, c \in G_{\varphi, \psi}\right\}
$$

where

- X is a complete set of orbit representatives of the conjugation action of $\operatorname{Aut}(G)$ on itself,
- Y_{φ} is a complete set of orbit representatives of the conjugation action of $C_{\operatorname{Aut}(G)}(\varphi)$ on $S_{\varphi}=\left\{\psi \in \operatorname{Aut}(G): \psi^{2}=\varphi^{2}\right\}$,
- $G_{\varphi, \psi}$ is a complete set of orbit representatives of the natural action of $C_{\operatorname{Aut}(G)}(\varphi) \cap C_{\operatorname{Aut}(G)}(\psi)$ on $G / \operatorname{lm}(1-\varphi-\psi)$.

Case $G=\mathbb{Z}_{p^{k}}$:

- $\operatorname{Aut}\left(\mathbb{Z}_{p^{k}}\right) \simeq \mathbb{Z}_{p^{k}}^{*}$, therefore the group is commutative.
- Hence, the conjugation action and centralizers are trivial, so the first part of calculation reduces to solving the equation $\varphi^{2}=\psi^{2}$ in $\mathbb{Z}_{p^{k}}^{*}$ for fixed φ.
- We need to analyze $\operatorname{Im}(1-\varphi-\psi)$ depending on the pairs (φ, ψ).
- $\mathbb{Z}_{p^{k}}^{*}$ acts on $\mathbb{Z}_{p^{k}} / \operatorname{lm}(1-\varphi-\psi)$ by multiplication, so we can choose orbit representatives as 0 and the powers of p.
Result: $\mathrm{pq}\left(\mathbb{Z}_{p^{k}}\right)=2 p^{k}-p^{k-1}+\sum_{i=0}^{k-2} p^{i}$

Enumeration over the group \mathbb{Z}_{p}^{2}

Case $G=\mathbb{Z}_{p}^{2}$:

- $\operatorname{Aut}\left(\mathbb{Z}_{p}^{2}\right) \simeq G L(2, p)$
- We choose the representatives of the conjugacy classes in $G L(2, p)$.

φ	$C(\varphi)$
$\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right), a \neq 0$	$G L(2, p)$
$\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), 0<a<b$	$\left\{\left(\begin{array}{ll}u & 0 \\ 0 & v\end{array}\right): u, v \neq 0\right\}$
$\left(\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right), a \neq 0$	$\left\{\left(\begin{array}{ll}u & v \\ 0 & u\end{array}\right): u \neq 0\right\}$
$\left(\begin{array}{ll}0 & 1 \\ a & b\end{array}\right), x^{2}-b x-a$ irreducible	$\left\{\left(\begin{array}{cc}u & v \\ a v & u+b v\end{array}\right): u \neq 0 \vee v \neq 0\right\}$

Enumeration over the group \mathbb{Z}_{p}^{2}

- For a fixed element φ we determine the set S_{φ} of all elements $\psi \in G L(2, p)$ satisfying that $\psi^{2}=\varphi^{2}$, i.e., we find the square roots of the matrix φ^{2}.
- We use two methods for finding square roots of 2×2 matrices:
- a method based on Cayley-Hamilton theorem for the matrices that are not a multiple of identity matrix
- a straightforward calculation for the remaining matrices
- Then (if possible) we choose orbit representatives ψ of the conjugation action of the centralizer $C(\varphi)$ on S_{φ}.
- We discuss the dimension of $\operatorname{Im}(1-\varphi-\psi)$.

Affine forms of paramedial quasigroups over \mathbb{Z}_{p}^{2}

φ	ψ	c	number
$\begin{aligned} & \left(\begin{array}{ll} a & 0 \\ 0 & a \end{array}\right) \\ & a \neq 0 \end{aligned}$	$\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$	$\binom{0}{0}$, if $a \neq 2^{-1}$	$p-2$
		$\binom{0}{0},\binom{1}{0}$, if $a=2^{-1}$	2
	$\left(\begin{array}{cc}-a & 0 \\ 0 & -a\end{array}\right)$	$\binom{0}{0}$	$p-1$
	$\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right)$	$\binom{0}{0}$, if $a \neq 2^{-1}$	$p-2$
		$\binom{0}{0},\binom{1}{0}$, if $a=2^{-1}$	2

φ	ψ	c	number
$\begin{aligned} & \left(\begin{array}{ll} a & 0 \\ 0 & b \end{array}\right) \\ & 0<a<b \end{aligned}$	$\left(\begin{array}{ll} a & 0 \\ 0 & b \end{array}\right)$	$\binom{0}{0}$, if $a, b \neq 2^{-1}$	$\binom{p-2}{2}$
		$\binom{0}{0},\binom{1}{1},$ if $a=2^{-1} \vee b=2^{-1}$	$2(p-2)$
	$\left(\begin{array}{cc}-a & 0 \\ 0 & -b\end{array}\right)$	$\binom{0}{0}$	$\binom{p-1}{2}$
	$\left(\begin{array}{cc} \pm a & 0 \\ 0 & \mp b\end{array}\right)$	$\binom{0}{0}$ if $a \neq 2^{-1}$ or $b \neq 2^{-1}$, resp. (depends on the signs)	$\binom{p-2}{2}+p-2$
		$\binom{0}{0},\binom{1}{1},$ if $a=2^{-1}$ or $b=2^{-1}$, resp. (depends on the signs)	$2(p-2)$

φ	ψ	c	number
$\begin{aligned} & \left(\begin{array}{cc} a & 0 \\ 0 & -a \end{array}\right) \\ & 0<a<-a \end{aligned}$	$\left(\begin{array}{cc} a & 0 \\ 1 & -a \end{array}\right)$	$\binom{0}{0}$, if $a \neq \pm 2^{-1}$	$\frac{p-3}{2}$
		$\binom{0}{0},\binom{1}{0}$, if $a=2^{-1}$ or $a=-2^{-1}$, resp. (must satisfy $0<a<-a$)	2
	$\left(\begin{array}{cc}-a & 0 \\ 1 & a\end{array}\right)$	$\binom{0}{0}$	$\frac{p-1}{2}$
	$\left(\begin{array}{cc}k & 1 \\ a^{2}-k^{2} & -k\end{array}\right)$	$\binom{0}{0}$, if $k \neq 2^{-1} a^{-1}-a$	$\frac{(p-1)^{2}}{2}$
		$\binom{0}{0},\binom{0}{1},$ if $k=2^{-1} a^{-1}-a$	$p-1$

$\begin{aligned} & \left(\begin{array}{ll} a & 1 \\ 0 & a \end{array}\right) \\ & a \neq 0 \end{aligned}$	$\left(\begin{array}{ll} a & 1 \\ 0 & a \end{array}\right)$	$\binom{0}{0}$, if $a \neq 2^{-1}$	$p-2$
		$\binom{0}{0},\binom{0}{1}$, if $a=2^{-1}$	2
	$\left(\begin{array}{cc}-a & -1 \\ 0 & -a\end{array}\right)$	$\binom{0}{0}$	$p-1$
$\begin{aligned} & \left(\begin{array}{ll} 0 & 1 \\ a & b \end{array}\right) \\ & x^{2}-b x-a \end{aligned}$irreducible	$\left(\begin{array}{ll}0 & 1 \\ a & b\end{array}\right)$	$\binom{0}{0}$	$\frac{p^{2}-p}{2}$
	$\left(\begin{array}{cc}0 & -1 \\ -a & -b\end{array}\right)$	$\binom{0}{0}$	$\frac{p^{2}-p}{2}$
$\begin{aligned} & \left(\begin{array}{ll} 0 & 1 \\ a & 0 \end{array}\right) \\ & x^{2}-a \end{aligned}$ irreducible	?	$\binom{0}{0}$	$\frac{(p-1)(p-3)}{2}$
	?	$\binom{0}{0}, \mathbf{w}, \mathbf{w} \notin \operatorname{lm}(1-\varphi-\psi)$	$p-1$

Thank you for your attention

Žaneta Semanišinová

