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Abstract

Let R be a domain, complete with respect to a norm which defines
a non-discrete topology on R. We prove that the quotient field of R
is ample, generalizing a theorem of Pop. We then consider the case
where R is a ring of arithmetic power series which are holomorphic on
the closed disc of radius 0 < r < 1 around the origin, and apply the
above result to prove that the absolute Galois group of the quotient
field of R is semi-free. This strengthens a theorem of Harbater, who
solved the inverse Galois problem over these fields.

1 Introduction

Let K(X) be the field of rational functions over a field K. A central
conjecture in modern Galois theory, coined by Dèbes and Deschamps
[DD99, §2.1.2], asserts that any finite split embedding problem over
K(X) is solvable. In particular, the conjecture implies a positive so-
lution to the inverse Galois problem over K = Q, and more generally,
over any Hilbertian field K.

In the case where K is an ample field, the conjecture was proven
by Pop in [Pop96], using methods of rigid analytic geometry, and
reproven in [HJ98] in an algebraic fashion. We recall the definition:

Definition 1.1. A field K is ample (or large following [Pop96]) if
every smooth K-curve that has a K-rational point has infinitely many
such points. Equivalently, K is ample if it is existentially closed in
the field of power series K((t)).
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The family of ample fields includes, among others, all Henselian
valued fields, all real closed fields, all separably closed fields, and more
generally all pseudo algebraically closed fields.

So far, the only case where the conjecture of Dèbes and Deschamps
was proven, is where K is ample. Thus ample fields now play an
important role in Galois theory and Field Arithmetic. Moreover, in
recent years ample fields drew attention from several other branches
of mathematics – for example in arithmetic geometry [Kol99], [FP10],
model theory [PP07], and valuation theory [AKP11].

In light of this, it is desirable to determine those fields which are
ample. In [Pop10], Pop shows that the class of ample fields is even
larger than previously believed, and includes the quotient field of any
integral domain which is complete, or more generally, Henselian with
respect to a non-trivial ideal. This allows Pop to give a short proof of
previous Galois-theoretic results by Harbater-Stevenson [HS05] and
the second author [Par09], by reducing them to the case settled in
[Pop96].

The proof in [Pop96] of the solvability of split embedding problems
over K(X), where K is ample, works by lifting problems from K(X)
to K((t))(X), and by reducing solutions over K((t))(X) to solutions
over K(X), using the fact that K is existentially closed in K((t)).
The critical part of the proof, solution over K((t))(X), is achieved by
means of patching. The method of patching yielded several important
results, in particular the mentioned theorem of Pop, and the solution
of the general Abhyankar Conjecture by Harbater [Har94]. Patch-
ing originates in a series of works by Harbater [Har84b], [Har84c],
[Har84a], studying rings of convergent arithmetic power series.

Let 0 < r < 1, and let Cr[[t]] be the ring of holomorphic functions
on the open disc of radius r around the origin which are continuous
on the closed disc of radius r. Also, let Cr+ [[t]] =

⋃
s>r Cs[[t]] be

the ring of holomorphic functions on (a neighborhood of) the closed
disc of radius r. If A is a subring of C, let Ar[[t]] = Cr[[t]] ∩ A[[t]]
and Ar+ [[t]] = Cr+ [[t]]∩A[[t]] be the corresponding rings of functions
whose Taylor expansions have coefficients in A.

The purpose of the present work is two-fold. First, we wish to
strengthen Harbater’s Galois-theoretic results concerning the arith-
metic case. That is, we study Galois theory over Quot(Ar+ [[t]]) and
Quot(Ar[[t]]), for any proper subring A of Q (in particular, for A = Z).
In [Har84c, §2], Harbater applies patching arguments to prove that the
inverse Galois problem has a positive solution over Quot(Zr+ [[t]]), for
any 0 < r < 1. A positive solution to the inverse Galois problem over
a field K means that any finite group G occurs as a quotient of the
absolute Galois group Gal(K) of K. However, this only yields partial
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information on Gal(K). Here we prove (see Theorem 4.9 below):

Theorem 1.2. Let A be a proper subring of Q, let 0 < r < 1, and
let R = Ar+ [[t]] or R = Ar[[t]]. Then Gal(Quot(R)) is a semi-free
profinite group

Here, a profinite group G of infinite rank m is called semi-free if
any non-trivial finite split embedding problem for G has m indepen-
dent solutions. A profinite group G is free if and only if it is semi-free
and projective. Moreover, semi-free groups exhibit natural behavior,
and intuitively can be thought of as “free groups without projectivity”.
See [BSHH10] for details on this notion. We note (Remark 4.10), that
the fields in Theorem 1.2 have non-projective absolute Galois groups,
hence our result is optimal in the above sense. Recently, Harbater’s
results were generalized in a different direction using patching over
analytic Berkovich spaces in [Poi10].

Our second objective, which serves as an ingredient in the proof
of Theorem 1.2, is to generalize Pop’s theorem of [Pop10] concerning
quotient fields of Henselian domains. Any ideal a of a domain R in-
duces a non-archimedean semi-norm (Definition 2.1) on R, given by
||x||a = inf {e−n : n ∈ Z≥0, x ∈ an}. In this work, we consider arbi-
trary semi-norms, which need not arise from an ideal, and may be
archimedean. We introduce the notion of Henselian semi-normed do-
mains – domains satisfying a form of Newton approximation with
respect to the given semi-norm (see Definition 2.4). If a domain is
Henselian with respect to an ideal, then it is Henselian with respect
to the semi-norm induced by that ideal. We then prove (cf. Proposi-
tion 2.9 and Theorem 2.10 below):

Theorem 1.3. If a domain R is complete, or more generally Henselian
with respect to a norm that defines a non-discrete topology on R, then
K = Quot(R) is ample.

The criterion for ampleness given in Theorem 1.3 allows us to unify
proofs of ampleness for different classes of fields, and also to prove
the ampleness of new fields. In particular, Theorem 1.3 implies Pop’s
theorem about quotient fields of Henselian domains, and it implies that
the field of real numbers R is ample (Remark 2.13). Using Theorem
1.3 we prove that for any 0 < r < 1 and a subring A of C, the quotient
field of Ar[[t]] is ample. This result does not follow from [Pop10] (see
Remark 3.3). Since Quot(Ar+ [[t]]) is a union of the increasing chain
of ample fields Quot(As[[t]]), s > r, we deduce that this field is ample
as well.

If R = Ar[[t]] or R = Ar+ [[t]] for some 0 < r < 1 and a proper
subring A of Q, then R is a Krull domain of dimension exceeding 1,
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and a theorem of Weissauer implies that K = Quot(R) is Hilbertian.
Combining this with the fact that K is ample, we deduce that any
finite split embedding problem over K is solvable. However, in order
to show that these fields have a semi-free absolute Galois group, we
must show that any non-trivial finite split embedding problem over
K has |K|-many independent solutions. In order to do so, we prove
that these fields are fully Hilbertian, a notion developed in [BSP11]
(and also applied in [Pop10], without being given an explicit name).
This means that given a non-trivial split embedding problem over K
and a regular solution over K(X), one can specialize the solution (via
substitutions of the form X 7→ a ∈ K) into |K|-many independent
solutions over K. Combining the facts that K is fully Hilbertian and
ample, we deduce that Gal(K) is a semi-free profinite group, proving
Theorem 1.2.

Finally, we note that in [Har84b, §3], [Har84a], and [Har88, §3],
Harbater also considers the rings Ar+ [[t]]alg of algebraic convergent
power series (which in [Har84b, Proposition 3.2/3.3] he proves to co-
incide with other rings Ar+ [[t]]h and Ar[[t]]

h he defines there). We
show that all of our results hold for these rings as well.

2 Henselian normed domains

In this section we develop the notion of a Henselian normed domain.
We start by recalling some terminology.

Definition 2.1. Let R be a ring (commutative with 1). A map

|| · || : R→ R≥0

is a semi-norm on R if it satisfies for all x, y ∈ R that

‖x+ y‖ ≤ ‖x‖+ ‖y‖ , (2.1.1)

‖xy‖ ≤ ‖x‖ · ‖y‖ , (2.1.2)

‖0‖ = 0, (2.1.3)

‖±1‖ = 1, (2.1.4)

and a norm if it satisfies in addition

‖x‖ = 0 ⇒ x = 0. (2.1.5)

A semi-normed ring (R, || · ||) is complete if every Cauchy sequence
(xn)n∈N, xn ∈ R, converges to an element of R. We say that || · || is
discrete if the topology induced on R by || · || is discrete.

4



Remark 2.2. Conditions (2.1.1) and (2.1.2) just express continuity
of addition and multiplication. In particular, every polynomial f ∈
R[X] gives rise to a continuous function R → R. Note that (2.1.2)
and (2.1.4) imply that || − x|| = ||x|| for all x ∈ R. Condition (2.1.5)
implies that the induced topology on R is Hausdorff, and therefore
limits, if they exist, are unique. Since {x ∈ R : ||x|| = 0} is an ideal,
every semi-norm on a field is a norm. Note that an absolute value is
a norm that satisfies equality in (2.1.2).

Example 2.3. Semi-norms arise naturally in the following situations:

1. An absolute value on a field K (archimedean or non-archimedean)
is a norm on every subring R of K. In particular, every subring
of C is equipped with an archimedean norm.

2. Every ideal a of a ring R defines a semi-norm || · ||a on R (the
a-adic semi-norm) by

||x||a = inf
{
e−n : n ∈ Z≥0, x ∈ an

}
∈ [0, 1].

The semi-norm || · ||a is a norm if and only if the a-adic topology
on R is Hausdorff, i.e. if

⋂
n∈N an = (0).

3. A semi-norm || · || on a ring R extends to a semi-norm || · ||X on
the polynomial ring R[X] by sending f(X) =

∑d
i=0 aiX

i ∈ R[X]
to

‖f‖X =
d∑
i=0

‖ai‖ .

If || · || is a norm, then so is || · ||X .

4. If (R, || · ||) is a semi-normed ring and D is a compact topological
space, then ||·|| extends to a semi-norm ||·||D on the ring C(D,R)
of continuous functions D → R (the uniform semi-norm) by
sending f ∈ C(D,R) to

‖f‖D = max {‖f(x)‖ : x ∈ D} .

If || · || is a norm, then so is || · ||D.

5. If || · ||1 and || · ||2 are two semi-norms on a ring R, then their
maximum || · || = max{|| · ||1, || · ||2} is also a semi-norm on R.
If || · ||1 or || · ||2 is a norm, then so is || · ||.

Definition 2.4. A semi-normed ring (R, || · ||) is Henselian if for
every c ∈ R and d ∈ N there exists ε > 0 such that every polyno-
mial f(X) ∈ R[X] of degree at most d which satisfies the following
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conditions has a zero in R (cf. Example 2.3(3)).

‖f(0)‖ < ε (2.4.1)∥∥f ′(0)− 1
∥∥ < ε (2.4.2)

‖f‖X < c (2.4.3)

Lemma 2.5. If (R, ||·||) is a complete normed ring and x ∈ R satisfies
||x− 1|| < 1/2, then x ∈ R× and ||x−1 − 1|| < 1.

Proof. If x = 1−α with ||α|| < 1/2, then x−1 = (1−α)−1 =
∑∞

i=0 α
i

is a convergent geometric series, and hence lies in R. Moreover,

∥∥x−1 − 1
∥∥ =

∥∥∥∥∥
∞∑
i=1

αi

∥∥∥∥∥ ≤
∞∑
i=1

‖α‖i < 1.

Definition 2.6. If f ∈ R[X] is a polynomial we denote by f (k) the
k-th Hasse-Schmidt derivative of f with respect to X. That is, the
map f 7→ f (k) is the R-linear extension of the operation

(Xn)(k) =

{(
n
k

)
Xn−k if k ≤ n

0 if k > n
(2.6.1)

on the monomials. In particular, f (0) = f and f (1) = f ′.

Lemma 2.7. If (R, || · ||) is a normed ring and f ∈ R[X] a polynomial
of degree at most d, then the following holds for every k ∈ N and x ∈ R
with ||x|| < 1: ∥∥∥f (k)(x)− f (k)(0)

∥∥∥ ≤ ‖x‖ · d! ‖f‖X .

In particular, ∥∥∥f (k)(x)
∥∥∥ ≤ 2d! · ‖f‖X (2.7.1)

and ∥∥f ′(x)− 1
∥∥ ≤ ∥∥f ′(0)− 1

∥∥+ ‖x‖ · d! ‖f‖X . (2.7.2)

Proof. By (2.6.1), if f(X) =
∑d

i=0 aiX
i, then

f (k)(X) =
d∑
i=k

ai

(
i

k

)
Xi−k = f (k)(0) +

d∑
i=k+1

ai

(
i

k

)
Xi−k.

Since ||x|| < 1 and
(
i
k

)
≤ i!,

∥∥∥f (k)(x)− f (k)(0)
∥∥∥ ≤ d∑

i=k+1

‖ai‖·
∥∥∥∥( ik

)∥∥∥∥ ·‖x‖i−k ≤ ‖x‖·d!

d∑
i=k+1

‖ai‖ ,
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hence
∥∥f (k)(x)− f (k)(0)

∥∥ ≤ ‖x‖ · d! ‖f‖X by the definition of || · ||X .

Since f (k)(0) = ak, certainly
∥∥f (k)(0)

∥∥ = ‖ak‖ ≤ ‖f‖X , and therefore
also (2.7.1) follows.

Proposition 2.8. A complete normed ring is Henselian.

Proof. Let (R, || · ||) be a complete normed ring, and let c and d be
given. Choose 0 < ρ < 1/2 such that ρcd! < 1/4, and choose 0 <
δ < 1/2 such that δ(1 − δ)−1 < ρ and 4δcdd! < 1. Let f(X) ∈ R[X]
be a polynomial of degree at most d that satisfies (2.4.1)-(2.4.3) for
ε = δ2/2.

If ||x|| < ρ, then by (2.4.2), (2.4.3) and (2.7.2),∥∥f ′(x)− 1
∥∥ ≤

∥∥f ′(0)− 1
∥∥+ ‖x‖ · d! ‖f‖X

< ε+ ρcd! ≤ δ2

2
+

1

4
<

1

2
,

so Lemma 2.5 implies that f ′(x) ∈ R× and∥∥f ′(x)−1 − 1
∥∥ < 1.

In particular, ∥∥f ′(x)−1
∥∥ < 2. (2.8.1)

Moreover, by (2.7.1) and (2.4.3),

2δ ·
d∑

k=1

∥∥∥f (k)(x)
∥∥∥ ≤ 2δ · d · 2d! · ‖f‖X ≤ 4δcdd! < 1. (2.8.2)

We now construct inductively a sequence a0 = 0, a1, a2, . . . of ele-
ments of R that satisfies for each n the following

Induction hypothesis:

‖f(an)‖ < 1

2
δn+2, (An)

and if n > 0, then

‖an − an−1‖ < δn+1. (Bn)

Induction base. Consider the case n = 0. Then a0 = 0 ∈ R and

||f(a0)|| = ||f(0)|| < ε =
1

2
δ2,

by (2.4.1), so (A0) holds.
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Induction step. Let n ≥ 0 and suppose that we already con-
structed a0, . . . , an. Then, by a0 = 0 and (B1), . . . , (Bn),

‖an‖ ≤
n∑
k=1

‖ak − ak−1‖ ≤
n∑
k=1

δk+1 ≤
∞∑
k=1

δk =
δ

1− δ
< ρ.

Thus, f ′(an) ∈ R× and ||f ′(an)−1|| < 2 by (2.8.1). Therefore, we can
define

an+1 = an − f ′(an)−1f(an) ∈ R.

We now show that an+1 satisfies (An+1) and (Bn+1). Indeed,∥∥f ′(an)−1
∥∥ · ‖f(an)‖ < 2 · 1

2
δn+2 = δn+2

by (An), so

‖an+1 − an‖ =
∥∥f ′(an)−1f(an)

∥∥ < δn+2 (2.8.3)

and hence (Bn+1) holds. By Taylor expansion,

f(an+1) = f(an) +
d∑

k=1

[
(−1)k

(
f ′(an)−1f(an)

)k · f (k)(an)
]

=
d∑

k=2

[
(−1)k

(
f ′(an)−1f(an)

)k · f (k)(an)
]
,

hence (2.8.3) implies that

‖f(an+1)‖ ≤
d∑

k=2

[∥∥f ′(an)−1f(an)
∥∥k · ∥∥∥f (k)(an)

∥∥∥]
≤ (δn+2)2 ·

d∑
k=2

(δn+2)k−2
∥∥∥f (k)(an)

∥∥∥
≤ δ2n+3 · δ ·

d∑
k=2

∥∥∥f (k)(an)
∥∥∥ .

Thus, (2.8.2) gives that

‖f(an+1)‖ < δ2n+3 · 1

2
≤ 1

2
δn+3,

so (An+1) holds, and this concludes the induction step.
End of the proof. The an form a sequence in R, which is

Cauchy by (Bn). Therefore, since (R, || · ||) is complete by assumption,
this sequence converges to an element a ∈ R. By (An), this limit a
must satisfy ||f(a)|| = 0, and so we get that f(a) = 0 by (2.1.5).
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The proof of the following proposition is based on the proofs of
[Pop10, Theorem 1.1] and [Jar11, Proposition 5.7.3].

Proposition 2.9. The quotient field of an infinite non-discrete Hen-
selian semi-normed domain is ample.

Proof. Let (R, || · ||) be an infinite non-discrete Henselian semi-normed
domain, and let K = Quot(R). Let C be a K-curve with a smooth K-
rational point. We want to prove that C(K) is infinite. Without loss
of generality, one can successively make the following assumptions,
cf. [Jar11, Lemma 5.3.1]: C is an affine plane curve, (0, 0) ∈ C is a
smooth rational point, and the tangent to C in (0, 0) is the line Y = 0.
That is, C is given by a polynomial

g(X,Y ) = Y +
∑
i+j≥2

gijX
iY j ∈ K[X,Y ],

where gij ∈ K for all i, j. Write gij =
pij
qij

, pij , qij ∈ R, and let

q =
∏
i,j qij . Then

1

q
· g(qX, qY ) = Y +

∑
i+j≥2

pij
qij
qi+j−1XiY j ∈ R[X,Y ].

Thus, we can assume without loss of generality that g ∈ R[X,Y ].
For x ∈ R let fx(Y ) = g(x, Y ) ∈ R[Y ]. Let d = degY (g) and

c = ||f0||Y + 1. Then there exists δ > 0 such that if ||x|| < δ, then
||fx||Y < c. Since (R, || · ||) is Henselian, there exists ε > 0 such that
the following holds for all x ∈ R with ||x|| < δ: If ||fx(0)|| < ε and
||f ′x(0)−1|| < ε, then fx has a zero in R. But since f0(0) = g(0, 0) = 0,
and f ′0(0) = ∂f

∂Y (0, 0) = 1, these conditions will be satisfied if ||x|| is
sufficiently small. Since (R, || · ||) is an infinite domain, and non-
discrete, we can find infinitely many such x ∈ R. Indeed, if || · || is
a norm, then the topology on R is Hausdorff and non-discrete, hence
every neighborhood of 0 is infinite. And if || · || is not a norm, then
n = {x ∈ R : ||x|| = 0} is a non-trivial ideal of R, and hence infinite.
This gives infinitely many different zeros of g in R.

Combining these propositions, we get the following result.

Theorem 2.10. The quotient field of a non-discrete complete normed
domain is ample.

Proof. This follows from Proposition 2.8 and Proposition 2.9.

Corollary 2.11. Let R be a non-discrete complete normed domain.
Then any finite split embedding problem over Quot(R[X]) is solvable.
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Proof. SinceK = Quot(R) is ample by Theorem 2.10, and Quot(R[X])
is a rational function field over K, the result follows from the main
theorem of [Pop96].

In fact, every non-discrete and relatively algebraically closed sub-
ring of a complete normed (or Henselian normed) domain is again
Henselian and therefore has an ample quotient field (by Proposition
2.9) and satsifes the consequence of Corollary 2.11:

Lemma 2.12. If (R, || · ||) is a Henselian semi-normed domain, and
R0 ⊆ R is a subring which is algebraically closed in R, then (R0, || · ||)
is Henselian.

Proof. If f ∈ R0[X] satisfies conditions (2.4.1)-(2.4.3) in (R0, || · ||),
then it also satisfies these conditions in (R, || · ||). Hence, f has a zero
in R, which by the assumption that R0 is algebraically closed in R
must lie in R0.

Remark 2.13. In [Pop10], Pop proves that the quotient field of a do-
main complete with respect to a non-zero ideal, or more generally, the
quotient field of a Henselian domain, is ample. In fact, this theorem
of Pop is generalized by the results of this section:

Indeed, if a domain R is Henselian with respect to an ideal a, then
(R, || · ||a) is Henselian for ε = 1 independent of c and d (cf. Example
2.3(2)). If a 6= (0), then || · ||a is non-discrete. If R is complete with
respect to a, then (R, || · ||a) is complete. If (R, a) is Hausdorff, then
(R, ||·||a) is a norm. The following diagram summarizes the properties
of these notions (the top row is concerned with domains and ideals,
while the bottom row is concerned with semi-norms).

complete =======
if Hausdorff

⇒ Henselian ===========
[Pop10, Thm. 1.1]

if a 6= (0)
⇒ ample quotient field

complete

�
wwww

=======
Prop. 2.8

if normed
⇒ Henselian

�
wwwww

===========
Prop. 2.9

if non-discrete
⇒ ample quotient field

The results of this section are a proper generalization of Pop’s
result. For example, Theorem 2.10 immediately implies the well known
fact that R is ample. The following section gives more non-trivial
examples.

Note that in our general case, one cannot always choose ε in Def-
inition 2.4 independently of c and d. If R = R (with the usual ab-
solute value) and f(X) = 1

εX
2 + X + ε

2 , then |f(0)| = ε/2 < ε and
|f ′(0)−1| = 0 < ε, but f has no zero in R, although (R, |·|) is complete
and non-discrete.
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Remark 2.14. One could prove Theorem 2.10 directly using [DH90,
Theorem 2.1]. However, our approach has the advantage that it shows
how Pop’s result on Henselian domains fits into the picture.

Remark 2.15. In general, Proposition 2.8 does not hold for com-
plete semi-normed domains. For example, let R =

⋃
n∈NQ[t2

−n
] and

a = (t, t1/2, t1/4, . . . ). Then
⋂
n∈N an = a. This implies that (R, a) is

complete, since any Cauchy sequence converges to one of its elements.
On the other hand, if || · || = || · ||a is the semi-norm induced on R
by a, then (R, || · ||) is not Henselian. Indeed, let c = 3, d = 2, and
suppose there exists ε > 0 as in Definition 2.4. Let

F (X) = X2 +X + t ∈ R[X].

Then ||F (0)|| = ||t|| = 0 < ε, ||F ′(0) − 1|| = ||0|| = 0 < ε, and
||F ||X = 2 < c. However, if f ∈ R with F (f) = 0, then there exists n
such that f ∈ Q[t2

−n
], so α = f(1) ∈ Q satisfies

0 = F (α) = α2 + α+ 1,

a contradiction. In particular, this shows that [Pop10, (1) on p. 2] can
only refer to ring-ideal pairs that are complete and Hausdorff (note
that for some authors, e.g. [AM69], the definition of a complete ring
already includes the Hausdorff condition).

3 Rings of convergent power series

The aim of this section is to show that quotient fields of certain rings
of convergent power series are ample.

Let 0 < r < 1, let A ⊆ C be a subring of the field of complex
numbers, and let

Ar[[t]] = Cr[[t]] ∩A[[t]]

be the ring of continuous C-valued functions on the closed disc

Dr = {z ∈ C : |z| ≤ r}

which are holomorphic on the open disc

Ur = {z ∈ C : |z| < r}

and, as power series around the center 0 ∈ C, have coefficients in A.
Moreover, let

Ar+ [[t]] =
⋃
s>r

As[[t]],
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and for each of these rings R let Ralg denote the algebraic closure of
A[t] in R.

Let || · ||Dr be the the uniform norm on Cr[[t]], given by

‖f‖Dr
= max{|f(z)| : |z| ≤ r},

cf. Example 2.3(4), and let || · ||(t) be the (t)-adic norm on C[[t]] given
by ∥∥∥∥∥

∞∑
n=0

ant
n

∥∥∥∥∥
(t)

= e− inf{n∈Z≥0:an 6=0},

cf. Example 2.3(2). Finally, let || · || = max{|| · ||Dr , || · ||(t)} be the
maximum of || · ||Dr and || · ||(t) restricted to Ar[[t]], cf. Example 2.3(5).

The following observation occurs in [DH90, p. 167].

Lemma 3.1. (Ar[[t]], || · ||) is complete.

Proof. Note that (Cr[[t]], || · ||Dr) and (A[[t]], || · ||(t)) are complete.
Any || · ||-Cauchy sequence (fn)n∈N in Ar[[t]] is || · ||Dr -Cauchy, so it
converges uniformly to some f ∈ Cr[[t]], and it is || · ||(t)-Cauchy, hence
it converges t-adically in A[[t]], i.e. the sequence of k-th coefficients of
fn is eventually constant, for every k. Since by the Cauchy integral
formula the sequence of k-th coefficients of fn converges to the k-th
coefficient of f (cf. [Har84b, p. 804]), these two limits conincide and
f ∈ Cr[[t]] ∩A[[t]] = Ar[[t]].

Proposition 3.2. For any subring A ⊆ C and every 0 < r < 1, the
quotient fields of the following domains are ample:

1. Ar[[t]]

2. Ar+ [[t]]

3. Ar[[t]]alg

4. Ar+ [[t]]alg

Proof. By Lemma 3.1, (Ar[[t]], || · ||) is complete. Since tn ∈ Ar[[t]]
and ||tn|| = max{rn, e−n} → 0, (Ar[[t]], || · ||) is not discrete. Hence,
Quot(Ar[[t]]) is ample by Theorem 2.10. Since Ar+ [[t]] =

⋃
s>r As[[t]],

Quot(Ar+ [[t]]) =
⋃
s>r

Quot(As[[t]])

is the union of an increasing family of ample fields, and hence ample.
By Proposition 2.8, (Ar[[t]], || · ||) is Henselian, so Lemma 2.12

implies that also (Ar[[t]]alg, || · ||) is Henselian. Hence, Quot(Ar[[t]]alg)
is ample by Proposition 2.9. This again implies that Quot(Ar+ [[t]]alg)
is a union of ample fields, and hence ample.

12



Remark 3.3. By Proposition 3.2, the quotient field of R = Zr[[t]] is
ample. Note that this does not follow from Pop’s result that the quo-
tient field of a Henselian domain is ample, cf. Remark 2.13. Indeed,
suppose that (R′, a) is a Henselian domain-ideal pair with Quot(R′) =
Quot(R) and a 6= (0). Choose any element 0 6= fg−1 ∈ a, f, g ∈ R,
g 6= 0. Then there exists 0 < s0 < r such that both f and g are
non-zero at s0, and without loss of generality we can assume that
f(s0)g(s0)−1 > 0 (if not, replace fg−1 with −fg−1). Then there exists
ε > 0 and a small neighborhood U of s0 in R such that f(s)g(s)−1 > ε
for all s ∈ U . Let n ∈ N with n > ε−1 and consider the polynomial

F (X) = nX2 +X +
f

g
∈ R′[X].

Then F (0) = fg−1 ∈ a and F ′(0)− 1 = 0 ∈ a, so F has a zero x ∈ R′
since (R′, a) is Henselian. Let x = f0g

−1
0 , f0, g0 ∈ R, g0 6= 0. There

exists s ∈ U such that g0(s) 6= 0. Note that α = f(s)g(s)−1 > ε and
β = f0(s)g0(s)−1 are real numbers, and

nβ2 + β + α = 0.

However, an elementary calculation shows that this equation contra-
dicts the choice of n.

Remark 3.4. Remark 3.3 implies that K = Quot(Zr[[t]]) is not com-
plete with respect to a non-archimedean absolute value. It is also not
complete with respect to an archimedean absolute value, since a field
complete with respect to an archimedean absolute value is isomorphic
to R or C, [Lan02, Corollary XII.2.4], which is not the case for K
(for example since K is Hilbertian, see Theorem 4.9 below).

4 Galois Theory

We are almost ready to prove our main result. First, recall the follow-
ing definitions and properties, [ZS60, §VI.13]:

Definition 4.1. A domain R is called a Krull domain if there exists
a family F of non-trivial discrete rank-1 valuations on K = Quot(R),
satisfying the following properties:

(a) Denoting the valuation ring of v by Rv for each v ∈ F , we have⋂
v∈F Rv = R.

(b) For each a ∈ K×, v(a) = 0 for all but finitely many v ∈ F .
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(c) For each v ∈ F , Rv is the localization of R with respect to the
center p(v) = {a ∈ R : v(a) > 0} of v on R.

The family F is unique (up to equivalence of valuations), and is called
the essential family of R. It consists of all valuations on K whose
valuation ring is the localization of R by a minimal non-zero prime
ideal.

Example 4.2 ([ZS60, p. 82 Example (b)]). Any integrally closed Noethe-
rian domain is a Krull domain.

Remark 4.3. If R is a domain and F a family of non-trivial discrete
valuations on K = Quot(R), satisfying conditions (a) and (b) of Def-
inition 4.1, then there exists a subfamily of F satisfying all three con-
ditions of Definition 4.1, and hence R is a Krull domain (see [Mat86,
§12]).

Definition 4.4. [Pop10, §1] An infinite field K is called a Krull
field if there exists a family F of discrete rank-1 valuations on K,
satisfying:

(a) For each a ∈ K×, v(a) = 0 for all but finitely many v ∈ F .

(b) For each finite Galois extension L/K, the subfamily

{v ∈ F : v is totally split in L/K}

has cardinality |K| (in particular, for L = K we get |F| = |K|).

Remark 4.5. The family F in Definition 4.4 is not unique. In par-
ticular, if F satisfies the conditions of Definition 4.4, and F ′ is a
subfamily of F such that |F rF ′| < |F|, then clearly F ′ also satisfies
the conditions of Definition 4.4.

The following proposition is a special case of [Pop10, Theorem
3.4(i)].

Proposition 4.6. Let R be a Krull domain and let F be its essential
family. Let p be a prime ideal of R of height exceeding 1, let 0 6= x ∈ p,
and suppose that:

1. |R| ≤ 2ℵ0.

2. For any sequence (bi)
∞
i=0 in {0, 1}N, the sequence fn =

∑n
i=0 bix

i

converges x-adically in R.

Then Quot(R) is a Krull field, and a corresponding family of valua-
tions is F .
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Proposition 4.7. Let A be a proper subring of Q, and let 0 < r < 1.
Put R = Ar[[t]] or R = Ar+ [[t]]. Then R has an overring R′ that
is a Krull domain of dimension exceeding 1, and K = Quot(R) =
Quot(R′) is a Krull field, where a corresponding family of valuations
is the essential family of R′.

Proof. Let R′ = A[[t]] ∩ Quot(R). Since A[[t]] is a Krull domain,
[Mat86, Theorem 12.4(iii)], so is R′, cf. [Mat86, p. 86]. Evaluating
power series at 0 yields an epimorphism R′ → A whose kernel a con-
tains t. Since A is strictly contained in Q and hence has dimension at
least 1, a is contained in a prime ideal p of R′ of height exceeding 1.
A sequence (bi)

∞
i=0 in {0, 1}N yields an element f =

∑∞
i=0 bit

i ∈ Z[[t]].
Since the coefficients of f are bounded, f is holomorphic on the open
unit disc, hence f ∈ R ⊆ R′. Clearly, the cardinality of R is 2ℵ0 . Thus
the claim follows by Proposition 4.6.

Proposition 4.8. Let A be a proper subring of Q, and let 0 < r < 1.
Put R = Ar[[t]] or R = Ar+ [[t]], let S = Ralg, and let K = Quot(R)
or K = Quot(S). Then K is a fully Hilbertian field.

Proof. First, consider the case K = Quot(R). By Proposition 4.7, R
has an overring R′ that is a Krull domain of dimension exceeding 1.
By a theorem of Weissauer [FJ08, Theorem 15.4.6], K = Quot(R′)
is Hilbertian. Let F be the essential family of R′, and let F ′ be the
family of all valuations in F that are trivial on Q. Since Q is count-
able, condition (b) of Definition 4.1 implies that |F r F ′| ≤ ℵ0. By
Proposition 4.7, K is a Krull field and F satisfies conditions (a) and
(b) of Definition 4.4. In particular, |F| = |K| = 2ℵ0 > ℵ0 ≥ |F r F ′|.
By Remark 4.5, F ′ satisfies conditions (a) and (b) of Definition 4.4.
This implies that F ′ satisfies conditions (i),(ii),(iii) of [BSP11, Propo-
sition 7.4], hence the maximal purely inseparable extension Kins of K
is fully Hilbertian. Since char(K) = 0, K = Kins is fully Hilbertian.

Now instead take K = Quot(S). As in the proof of the previous
proposition, S′ = A[[t]]∩K is a Krull domain of dimension exceeding
one, hence K is Hilbertian, again by [FJ08, Theorem 15.4.6]. Equiv-
alently, since S is countable (being algebraic over A[t]), K is fully
Hilbertian [BSP11, Corollary 2.24].

This leads to our main result:

Theorem 4.9. Let A be a proper subring of Q, let 0 < r < 1, put
R = Ar[[t]] or R = Ar+ [[t]], let S = Ralg, and let K = Quot(R) or
K = Quot(S). Then the following holds.

1. K is an ample field.

2. K is a fully Hilbertian field.
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3. Gal(K) is a semi-free profinite group.

Proof. The field K is ample by Proposition 3.2, and fully Hilbertian by
Proposition 4.8. Hence, [BSP11, Corollary 2.28] asserts that Gal(K)
is semi-free.

Remark 4.10. A profinite group is free if and only if it is semi-
free and projective, [BSHH10, Theorem 3.6]. Note that G = Gal(K),
where K is as in Theorem 4.9, is semi-free but not projective, and
hence not free: K is a subfield of the real field Q((t)), and hence
real. Consequently, G is not torsion-free, and therefore not projective
[RZ00, 7.7.6].

Remark 4.11. Every fully Hilbertian ample field has a semi-free ab-
solute Galois group. However, there exist ample fields with a semi-free
(or even free) absolute Galois group that are not fully Hilbertian (cf.
[BSP11, Remark 2.14]). Thus for ample fields, the property of being
fully Hilbertian, which is interesting for its own sake, is stronger than
the property of having a semi-free absolute Galois group.
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