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Introduction

Historical Overview

It is a central question in mathematics whether a given mathematical
task that is known to have a solution can be solved effectively. For
example, one can ask if it is possible to effectively factor an integer
into its prime factors, that is, if there exists an algorithm that takes
an integer as input and gives its list of prime factors as output. One
easily sees that such an algorithm exists, but this is not so clear in
other cases. For example, the tenth problem of Hilbert’s list of 23 open
problems from 1900 proposed the following task.

Eine diophantische Gleichung mit irgendwelchen Un-
bekannten und mit ganzen rationalen Zahlenkoeffizi-
enten sei vorgelegt: man soll ein Verfahren angeben,
nach welchem sich mittels einer endlichen Anzahl von
Operationen entscheiden lässt, ob die Gleichung in
ganzen rationalen Zahlen lösbar ist.

In other words, Hilbert asks for an algorithm that decides whether
a polynomial equation (in several variables) with coefficients in the ring
of integers Z has a solution in Z. It took 70 years until Matijasevich
could show that the task posed by Hilbert cannot be solved: There
exists no such algorithm. It is an important unsolved question until
today, whether this remains true if we replace the ring Z by its quotient
field Q, i.e. if we ask for rational solutions of polynomial equations with
rational coefficients.

Instead of considering equations over a ring or field R, and asking
which of these equations have a solution in R, one may more generally
consider first-order formulas in the language of rings and ask which
of these are satisfied in R. One says that R is decidable, or that the
complete theory of R is decidable, if there exists an algorithm that
determines whether a given first-order sentence holds in R or not.

In 1949, J. Robinson proved that the field Q of rational numbers is
undecidable. A few years later, she generalized this result to number
fields, i.e. finite extensions of Q. On the other end, results of Tarski
from 1948 show that the field C of complex numbers and the field R of
real numbers have a decidable theory. In 1965, Ax-Kochen and Ershov
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10 INTRODUCTION

independently presented the – at that time surprising – result that also
the theory of the field of p-adic numbers Qp is decidable.

Let us now focus on results about algebraic fields, that is, fields lying
between Q and the algebraic closure Q̃ of Q. The results mentioned
above also show that the field of algebraic numbers Q̃, the field of real
algebraic numbers

Ralg = R ∩ Q̃,

and the field of p-adic algebraic numbers

Qp,alg = Qp ∩ Q̃

are decidable. So, roughly speaking, fields ‘close to Q’ are undecidable,
whereas fields ‘close to Q̃’ tend to be decidable. Therefore, it is a
challenge to find decidable algebraic fields which are as ‘far away from
Q̃’ (or as ‘close to Q’) as possible.

Each of the following four theorems makes use of what is called a
geometric local-global principle, or Hasse principle. Roughly speaking,
a field K satisfies a (geometric) local-global principle if a variety over
K has a K-rational point if and only if it has a rational point over each
field in a family of localizations of K. These localizations can be, for
example, completions of K with respect to a family of absolute values
on K. If one can decide whether an equation over K has solutions in
these localizations, then a local-global principle may allow to decide
whether an equation over K has a solution in K. For an extensive
survey on the use of local-global principles in decidability proofs see
[Dar00a].

A number field K is called totally real if every embedding of K into
C maps K into R. Thus the field of totally real algebraic numbers

Qtr =
⋂

τ∈Gal(Q)

(Ralg)τ ,

where Gal(Q) = Aut(Q̃/Q) is the absolute Galois group of Q, is the
maximal Galois extension of Q in R.

Fried-Haran-Völklein combined their results on the absolute Galois
group of Qtr with the fact that the field Qtr satisfies a local-global
principle (a result of Moret-Bailly and Green-Pop-Roquette) to prove
the following:

Theorem A ([FHV94]). The complete theory of the field of totally real
algebraic numbers Qtr is decidable.

Ershov proved a p-adic analogue of this. Let

Qtot,p =
⋂

τ∈Gal(Q)

(Qp,alg)τ
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be the maximal Galois extension of Q in Qp. If S is a set of prime
numbers, let

Qtot,S =
⋂
p∈S

Qtot,p.

Using the same results of Moret-Bailly and Green-Pop-Roquette, and a
result of Pop on the absolute Galois groups of the fields Qtot,S, Ershov
was able to prove decidability of these fields.

Theorem B ([Ers96b]). Let S be a finite set of prime numbers. Then
the complete theory of the field Qtot,S is decidable.

A different line of research on decidable theories of algebraic fields
started much earlier. Instead of investigating the complete theory of a
single field, one can try to determine the probability that a given first-
order sentence holds in a randomly chosen member of a certain class of
algebraic fields. Let K be a number field, and let e be a nonnegative
integer. For an e-tuple

σ = (σ1, . . . , σe) ∈ Gal(K)e

of elements of the absolute Galois group Gal(K) = Aut(K̃/K) of K,
denote by

K̃(σ) =
{
x ∈ K̃ : σ1(x) = · · · = σe(x) = x

}
the fixed field of σ in K̃. Since Gal(K)e is a compact group, it admits a
unique normalized Haar measure. Thus one can ask for the probability
that a given sentence holds in K̃(σ), where σ ∈ Gal(K)e. The set of
sentences which hold in K̃(σ) with probability one is called the theory
of almost all K̃(σ).

Using a result on the absolute Galois groups of these fields and
a (degenerated) local-global principle they satisfy (both by Jarden),
Jarden-Kiehne proved the following:

Theorem C ([JK75]). The theory of almost all fields K̃(σ), σ ∈
Gal(K)e, is decidable.

Denote by K̃[σ] the maximal Galois extension of K contained in
K̃(σ). After determining the absolute Galois groups of these fields,
and showing that they satisfy a local-global principle, Jarden was also
able to prove the following:

Theorem D ([Jar97]). The theory of almost all fields K̃[σ], σ ∈
Gal(K)e, is decidable.
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The decidable theories of algebraic fields mentioned so far can be
summarized in the following diagram.

Q̃

Ralg Qp,alg K̃(σ)

Qtr Qtot,p K̃[σ]

Qtot,S

....
....

....
....

.

The Present Work

In this work we combine and generalize the four theorems mentioned
above. Let S be a finite set of absolute values on a number field K.
For p ∈ S we denote by Ktot,p the maximal Galois extension of K in a

completion K̂p of K with respect to the absolute value p, and we let

Ktot,S = K̃ ∩
⋂
p∈S

Ktot,p

be the field of totally S-adic numbers over K. If σ ∈ Gal(K)e, let

Ktot,S(σ) = Ktot,S ∩ K̃(σ)

be the fixed field of σ in Ktot,S, and let

Ktot,S[σ] = Ktot,S ∩ K̃[σ]

be the maximal Galois extension of K in Ktot,S(σ). Note the following
special cases of these definitions, and compare with the corresponding
theorems above.

(A) If K = Q, e = 0, and S = {| · |} consists of the archimedean
absolute value on Q only, then Ktot,S(σ) = Qtr.

(B) If K = Q, e = 0, and S consists of finitely many non-archime-
dean absolute values on Q, then Ktot,S(σ) = Qtot,S.

(C) If S = ∅, then Ktot,S(σ) = K̃(σ).

(D) If S = ∅, then Ktot,S[σ] = K̃[σ].

The special case K = Q can be pictured as follows.
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Q̃

Ralg Qp,alg Q̃(σ)

Qtr Qtot,p Q̃[σ]

Qtot,S

....
....

....
....

...................

Qtot,S(σ)

Qtot,S[σ]

In a series of papers, Haran-Jarden-Pop recently determined the
structure of the absolute Galois groups of the fields Ktot,S(σ) and
Ktot,S[σ] (for almost all σ) as a free product of a free profinite group
and an infinite free product of local factors. Moreover, Jarden-Razon
and Geyer-Jarden proved that these fields satisfy a certain geometric
local-global principle – they are PSC. Making use of these two alge-
braic results, we prove the following two theorems.

Theorem I. Let S be a finite set of absolute values on a number field
K, and let e be a nonnegative integer. Then the theory of almost all
fields Ktot,S(σ), σ ∈ Gal(K)e, is decidable.

Theorem II. Let S be a finite set of absolute values on a number field
K, and let e be a nonnegative integer. Then the theory of almost all
fields Ktot,S[σ], σ ∈ Gal(K)e, is decidable.

In fact, in both cases we prove more, cf. Theorem 4.6.7 and The-
orem 5.5.4. We show that the probability that a given sentence holds
in Ktot,S(σ) resp. Ktot,S[σ] can be recursively computed, and we prove
Theorem I in a more general setting with K replaced by a countable
Hilbertian field of characteristic zero satisfying some recursivity as-
sumptions.

Our proof follows the pattern of the proof of Jarden-Kiehne men-
tioned above. A key step is to find an axiomatization of the theories
in question. That is, to give some algebraic properties that character-
ize the models of the theory among all fields, and to show that these
properties can be formulated by first-order sentences.
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One of these algebraic properties is the PSC property. Therefore,
in Chapter 2 we develop a model theory of a quite general class of PSC
fields, which we call PSCC. In particular, we show that the class of
PSCC fields is elementary.

A second algebraic property we use in our axiomatization is con-
cerned with the absolute Galois groups. We construct ‘group piles’ by
adding local objects to the absolute Galois groups. The main difference
between our treatment and the work of Haran-Jarden-Pop is that in
our model-theoretic situation only the ‘local part’ of the group pile is
accessible, while the ‘free part’ is not. This causes some difficulties,
which we overcome by working with certain characteristic quotients of
the group piles. This is done in Chapter 3.

The proofs of Theorem I and Theorem II are carried out in Chap-
ter 4 and Chapter 5, respectively. Chapter 1 summarizes some ba-
sic results on real closed fields, p-adically closed fields, and profinite
groups.



CHAPTER 1

Preliminaries and Notation

1.1. Notation

By Q, R, C, Q̂p, Fq we denote the field of rational numbers, the field of
real numbers, the field of complex numbers, the field of p-adic numbers,
and the finite field with q elements, respectively. By N, Z, Z≥0 we
denote the set of positive integers, the ring of integers and the set of
nonnegative integers, respectively. Every ring and every semiring is
commutative with 1. If R is a ring, we denote by R× the group of
invertible elements of R.

If K is a field, we denote by K̃ a fixed algebraic closure of K, by
Ks the separable closure of K in K̃, and by Gal(K) = Gal(Ks/K) its
absolute Galois group.

The cardinality of a set X is denoted by |X|. A set is countable
if and only if it is countably infinite or finite. By ω we denote both
the smallest infinite ordinal number and the smallest infinite cardinal
number. By ·∪ we denote the disjoint union of sets, and also the direct
sum (i.e. coproduct) of topological spaces. We use the term compact
as a synonym for quasi-compact.

Varieties are geometrically irreducible and geometrically reduced.
If V is a variety defined over a field K, we denote by K(V ) the function
field of V over K.

1.2. Model Theory of Fields and Recursion Theory

We recall some notions from model theory and fix the logical setting
we are working in.

We only consider classical first-order logic. The structures we con-
sider are only fields, and expansions of fields by additional structure.
For basic model theoretic notions like language, structure, formula,
model, and satisfaction, see for example [Mar02] or [FJ08, Chapter 7].

The language of rings is

Lring = {+,−, ·, 0, 1},

where + and · are binary function symbols, − is a unary function
symbol, and 0 and 1 are constant symbols.

Let L be a language containing Lring. If K is an L-structure (i.e. a
field with possibly some extra structure), and C is a subset of K, denote

15
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by

L(C) = L ∪ {cx : x ∈ C}
the language L augmented by constant symbols for the elements in C.
Every L-structure F containing K is then naturally an L(C)-structure,
and K is naturally embedded into every L(K)-structure that is a model
of the positive diagram of K, [FJ08, 7.3.1]. We write ≡C for elementary
equivalence of L(C)-structures.

If ϕ(x1, . . . , xn) is an L-formula in n free variables, and K is an
L-structure, we denote by

ϕ(K) = {a ∈ Kn : K |= ϕ(a)}
the subset defined by ϕ in K.

An L-theory T has quantifier elimination if every L-formula is
equivalent modulo T to a quantifier free formula. It is complete if
for every L-sentence ϕ it holds that T |= ϕ or T |= ¬ϕ. It is model
complete if every extension K ≤ L of models of T is elementary,
i.e. K ≺ L. An L-structure K is ℵ1-saturated if for every countable
subset C ⊆ K the following holds: If Σ is a set of L(C)-formulas
in countably many free variables such that every finite subset of Σ is
satisfied in K, then Σ is satisfied in K.

Lemma 1.2.1 (Löwenheim-Skolem downwards). Let L be a countable
language, and let K be an L-structure. If C ⊆ K is a countable subset,
then there exists a countable elementary substructure K0 ≺ K with
C ⊆ K0.

Proof. See [FJ08, 7.4.2]. �

If D is an ultrafilter on a set I, and Ki is an L-structure for each
i ∈ I, then the ultraproduct∏

i∈I

Ki/D

is an L-structure with universe the Cartesian product
∏

i∈I Ki modulo
the relation ∼ given by (xi)i∈I ∼ (yi)i∈I if and only if {i ∈ I : xi =
yi} ∈ D, c.f. [FJ08, Chapter 7.7].

Lemma 1.2.2 ( Loś’s theorem). If ϕ is an L-sentence, then∏
i∈I

Ki/D |= ϕ

if and only if

{i ∈ I : Ki |= ϕ} ∈ D.

Proof. See [FJ08, 7.7.1]. �

A set X ⊆ Nn is recursive if the characteristic function of X is a
recursive function in the usual sense, see for example [FJ08, Chapter
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8.5]. If L is a countable language with a fixed embedding L → N, then
an L-theory T is decidable (or recursive) if the set T , identified with
a subset of N via a Gödel numbering, is recursive, [FJ08, Chapter 8.6].

A presented field is a countable field K together with an injection
ρ: K → N such that the images of the graphs of addition and multi-
plication are recursive.1 If L is a finite language containing Lring, then
the injection ρ: K → N induces an injection L(K) → N. We refer to
this injection when we call an L(K)-theory decidable.

If K is a presented field, one can inject the ring of polynomials K[X]
into N via a recursive pairing function N×N→ N. We say that K has
a splitting algorithm if the set of irreducible polynomials in K[X]
is a recursive subset of K[X]. If K has a splitting algorithm, then one
can recursively factor elements of K[X] into irreducible factors.2

1.3. Profinite Groups and Profinite Spaces

A profinite group G is a topological group with a totally disconnected
compact Hausdorff topology. Equivalently, it is an inverse limit of finite
groups, [RZ00, 2.1.3]. A subgroup of G is open if and only if it is closed
and of finite index in G, [FJ08, 1.2.1(a)], and each closed subgroup is
the intersection of open subgroups, [FJ08, 1.2.3]. The category of profi-
nite groups is closed under quotients, direct products, inverse limits,
[FJ08, 1.2.6], and fibre products, [FJ08, 22.2.1]. Note: We always
consider profinite groups as topological groups, so in particular homo-
morphisms between profinite groups are continuous homomorphisms.
By H ≤ G (resp. H / G) we indicate that H is a closed (resp. normal
closed) subgroup of G. If X ⊆ G, we denote by 〈X〉 the closed sub-
group generated by X in G. We use the symbol 1 to denote both the
unit element of G, and the trivial subgroup {1} ≤ G.

A subset X ⊆ G converges to 1 if X rH is finite for each open
normal subgroup H /G. We denote by rank(G) the (profinite) rank of
G, that is, the minimal cardinality of a set of (topological) generators
converging to 1, cf. [FJ08, 17.1.3]. If G → H is an epimorphism of
profinite groups, then rank(H) ≤ rank(G), [FJ08, 17.1.4]. We say that
G is finitely generated if rank(G) <∞.

Proposition 1.3.1 (Gaschütz). Let π: G→ H be an epimorphism of
profinite groups with rank(G) ≤ e ∈ Z≥0. Let h1, . . . , he be a system of
generators of H. Then there exists a system of generators g1, . . . , ge of
G such that π(gi) = hi, i = 1, . . . , e.

Proof. See [FJ08, 17.7.2]. �

1Note that our definition differs from [FJ08, 19.1.1] as we do not assume the
images of the graphs to be primitive recursive. Furthermore, we refrain from using
meta-mathematical concepts like ‘explicitly given’.

2So this definition coincides with [FJ08, 19.1.2], except that also here we replace
primitive recursive by recursive and drop properties like ‘explicitly given’.



18 1. PRELIMINARIES AND NOTATION

Lemma 1.3.2. Let G,H be profinite groups, and assume that G is
finitely generated.

(1) If G and H have the same finite quotients, then G ∼= H.
(2) If every finite quotient of H is a quotient of G, then H is a

quotient of G.
(3) If G ∼= H, then any epimorphism G→ H is an isomorphism.

Proof. See [FJ08, 16.10.7, 16.10.8]. �

A profinite group F is free on a set of generatorsX ⊆ F if 〈X〉 = F ,
X converges to 1, and for each map ϕ: X → G into a profinite group G
for which 〈ϕ(X)〉 = G and X rϕ−1(H) is finite for each open normal
subgroupH/G, there exists a unique epimorphism ϕ̂: F → G extending
ϕ. If κ is a cardinal number, we denote by F̂κ the free profinite group on
a set of κ generators. It exists and is unique up to isomorphism, [FJ08,

17.4.7]. In particular, F̂ω is the free profinite group on a countably
infinite set of generators.

If G,H are profinite groups, the free product G ∗H is a profinite
group determined up to isomorphism by the following properties: G
and H are closed subgroups of G ∗H with G ∗H = 〈G,H〉, and each
pair α: G → C, β: H → C of homomorphisms of profinite groups
extends uniquely to a homomorphism γ: G ∗H → C, [FJ08, 22.4.9].

Lemma 1.3.3. If x ∈ G ∗H and Gx ∩G 6= 1, then x ∈ G.

Proof. See [RZ00, 9.1.12]. �

If L/K is a Galois extension, then Gal(L/K) is a profinite group in
the Krull topology. A basis for the neighbourhoods of 1 is given by
the open subgroups Gal(L/N), where N/K is a finite Galois subexten-
sion of L/K, [FJ08, Chapter 1.3]. Galois correspondence establishes
a bijection between the closed subgroups of Gal(L/K) and the inter-
mediate fields of L/K, [FJ08, 1.3.1]. If F/K is an extension, then the
restriction map resFs/Ks : Gal(F )→ Gal(K) is continuous.

Lemma 1.3.4. If K ≡ L are elementarily equivalent fields and Gal(K)
is finitely generated, then Gal(K) ∼= Gal(L).

Proof. See [FJ08, 20.4.6]. �

Like any compact group, a profinite group admits a unique normal-
ized Haar measure, i.e. a (left and right) invariant complete regular
probability measure, cf. [FJ08, Chapter 18].

A profinite space is a totally disconnected compact Hausdorff
space. Profinite spaces can be characterized as inverse limits of fi-
nite discrete spaces, or as zero-dimensional compact Hausdorff spaces,
[RZ00, 1.1.12]. Here, a topological space is called zero-dimensional
if it has a basis for its topology consisting of open-closed sets. For
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example, the underlying space of a profinite group is a profinite space.
Any product or finite direct sum (i.e. coproduct) of profinite spaces is
a profinite space, and a subspace of a profinite space is profinite if and
only if it is closed. Since profinite spaces are compact Hausdorff, any
continuous map between profinite spaces is closed, and any continuous
bijection of profinite spaces is a homeomorphism.

Lemma 1.3.5. Let X be a profinite space with a subbasis B which is
closed under complements. Then the following are equivalent.

(1) B is closed under finite intersections.
(2) For all U, V ∈ B, U ∩ V ∈ B.
(3) Every open-closed subset of X is in B.

Proof. See [Pre84, 6.6]. �

Lemma 1.3.6. If a profinite group G acts continuously on a profinite
space X, then the quotient space X/G is profinite and the quotient map
X → X/G is continuous and closed.

Proof. By [Bou98, III.4 Prop. 2, Prop. 3], X/G is compact Hausdorff.
Moreover, it is zero-dimensional, since if U ⊆ X is open-closed, then
the G-closure UG ⊆ X is also open-closed. Indeed, UG is the union
of homeomorphic copies of U , so it is open, and it is the image of the
closed map U ×G→ X given by (x, g) 7→ xg, so it is closed. �

A Cantor space is a perfect second-countable profinite space.
Here, a topological space is called perfect if it has no isolated points,
and second-countable if it has a countable basis for its topology. A
finite direct sum of Cantor spaces is a Cantor space, and a closed sub-
space of a Cantor space is a Cantor space if and only if it is perfect.
All Cantor spaces are homeomorphic to each other, [Kec94, 7.4], so we
also talk about the Cantor space C.

Lemma 1.3.7. Let ϕ: X → A, α: B → A be continuous surjections
of topological spaces, where A is discrete, α has finite fibres, and X
is zero-dimensional perfect Hausdorff. Then there exists a continuous
surjection λ: X → B with α ◦ λ = ϕ.

Proof. Let a ∈ A. Since A is discrete, Xa = ϕ−1(a) is a nonempty
open-closed subset of X. Since X is Hausdorff and has no isolated
points, Xa is infinite. The fibre Ba = α−1(a) is finite by assumption.
Let Ba = {b1, . . . , bn}, and choose distinct elements x1, . . . , xn ∈ Xa.
Since X is zero-dimensional Hausdorff, there are open-closed subsets
Xa,1, . . . , Xa,n of Xa with xi ∈ Xa,i and Xa =

⋃
· ni=1 Xa,i.

Now define λ on Xa by λ|Xa,i = bi, and do this for all a ∈ A. Since
xi ∈ Xa,i for every i, λ is surjective. Since each Xa,i is open-closed, λ
is continuous. Since for x ∈ Xa,i, ϕ(x) = a and α(λ(a)) = α(bi) = a,
α ◦ λ = ϕ. �
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1.4. Real Closed Fields

We recall the notion of real closed fields and quote some well known
results from [Pre84].

Let K be a field. A positive cone of K is a semiring P ⊆ K such
that P ∪ (−P ) = K and P ∩ (−P ) = {0}. An ordering of K is a total
order ≤ on K such that {x ∈ K : x ≥ 0} is a positive cone. The map
that assigns to an ordering the corresponding positive cone induces a
natural bijection between the orderings of K and the positive cones
of K. An ordered field is a field K together with an ordering. A
pre-positive cone of K is a semiring P ⊆ K such that K2 ⊆ P and
−1 /∈ P .

Lemma 1.4.1. Each pre-positive cone of K is the intersection of the
positive cones of K containing it. In particular, each pre-positive cone
of K is contained in a positive cone of K.

Proof. See [Pre84, 1.6]. �

An ordering ≤ of K is archimedean if for every x ∈ K there
exists y ∈ N ⊆ K with x < y. Any archimedean ordered field can
be embedded into R (as an ordered field), [Pre84, 1.23], hence the
ordering of an ordered algebraic extension of an archimedean ordered
field is archimedean.

A field is real closed if it has an ordering but each proper algebraic
extension has no ordering. A real closed field K has a unique ordering,
given by the positive cone K2, [Pre84, 3.2]. A real closed field F is a
real closure of an ordered field K if F is an algebraic extension of K
and the unique ordering of F extends the ordering of K. Any ordered
fieldK has a real closure, which is unique up toK-isomorphism, [Pre84,
3.10]. If L is a finite extension of an ordered field K, then the extensions
of the ordering of K to L bijectively correspond to the K-embeddings
of L into a fixed real closure of K, [Pre84, 3.12].

Lemma 1.4.2. A field which is algebraically closed in a real closed field
is real closed.

Proof. See [Pre84, 3.13]. �

Proposition 1.4.3 (Artin-Schreier). A field K is real closed if and
only if Gal(K) ∼= Z/2Z.

Proof. This follows from [Lan02, VI.9.3] and [Pre84, 3.3]. �

Lemma 1.4.4. Let V be an affine variety defined over a real closed field
K. Then V has a simple K-rational point if and only if the ordering
of K extends to an ordering of K(V ).

Proof. See [Lan02, XI.3.1, XI.3.6] or [Pre81, 0.4]. �
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The language of ordered rings

L≤ = Lring ∪ {≤}
is the language of rings augmented by a binary relation symbol ≤,
which is interpreted as the ordering of an ordered field.

Proposition 1.4.5 (Tarski). The L≤-theory of real closed ordered
fields has quantifier elimination, is model complete, complete, and de-
cidable.

Proof. See [Mar02, 3.3.15, 3.3.16]. �

1.5. Valued Fields

We recall some basic notions from valuation theory. For more details
see [FJ08, Chapter 2], [Efr06], or [EP05].

A valuation on K is a Krull valuation on K, i.e. an epimorphism
v: K× → Γ from the (multiplicative) abelian group K× onto an ordered
(additive) abelian group Γ that satisfies v(a+ b) ≥ min{v(a), v(b)} for
all a, b ∈ K×. We let v(0) = ∞ and γ < ∞ for all γ ∈ Γ. The group
Γ is the value group of v. The valuation ring of v is Ov = {x ∈
K : v(x) ≥ 0}. Two valuations are equivalent if their valuation rings
are equal. The valuation ring Ov is a local ring with maximal ideal
mv = {x ∈ K : v(x) > 0}, and K̄v = Ov/mv is the residue field of v.

An ordered abelian group Γ is of rank one if it has no non-trivial
proper convex subgroup, and discrete if it has a smallest positive ele-
ment, i.e. if Γ is discrete in the order topology. A valuation v on K is
of rank one resp. discrete if the value group v(K×) has this property.
We normalize every discrete valuation v such that Z is a convex sub-
group of the value group. In particular, 1 denotes the smallest positive
element of the value group.

Lemma 1.5.1 (Artin-Whaples, Weak Approximation Theorem). Let
v1, . . . , vn be pairwise inequivalent discrete rank one valuations on K,
and let ≤1, . . . ,≤m be pairwise distinct archimedean orderings of K.
Let x1, . . . , xn, y1, . . . , ym ∈ K, ε ∈ (K×)2, and n ∈ Z. Then there
exists x ∈ K such that for 1 ≤ i ≤ n,

vi(x− xi) > n,

and, for 1 ≤ j ≤ m,

xj − ε2 ≤ x ≤ xj + ε2.

Proof. See [EP05, 1.1.3]. �

Let v be a valuation on K and F/K a field extension. Then v can
be extended to a valuation w on F , [EP05, 3.1.1]. One calls ew/v =
(w(F×) : v(K×)) the ramification index and fw/v = [F̄w : K̄v] the
residue degree. If F/K is algebraic, then w(F×) is contained in
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the divisible hull of v(K×), [EP05, 3.2.4]. If F/K is Galois, then the
extensions of v to F are conjugate over K, [EP05, 3.2.15].

Lemma 1.5.2 (Fundamental inequality). Let v be a valuation on K,
and let w1, . . . , wn be all inequivalent extensions of v to a finite exten-
sion L of K. Then the following inequality holds.

n∑
i=1

ewi/vfwi/v ≤ [L : K].

If v is discrete of rank one and L/K is separable, then equality holds.

Proof. See [EP05, 3.3.4, 3.3.5]. �

If v is a valuation on K, we say that (K, v) is a valued field. A
valued field (K, v) is Henselian if v extends uniquely to K̃. Every val-
ued field (K, v) has a minimal algebraic extension which is Henselian,
its Henselization. It is unique up to K-isomorphism, [EP05, 5.2.2].
If (F,w) is the Henselization of (K, v), then the extension w/v is im-
mediate, i.e. ew/v = fw/v = 1, [EP05, 5.2.5].

Lemma 1.5.3 (Hensel-Rychlik). Let v be a Henselian valuation on K.
If f ∈ Ov[X] and a ∈ Ov with v(f(a)) > 2v(f ′(a)), then there exists
α ∈ Ov with f(α) = 0 and v(a− α) > v(f ′(a)).

Proof. See [EP05, 4.1.3(5)]. �

Lemma 1.5.4 (Hensel’s lemma). Let v be a Henselian valuation on K.
If f ∈ Ov[X] and a ∈ Ov with f(a) ∈ mv and f ′(a) /∈ mv, then there
exists α ∈ Ov with f(α) = 0 and a− α ∈ mv.

Proof. This follows from Lemma 1.5.3. �

The language of valued fields

LR = Lring ∪ {R}
is the language of rings augmented by a unary predicate symbol R,
which is interpreted as the valuation ring of a valued field.

1.6. p-adically Closed Fields

We recall the notion of p-adically closed fields, and quote some well
known results from [PR84] and some properties of the absolute Galois
group of a p-adically closed field.

A valuation v on a field K of characteristic zero with residue field
of characteristic p > 0 and corresponding valuation ring O is a p-
valuation of p-rank d ∈ N if

dimFpO/pO = d.

We also say that the valued field (K, v) is a p-valued field.
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The residue field K̄v of a p-valued field (K, v) is finite, and the value
group v(K×) is discrete and v(p) ∈ Z. If e = v(p) and f = [K̄v : Fp],
then d = ef , [PR84, p. 15]. We call (p, e, f) the type of (K, v). Thus,
if two p-valued fields have the same type, then they have the same
p-rank. If L/K is an extension of p-valued fields, then L and K have
the same p-rank if and only if they have the same type. In that case,
this type is also the type of each intermediate extension of L/K.

A p-valued field is p-adically closed if it has no proper p-valued
algebraic extension of the same p-rank. Every p-adically closed valued
field (K, v) has a unique p-valuation, [PR84, 6.15]. We therefore also
call K p-adically closed. A p-adic closure of a p-valued field (K, v) is
an algebraic extension of (K, v) which is p-adically closed of the same
p-rank as (K, v). A p-valued field (K, v) is p-adically closed if and only
if it is Henselian and the value group v(K×) is a Z-group, [PR84, 3.1].
Here, an ordered abelian group Γ is a Z-group if it is discrete and
(Γ : nΓ) = n for each n ∈ N. Any p-valued field (K, v) has a p-adic
closure. A p-adic closure of (K, v) is unique up to K-isomorphism if
and only if v(K×) is a Z-group, [PR84, 3.2].

Lemma 1.6.1. If a field is algebraically closed in a p-adically closed
field K, then it is p-adically closed of the same p-rank as K.

Proof. See [PR84, 3.4]. �

Lemma 1.6.2. Let V be an affine variety defined over a p-adically
closed field K. Then V has a simple K-rational point if and only if the
unique p-valuation of K extends to a p-valuation of K(V ) of the same
p-rank.

Proof. See [PR84, 7.8]. �

The language

LP,d = LR ∪ {c1, . . . , cd} ∪ {Pn : n ∈ N}

is the language of valued fields augmented by d constant symbols
c1, . . . , cd interpreting a fixed Fp-basis of O/pO, and unary predicate
symbols Pn, n ∈ N, interpreting the subset of n-th powers of a p-valued
field of p-rank d. The class of p-adically closed valued fields of p-rank
d is elementary in the language LR, [PR84, p. 86].

Proposition 1.6.3. The LR-theory of p-adically closed valued fields
of p-rank d is model complete and decidable, and it has quantifier elim-
ination in the language LP,d. The LR-theory of p-adically closed valued
fields of type (p, 1, d) is complete.

Proof. See [PR84, 5.1, 5.2, 5.6, 5.4]. �
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A p-adic field is the completion of a p-valued number field, i.e. a
finite extension of Q̂p. A p-adic field F is p-adically closed of p-rank

[F : Q̂p], [PR84, p. 21].

Lemma 1.6.4. Every p-adically closed field is elementarily equivalent
to a p-adic field.

Proof. Let E be p-adically closed, and let K = Q̃∩E, K0 = Q̃∩ Q̂p.
By Lemma 1.6.1, K is p-adically closed of the same p-rank as E, so
K0 = Q̃∩ Q̂p ⊆ K. Then [K : K0] <∞, c.f. [PR84, 2.9], so F := KQ̂p

is a p-adic field. Since K is algebraically closed in F , K and F have
the same p-rank by Lemma 1.6.1. Therefore, E ≡ K ≡ F by model
completeness (Proposition 1.6.3). �

Lemma 1.6.5. Let K be p-adically closed. Then Gal(K) is finitely
generated, prosolvable, torsion-free, and cdl(Gal(K)) = 2 for every
prime number l.

Proof. First, if K is a p-adic field, then Gal(K) is finitely gener-
ated and prosolvable, and cdl(Gal(K)) = 2 for every l, [NSW08, 7.4.1,
p. 409, 7.1.8(i)], so in particular it is torsion-free. Since every p-
adically closed field K is elementarily equivalent to a p-adic field K0

(Lemma 1.6.4), and Gal(K0) is finitely generated, Gal(K) ∼= Gal(K0)
has all the asserted properties (Lemma 1.3.4). �

Proposition 1.6.6 (Neukirch-Pop3-Efrat4-Koenigsmann). Let K be
p-adically closed, and let L be a field. If Gal(K) ∼= Gal(L), then L is
p-adically closed of the same type as K.

Proof. By Lemma 1.6.4, K is elementarily equivalent to a p-adic
field K0, and Gal(K) ∼= Gal(K0) by Lemma 1.6.5 and Lemma 1.3.4.
By [Koe95, Theorem 4.1], if Gal(K0) ∼= Gal(L), then L is p-adically
closed. But Gal(L) determines the type of L, see for example [JR79,
Lemma 1]. �

3see [Pop88]
4see [Efr95]



CHAPTER 2

Local-Global Principles for Fields

The aim of this chapter is to develop basic model theoretic properties
of fields satisfying a certain local-global principle, which we call PSCC.
For subfields of the fieldsKtot,S we are interested in, the PSCC property
coincides with the PSC property of [JR98], [GJ02], and [HJP09a]. A
PSCC field F satisfies a local-global principle with respect to p-adic
closures and real closures belonging to primes of F that lie over a given
finite set of local primes S of some fixed base field K, and have the
same type as their restrictions to K.

Previous works in this direction are [Pre81], [Ers82] and [Pre85]
on PRC fields, [Gro87] and [Kün89b] on PpC fields, and [Kün89a] on
PCM fields. Furthermore, the work [Ers92] on RCπ fields, and [Dar00b],
[Dar01] and [Ers01] on local-global principles for rings are related to
the subject. We make use of ideas from some of these works.

The three main goals for the PSCC fields under consideration are:
First-order definition of the holomorphy domains (Sections 2.3-2.4),
axiomatization of the PSCC property (Sections 2.5-2.7), and describing
totally S-adic extensions (Sections 2.8-2.9).

For the rest of this work, let K be a field of characteristic
zero.

2.1. Classical Primes

We start this chapter by introducing the notion of a classical prime.
This notion generalizes the notion of a place of a number field and
unifies considerations about orderings and p-valuations.

Definition 2.1.1. A prime p of K is either an equivalence class of
valuations on K (p is a non-archimedean prime) or an ordering of
K (p is an archimedean prime). The characteristic

char(p)

of p is defined as follows: If p is an equivalence class of valuations,
then char(p) = char(K̄p), the characteristic of the residue field K̄p =
K̄v, v ∈ p; if p is an ordering, then char(p) =∞.

Remark 2.1.2. The reader may have noticed that our definition of
primes does not include the classical so called ‘complex primes’, i.e. ab-

25
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solute values for which the corresponding completion is isomorphic to
C. The reason for this is that both for the PSCC property and for
the definition of the fields Ktot,S we are interested in, the ‘complex
primes’ in S can be disregarded.

Definition 2.1.3. Let p be a prime of K.
If char(p) 6=∞, let vp be a fixed valuation in the class p, and denote

by

Op = {x ∈ K : vp(x) ≥ 0}

the corresponding valuation ring.
If char(p) =∞, denote the ordering p by ≤p, and by

Op = {x ∈ K : x ≥p 0}

the corresponding positive cone.

Definition 2.1.4. Let F/K be an extension of fields. A prime P of
F lies over a prime p of K if

OP ∩K = Op.

We write this as

P|K = p.

Remark 2.1.5. If F/K is finite of degree n, then there are at most
n primes of F lying over a given prime p of K. This motivates the
following definition.

Definition 2.1.6. Let p be a prime of K. We say that p totally
splits in a finite extension F/K if there are exactly [F : K] many
primes of F lying over p. We say that p totally splits in an algebraic
extension of K if it totally splits in every finite subextension.

Definition 2.1.7. Let p be a prime of K. The localization

Kp

of K with respect to p is a Henselization of (K, vp) (if char(p) 6= ∞)
resp. a real closure of (K,≤p) (if char(p) = ∞). It is unique up to
K-isomorphism.

Example 2.1.8. The field Q has one archimedean prime, which we
denote by ∞, and one non-archimedean prime for each prime number
p, which we simply denote by p. Note that in our notation, Qp is
now the field of p-adic algebraic numbers, whereas the field of p-adic
numbers is denoted by Q̂p.
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Remark 2.1.9. If F/K is an extension and P is a prime of F lying
over a prime p of K, we can and will assume that Kp ⊆ FP.

Definition 2.1.10. If p is a prime of K and σ ∈ Aut(K) is an auto-
morphism of K, then the conjugate

σp

of p is the unique prime of K with Oσp = σ(Op).

Lemma 2.1.11. If F/K is a Galois extension and P,Q are primes of
F with P|K = Q|K = p, then there exists σ ∈ Gal(F/K) with σP = Q.

Proof. If char(p) = ∞, then both FP and FQ are real closed fields,
and thus real closures of K with respect to ≤p, so they are conjugate
over K, cf. Section 1.4. If char(p) 6= ∞, then the claim follows from
the fact that vP and vQ are conjugate over K, cf. Section 1.6. �

Definition 2.1.12. If S is a set of primes of K,

R(S) =
⋂
p∈S

Op

is the holomorphy domain of S.

Remark 2.1.13. Note that if S contains archimedean primes, then
R(S) is only a semiring but not a ring.

Definition 2.1.14. A classical prime p of K is either an equivalence
class of p-valuations, for some prime number p, or an ordering of K.

Definition 2.1.15. For a classical prime p of K, a classical closure
of (K, p) is a p-adic closure of (K, vp) resp. a real closure of (K,≤p).
Let

CC(K, p)

denote the set of all classical closures of (K, p) contained in K̃. We say
that (K, p) is classically closed if K ∈ CC(K, p), i.e. if K is p-adically
closed resp. real closed.

Definition 2.1.16. A prime p of K is local if it is classical and
the value group of vp is isomorphic to Z resp. the ordering ≤p is
archimedean.

Remark 2.1.17. Note that this definition of local primes essentially
coincides with the definition of local primes in [GJ02] and [HJP09a],
and the ‘classical P-adic valuations and orderings’ in [HJP09b]. Indeed,
an ordering of K is archimedean if and only if there is an embedding of
K into R (see Section 1.4), and since a field complete with respect to an
archimedean absolute value is isomorphic to either R or C by Gelfand-
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Mazur (cf. [Lan02, XII.2.4]), embeddings of K into R correspond to
‘non-complex’ archimedean absolute values on K, cf. Remark 2.1.2. If
a p-valuation v on K is discrete of rank one, then the completion of K
with respect to v is a p-adic field, cf. [Ser79, Chapter II §5], and rank
one valuations on K correspond to non-archimedean absolute values
on K, cf. [End72, 7.6, 3.5].

Definition 2.1.18. A classical prime p of K is quasi-local if Kp ∈
CC(K, p), i.e. if the localization is a classical closure.

Remark 2.1.19. Note that each prime of a number field is local,
and each local prime is quasi-local. If p is quasi-local, then all K ′ ∈
CC(K, p) are K-conjugate. A non-archimedean classical prime is quasi-
local if and only if its value group is a Z-group, cf. Section 1.6. If F/K
is an algebraic extension and P is a classical prime of F lying over a
local prime p of K, then P is local.

Definition 2.1.20. The type

tp(p)

of a classical prime p of K is the type (p, e, f) of the p-valuation vp if
char(p) = p, and (∞, 1, 1) if char(p) =∞.

Definition 2.1.21. We say that a field F is PFC with respect to
a family F of algebraic extensions of F if every absolutely irreducible
smooth variety V defined over F has an F -rational point, provided it
has an F ′-rational point for each F ′ ∈ F , cf. [Jar91, §7].

If S is a set of primes of F , then F is pseudo-S-closed with
respect to localizations (PSCL) if it is PFC with respect to the
family

F = {FP : P ∈ S}

of localizations.
If S is a set of classical primes of F , then F is pseudo-S-closed

with respect to classical closures (PSCC) if it is PFC with respect
to the family

F =
⋃
P∈S

CC(F,P)

of classical closures.

Remark 2.1.22. Since every classical closure is Henselian resp. real
closed, if F is PSCC, then F is PSCL. However, the converse does not
hold, as the example of a p-valued Henselian but not p-adically closed
field shows, cf. Remark 2.1.19 and Proposition 2.2.11 below.
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2.2. PSCC and PSCL Fields

In this section we define the class of fields we are working with. For
the rest of this chapter, we work in the following setting.

Setting 2.2.1.

� K is a fixed base field of characteristic 0.
� S is a finite set of local primes of K.
� F is an extension of K.

Definition 2.2.2. For p ∈ S denote by

Sp(F )

the set of all classical primes P of F that satisfy the following condi-
tions:

(1) P|K = p.
(2) tp(P) = tp(p).

Definition 2.2.3. Let

SS(F ) =
⋃
p∈S

Sp(F ),

Rp(F ) = R(Sp(F )),

cf. Definition 2.1.12,

CC(F, p) =
⋃

P∈Sp(F )

CC(F,P),

cf. Definition 2.1.15, and

CC(F, S) =
⋃
p∈S

CC(F, p).

Remark 2.2.4. If p ∈ S with char(p) 6= ∞ and P ∈ Sp(F ), then vP

extends vp. Indeed, first note that by our convention of identifying Z
with a convex subgroup of the value group, the value group of vp is a
subgroup of the value group of vP. Let πp ∈ K such that vp(πp) = 1.
If tp(P) = tp(p) = (p, e, f), then pπ−ep ∈ O×p ⊆ O×P, so e = vP(p) =

evP(πp), and therefore vP(πp) = 1 = vp(πp). Since vp(K
×) = Z, this

implies that vP(x) = vp(x) for all x ∈ K×.

Definition 2.2.5. We say that F is pseudo-S-closed with respect
to localizations (PSCL) resp. pseudo-S-closed with respect to
classical closures (PSCC) if F is PSCL resp. PSCC with respect to

S = SS(F ).
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Remark 2.2.6. Note that F is PSCC if and only if F is PFC with
respect to the family

F = CC(F, S).

If F is PSCC, then F is PSCL, cf. Remark 2.1.22.

Remark 2.2.7. Note that for K = Q and |S| = 1, our notion of PSCC
fields coincides with the classical notions of PpC resp. PRC fields. For
K = Q and S a finite set of prime numbers, the notion of PSCC
fields coincides with the notion of PCM fields of [Kün89a] and [Kün92].
For K = Q and S = ∅, a PSCC field is just a PAC field (cf. [FJ08,
Chapter 11]).

Remark 2.2.8. Note that there is a related notion of PSC fields in the
literature. However, in [JR98] and [GJ02] this property is only defined
for algebraic extensions of K, and in [JR01], [Raz02] and [HJP09a]
only for subextensions of Ktot,S/K (cf. Definition 4.1.1 below). For
subextensions of Ktot,S/K, the three notions PSC, PSCL, and PSCC
coincide, but both the PSCL property and the PSCC property are
defined for arbitrary extensions of K. The reason for our focus on the
PSCC property is that, as we show, it is elementary.

Definition 2.2.9. We say that F is S-quasi-local if every P ∈ SS(F )
is quasi-local (cf. Definition 2.1.18).

Lemma 2.2.10. If F/K is algebraic, then F is S-quasi-local.

Proof. Since S consists of local primes, every P ∈ SS(F ) is local, and
thus quasi-local, cf. Remark 2.1.19. �

Proposition 2.2.11. If F is PSCC, then F is S-quasi-local.

Proof. If F is PSCC, then F is PFC with respect to F = CC(F, S),
cf. Remark 2.2.6. Hence, the claim follows from [HJP09c, Proposition
2.3(a)]. Indeed, this proposition implies that if F ′ ∈ CC(F, S), then F
is dense in F ′ if two conditions are satisfied.

The first condition is that CC(F, S) is ‘étale-compact’. This is in
particular the case if CC(F, S) is ‘strictly compact’, see [HJP07, Section
1]. The second condition is that F ′ is minimal in CC(F, S). This always
holds if there are no non-trivial inclusions among elements of CC(F, S).

In Lemma 3.5.3 below we prove properties of the absolute Galois
group of an arbitrary extension F of K, which via Galois correspon-
dence imply that CC(F, S) is ‘strictly compact’ and that there are
no non-trivial inclusions among elements of CC(F, S). Therefore, if
P ∈ SS(F ) and F ′ ∈ CC(F,P), then F is dense in F ′, and hence P is
quasi-local. �
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2.3. Defining Holomorphy Domains in a General Setting

This section contains the technical first-order definition of the holomor-
phy domains. We consider the following setting.

Setting 2.3.1.

� F is a field of characteristic zero.
� S is a set of classical primes of F .
� S is partitioned as S =

⋃
· ni=1 Si, such that for every i, if P,Q ∈

Si, then char(P) = char(Q).
� For each i, πi is an element of F× that satisfies the following

conditions:
(S1) If P ∈ Si and char(P) 6=∞, then vP(πi) = 1.
(S2) If P ∈ S rSi and char(P) 6=∞, then vP(πi − 1) > 0.
(S3) If P ∈ Si and char(P) =∞, then πi <P −1.
(S4) If P ∈ S rSi and char(P) =∞, then πi >P 0.

Definition 2.3.2. We write

char(Si)

for char(P), P ∈ Si, and we let

π =
n∏
i=1

πi.

Our first goal is to give a first-order definition of the holomorphy
domain R(Si) of Si in the case that F is PSCL. The case n = m = 1
of the following lemma can be found in [HP84].

Lemma 2.3.3. Let f ∈ F [X1, . . . , Xn] and g ∈ F [Y1, . . . , Ym] be non-
constant polynomials, and let c ∈ F×. If g is square-free in F̃ [Y],
then

h(X,Y) = f(X)g(Y) + c ∈ F [X,Y]

is absolutely irreducible.

Proof. Without loss of generality assume that F = F̃ . We prove the
lemma by induction on n.

First assume that n = 1. Let r(Y) be any prime factor of g(Y).
Since g is square-free, r|g but r2 6 |g. Write h as a polynomial in X1.
Then r divides all coefficients of h except the constant one. Thus, by
Eisenstein’s criterion (cf. [FJ08, Lemma 2.3.10(b)]), h is irreducible
in F (Y)[X]. Therefore, if h decomposes in F [X,Y], then one of the
factors must be in F [Y]. But then, since c 6= 0, this factor must be in
F , and thus h is irreducible in F [X,Y].

Now assume that n > 1 and f /∈ F [X1]. Assume that h decomposes
as h = h1h2 with h1, h2 ∈ F [X,Y] rF . Since c 6= 0, we have h1, h2 /∈
F [X1]. Hence, there exists x ∈ F such that h1(x,X2, . . . , Xn,Y) /∈ F ,
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h2(x,X2, . . . , Xn,Y) /∈ F , and f(x,X2, . . . , Xn) /∈ F . Consequently,

f(x,X2, . . . , Xn)g(Y) + c = h1(x,X2, . . . , Xn,Y)h2(x,X2, . . . , Xn,Y)

decomposes in F [X2, . . . , Xn,Y], contradicting the induction hypothe-
sis. �

Lemma 2.3.4. Let f ∈ F [X1, . . . , Xn] be non-constant, and let g ∈
F [Y ] be non-constant and square-free in F̃ [Y ] with g(1) 6= 0 and g′(1) 6=
0. Then the polynomial

G(X, Y ) = g(Y )(1 + f(X))− g(1) ∈ F [X, Y ]

is absolutely irreducible, and for every root x of f , (x, 1) is a non-
singular point on the hypersurface defined by G.

Proof. Since f is non-constant, also 1 + f is non-constant. Since in
addition g is square-free in F̃ [Y ] and g(1) 6= 0, Lemma 2.3.3 implies
that G is absolutely irreducible. If f(x) = 0, then G(x, 1) = g(1)(1 +
f(x)) − g(1) = 0 and ∂G

∂Y
(x, 1) = g′(1) 6= 0. Therefore, (x, 1) is non-

singular on the hypersurface G = 0. �

Our formula defining R(Si) makes use of a polynomial of the form
G(X, Y ) in Lemma 2.3.4. More precisely, we let f(X) depend on a
parameter a ∈ F such that R(Si) consists of all a ∈ F for which
G(X, Y ) has a zero in F (in the case char(Si) 6=∞). We construct f(X)
as a product of several polynomials, each of which has a zero in a certain
class of localizations of F , so that the hypersurface G = 0 has a simple
point in every localization. The basic idea for this ‘modular’ approach
appears in Künzi’s work [Kün89a].

Lemma 2.3.5. Under Setting 2.3.1, the polynomial

Ai(X) = X2 − πi
satisfies the following conditions:

(A1) If P ∈ S rSi and char(P) 6= 2, then Ai has a zero in FP.
(A2) If P ∈ Si and char(P) 6=∞, then for all x ∈ F , vP(Ai(x)) ≤

1.
(A3) If P ∈ Si and char(P) 6=∞, then vP(Ai(1)) = 0.

(A4) Ai(X) is square-free in F̃ [X], and A′i(1) 6= 0.
(A5) If P ∈ Si and char(P) =∞, then for all x ∈ F , Ai(x) >P 1.

Proof. Let P ∈ S rSi with char(P) /∈ {2,∞}. The reduction Āi of
Ai with respect to P is Āi(X) = X2−1 by (S2). Thus, since Āi(1) = 0
and Ā′i(1) = 2 6= 0 (since char(P) 6= 2), Hensel’s lemma (Lemma 1.5.4)
gives a zero of Ai in FP. Now let P ∈ S rSi with char(P) =∞. Since
πi >P 0 by (S4), Ai has a zero in the real closed field FP. This proves
(A1).

Now let P ∈ Si with char(P) 6= ∞ and x ∈ F . If vP(x) > 0, then
vP(x2) ≥ 2 > vP(πi) by (S1), so vP(Ai(x)) = vP(πi) = 1. If vP(x) ≤ 0,
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then vP(x2) < vP(πi) by (S1), so vP(Ai(x)) = vP(x2) ≤ 1. This proves
(A2).

Furthermore, vP(Ai(1)) = vP(1 − πi) = 0 by (S1). This proves
(A3).

Condition (A4) follows from char(F ) = 0 and πi 6= 0.
Finally let P ∈ Si with char(P) =∞, and x ∈ F . Then πi <P −1

by (S3) and x2 ≥P 0, so Ai(x) ≥P −πi >P 1. This proves (A5). �

Lemma 2.3.6. Under Setting 2.3.1, the polynomial

Bi(X) = X2 + πiX + π

satisfies the following conditions:

(B1) If P ∈ S rSi and char(P) = 2, then Bi has a zero in FP.
(B2) If P ∈ Si and char(P) 6=∞, then for all x ∈ F , vP(Bi(x)) ≤

1.

Proof. Let P ∈ S rSi with char(P) = 2. Then the reduction B̄i

of Bi with respect to P is B̄i(X) = X2 + X (by (S1) and (S2)), and
B̄′i(X) = 1. Therefore, by Hensel’s lemma, Bi has a root in FP. This
proves (B1).

Now let P ∈ Si with char(P) 6= ∞ and x ∈ F . If vP(x) > 0, then
(S1) and (S2) imply that vP(x2) ≥ 2 > vP(π) and vP(πix) > vP(πi) =
vP(π), so vP(Bi(x)) = vP(π) = 1. If vP(x) ≤ 0, then (S1) and (S2)
imply that vP(x2) ≤ vP(x) < vP(πix) and vP(x2) ≤ 0 < vP(π), so
vP(Bi(x)) = vP(x2) ≤ 1. This proves (B2). �

Lemma 2.3.7. Under Setting 2.3.1, if char(Si) 6= ∞, then for every
a ∈ F , the polynomial

Di,a(X) = aπiX
2 −X + a

satisfies the following conditions:

(D1) If P ∈ Si and vP(a) ≥ 0, then Di,a has a zero in FP.
(D2) If P ∈ Si and vP(a) < 0, then vP(Di,a(x)) ≤ vP(a) for all x ∈

F . Thus, if vP(Di,a(x)) ≥ 0 for some x ∈ F , then vP(a) ≥ 0.

Proof. Let P ∈ Si with vP(a) ≥ 0. Then Di,a(X) ∈ OP[X] by (S1).
The reduction D̄i,a of Di,a with respect to P is D̄i,a(X) = −X+ ā, and
D̄′i,a(X) = −1. Therefore, Di,a has a zero in FP by Hensel’s lemma
(Lemma 1.5.4). This proves (D1).

Now let P ∈ Si with vP(a) < 0, and let x ∈ F . If vP(x) ≥ 0, then
vP(aπix

2) > vP(a) and vP(x) ≥ 0 > vP(a), so vP(Di,a(x)) = vP(a). If
vP(x) < 0, then vP(aπix

2) < 2vP(x) + vP(πi) ≤ −1 + vP(x) + vP(πi) =
vP(x) by (S1); and vP(aπix

2) = vP(a) + vP(πi) + 2vP(x) ≤ vP(a) + 1−
2 < vP(a), so vP(Di,a(x)) = vP(aπix

2) < vP(a). This proves (D2). �
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Lemma 2.3.8. Under Setting 2.3.1 and char(Si) 6= ∞, let a ∈ F . If
Ai satisfies (A1)-(A4), Bi satisfies (B1)-(B2), and Di,a satisfies (D1)-
(D2), then the polynomial

Gi,a(X, Y ) = Ai(Y )(1 + π−4
i Ai(X)Bi(X)Di,a(X))− Ai(1)

satisfies the following conditions:

(1) If Gi,a has a zero in F , then vP(a) ≥ 0 for all P ∈ Si.
(2) If F is PSCL and vP(a) ≥ 0 for all P ∈ Si, then Gi,a has a

zero in F .

Proof. Let x, y ∈ F with Gi,a(x, y) = 0 and let P ∈ Si. Then

vP(1 + π−4
i Ai(x)Bi(x)Di,a(x)) = vP(Ai(1))− vP(Ai(y)) ≥ −1

by (A2) and (A3). Thus,

vP(π−4
i Ai(x)Bi(x)Di,a(x)) ≥ −1,

so

vP(Di,a(x)) ≥ −1 + 4vP(πi)− vP(Ai(x))− vP(Bi(x)) > 0

by (S1), (A2), and (B2). Therefore, vP(a) ≥ 0 by (D2).
Now assume that F is PSCL and vP(a) ≥ 0 for all P ∈ Si. If

Ai(1) = 0, then Gi,a(0, 1) = 0. Hence, assume without loss of generality
that Ai(1) 6= 0. Let P ∈ S. We claim that Ai(X)Bi(X)Di,a(X) has
a zero in FP. If P ∈ S rSi and char(P) 6= 2, this follows from (A1).
If P ∈ S rSi and char(P) = 2, this follows from (B1). If P ∈ Si,
this follows from (D1). Therefore, by Lemma 2.3.4 and (A4), Gi,a is
absolutely irreducible and has a simple zero in FP for all P ∈ S. Since
F is PSCL, Gi,a has a zero in F . �

This almost concludes the proof of the definability of R(Si) for
char(Si) 6=∞. We now turn to the case char(Si) =∞.

Lemma 2.3.9. Under Setting 2.3.1, if char(Si) =∞, then the polyno-
mial

C(X) = X2 +X + 2

satisfies the following conditions:

(C1) If P ∈ S rSi and char(P) = 2, then C has a zero in FP.
(C2) If P ∈ Si, then C(x) >P 1 for every x ∈ F .

Proof. If char(P) = 2, then C has a zero in FP by Hensel’s lemma,
and this implies (C1). If x ∈ F , then x2 + x + 2 = (x + 1

2
)2 + 7

4
>P 1,

so (C2) holds. �

Lemma 2.3.10. Under Setting 2.3.1, if char(Si) = ∞, then for every
a ∈ F , the polynomial

Ea(X) = X2 − a
satisfies the following conditions:
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(E1) If P ∈ Si and a ≥P 0, then Ea has a zero in FP.
(E2) If P ∈ Si, x, ε ∈ F , and Ea(x) ≤P ε, then a ≥P −ε.

Proof. Let P ∈ Si with a ≥P 0. Then a has a square root in the real
closed field FP, and this implies (E1).

Now let P ∈ Si, and x, ε ∈ F with Ea(x) ≤P ε. Then x2 − a ≤P ε,
and therefore a ≥P −ε, since x2 ≥P 0. This implies (E2). �

Lemma 2.3.11. Under Setting 2.3.1, if char(Si) = ∞, then for every
u ∈ F×, the polynomial

Hu(X) = X2 + u2

satisfies the following conditions:

(H1) If P ∈ Si, then for all x ∈ F , Hu(x) ≥P u2.
(H2) If P ∈ Si, then Hu(1) = 1 + u2 >P 0.

(H3) Hu(X) is square-free in F̃ [X], and H ′u(1) 6= 0.

Proof. (H1) follows from x2 ≥P 0. (H2) follows from Hu(1) = 1 +
u2 ≥P 1 >P 0. (H3) follows from u 6= 0 and char(F ) = 0. �

Lemma 2.3.12. Under Setting 2.3.1 and char(Si) = ∞, let a ∈ F
and u ∈ F×. If Ai satisfies (A1) and (A5), C satisfies (C1)-(C2), Ea
satisfies (E1)-(E2), and Hu satisfies (H1)-(H3), then the polynomial

Gi,a,u(X, Y ) = Hu(Y )(1 + Ai(X)C(X)Ea(X))−Hu(1)

satisfies the following conditions:

(1) If Gi,a,u has a zero in F , then a ≥P − 1
u2 for all P ∈ Si.

(2) If F is PSCL and a ≥P 0 for all P ∈ Si, then Gi,a,u has a
zero in F .

Proof. Let x, y ∈ F such that Gi,a,u(x, y) = 0 and let P ∈ Si. Then

1 + Ai(x)C(x)Ea(x) =
Hu(1)

Hu(y)
≤P

1 + u2

u2
= 1 +

1

u2

by (H1), (H2). Thus, Ea(x) ≤P
1
u2 by (A5) and (C2). Therefore,

a ≥P − 1
u2 by (E2).

Now assume that F is PSCL and a ≥P 0 for all P ∈ Si. If Hu(1) =
0, then Gi,a,u(0, 1) = 0. Hence, assume without loss of generality that
Hu(1) 6= 0. Let P ∈ S. We claim that Ai(X)C(X)Ea(X) has a
zero in FP. If P ∈ S rSi and char(P) 6= 2, this follows from (A1).
If char(P) = 2, it follows from (C1). If P ∈ Si, it follows from (E1).
Therefore, by Lemma 2.3.4, (H3), and the assumption that F is PSCL,
it follows that Gi,a,u has a zero in F . �

For the following proposition, let Ai, Bi, C, Di,a, Ea, Hu be the
concrete polynomials defined above.
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Proposition 2.3.13. Under Setting 2.3.1, for char(Si) 6=∞ let ϕi(a)
be the Lring(π1, . . . , πn)-formula

(∃x, y)(Ai(y)(1 + π−4
i Ai(x)Bi(x)Di,a(x))− Ai(1) = 0),

and for char(Si) =∞ let ϕi(a) be the Lring(πi)-formula

(∀u 6= 0)(∃x, y)(Hu(y)(1 + Ai(x)C(x)Ea(x))−Hu(1) = 0).

Then the following holds for the subset ϕi(F ) ⊆ F defined by ϕi:

(1) ϕi(F ) ⊆ R(Si).
(2) If F is PSCL, then ϕi(F ) = R(Si).

Proof.

Part A: Case char(Si) 6= ∞. Note that the left hand side of the
equation in ϕi(a) is Gi,a(x, y), where Gi,a is the polynomial defined in
Lemma 2.3.8. By Lemma 2.3.5, Lemma 2.3.6, and Lemma 2.3.7, Ai,
Bi, and Di,a satisfy (A1)-(A4), (B1)-(B2), (D1)-(D2). Therefore, if
Gi,a(x, y) = 0, then vP(a) ≥ 0 for all P ∈ Si by Lemma 2.3.8(1), so
a ∈ R(Si). This proves (1). Conversely, if a ∈ R(Si) and F is PSCL,
then ϕi(a) holds in F by Lemma 2.3.8(2). This proves (2).

Part B: Case char(Si) = ∞. By Lemma 2.3.5, Lemma 2.3.9,
Lemma 2.3.10 and Lemma 2.3.11, Ai, C, Ea, Hu satisfy (A1), (A5),
(C1)-(C2), (E1)-(E2), (H1)-(H3). First assume that P ∈ Si and a ∈
ϕi(F ), i.e. the polynomial Gi,a,u of Lemma 2.3.12 has a zero for all
u ∈ F×. By Lemma 2.3.12(1), a ≥P −1/u2 for all P ∈ Si and u ∈ F×.
If a <P 0, then a <P −1/(22) or a <P −1/(1/a)2, since otherwise
a ≥P −1/4 and a ≤P −1. Thus, a ≥P 0 for all P ∈ Si, i.e. a ∈ R(Si).
This proves (1). Now assume that F is PSCL and a ∈ R(Si). By
Lemma 2.3.12(2), Gi,a,u has a zero in F for each u ∈ F×, i.e. ϕi(a) is
satisfied in F . This proves (2). �

Remark 2.3.14. Note that in the case char(Si) 6= ∞, our definition
of R(Si) is existential. With a little more effort, it is possible to give
an existential definition of R(Si) also in the case char(Si) =∞.

2.4. Defining Holomorphy Domains in PSCL Fields

Now we apply the general construction of the previous section to the
fields we are interested in. For the rest of this chapter, we continue to
work in Setting 2.2.1 and make the following additional assumptions:

� For p ∈ S non-archimedean, πp ∈ K with vp(πp) = 1 is
fixed.

� For p ∈ S archimedean, let πp = −1.

Lemma 2.4.1. Let S = {p1, . . . , pn}, Si = Spi(F ), and S =
⋃
· ni=1 Si.

Then there exist π1, . . . , πn ∈ K that satisfy the conditions of Set-
ting 2.3.1.
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Proof. Let i ∈ {1, . . . , n}.

Part A: char(pi) 6=∞. By the weak approximation theorem (Lemma
1.5.1), there exists πi ∈ K with vpi(πi−πpi) > 1, vpj(πi−1) > 1 for j 6= i
with char(pj) 6=∞, and 0 <pj πi <pj 2 for j 6= i with char(pj) =∞. In
particular, vpi(πi) = vpi(πpi) = 1. So πi satisfies (S1), (S2), and (S4),
cf. Remark 2.2.4.

Part B: char(pi) = ∞. By Lemma 1.5.1, there exists πi ∈ K with
−3 <pi πi <pi −1, vpj(πi − 1) > 1 for j 6= i with char(pj) 6= ∞, and
0 <pj πi <pj 2 for j 6= i with char(pj) = ∞. Thus, πi satisfies (S2),
(S3) and (S4). �

So in particular, Proposition 2.3.13 applies under our current set-
ting. We write

ϕholom,p

for the corresponding Lring(K)-formula constructed there. More pre-
cisely, if p ∈ S, then ϕholom,p(a) is the formula ϕi(a), where i is chosen
such that p = pi in Lemma 2.4.1. This way we proved the following.

Proposition 2.4.2. Let p ∈ S. Then the following holds:

(1) ϕholom,p(F ) ⊆ Rp(F ).
(2) If F is PSCL, then ϕholom,p(F ) = Rp(F ).

Definition 2.4.3. Let p ∈ S. If char(p) 6=∞, let q = |K̄p|, and define
the p-adic Kochen operator (of type (1, 1) over K) by

γp(x) =
1

πp

· ((xq − x)− (xq − x)−1)−1

if this expression is well defined, and γp(x) = 0 otherwise. Define the
p-adic Kochen ring (of type (1, 1) over K) of F by

Γp(F ) =

{
b

1 + πpc
: b, c ∈ Op[γp(F )], 1 + πpc 6= 0

}
.

If char(p) =∞, let

γp(x) = γ(x) = x2

and

Γp(F ) = Op[γ(F )],

the semiring generated by γ(F ) over Op.

Lemma 2.4.4. Let p ∈ S. Then Sp(F ) 6= ∅ if and only if π−1
p /∈ Γp(F ).

In that case, Rp(F ) = Γp(F ).

Proof. For the case char(p) 6= ∞ see [PR84, 6.4, 6.8, 6.9, 6.14]. For
the case char(p) = ∞, first note that Γp(F ) ⊆ Rp(F ). Assume that
there exists P ∈ Sp(F ). Then Γp(F ) ⊆ Rp(F ) ⊆ OP, so −1 /∈ Γp(F ).
Conversely, if −1 /∈ Γp(F ), then Γp(F ) is a pre-positive cone. By
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Lemma 1.4.1, Γp(F ) = Rp(F ). So Γp(F ) 6= F implies that Sp(F ) 6=
∅. �

Lemma 2.4.5. Let p ∈ S and let L/F be an extension. If Sp(L) = ∅,
then there exists a finitely generated subextension L0/F of L/F with
Sp(L0) = ∅.

Proof. By Lemma 2.4.4, π−1
p ∈ Γp(L), so by the definition of Γp(L)

there exists a finitely generated extension L0/F contained in L such
that π−1

p ∈ Γp(L0). Thus, Sp(L0) = ∅ by Lemma 2.4.4. �

Definition 2.4.6. Let Tholom,p be the Lring(K)-theory consisting of
the following sentences.

(1) A finite number of sentences stating that ϕholom,p defines a ring
(if char(p) 6=∞) resp. a semiring (if char(p) =∞).

(2) For every a ∈ Op the sentence

ϕholom,p(a).

(3) The sentence

(∀x)(ϕholom,p(γp(x))).

(4) If char(p) 6=∞, the sentence

(∀x)(ϕholom,p(x) ∧ 1 + πpx 6= 0→ ϕholom,p((1 + πpx)−1)).

(5) The sentence

ϕholom,p(π
−1
p )→ (∀x)(ϕholom,p(x)).

Proposition 2.4.7. The field F satisfies Tholom,p if and only if the
formula ϕholom,p defines the holomorphy domain Rp(F ) in F .

Proof. First suppose that ϕholom,p(F ) = Rp(F ). Since a holomorphy
domain is a ring resp. a semiring, F satisfies (1). If Rp(F ) = F , then
F satisfies (2)-(5), so assume that Sp(F ) 6= ∅. By Lemma 2.4.4, π−1

p /∈
Γp(F ) and Γp(F ) = Rp(F ). So since Op ⊆ Γp(F ) and γp(F ) ⊆ Γp(F ),
F satisfies (2) and (3). If char(p) 6= ∞, P ∈ Sp(F ) and x ∈ OP, then
vP(1 + πpx) = 0, so vP((1 + πpx)−1) = 0. Hence, if x ∈ F and F
satisfies ϕholom,p(x), then F satisfies ϕholom,p((1+πpx)−1). Therefore, F
satisfies also (4). Since π−1

p /∈ Γp(F ), F does not satisfy ϕholom,p(π
−1
p ),

and hence satisfies (5).
Conversely suppose that F satisfies Tholom,p. It follows from Propo-

sition 2.4.2(1) that ϕholom,p(F ) ⊆ Rp(F ). By (1), ϕholom,p(F ) is a
ring resp. a semiring. Moreover, by (2) and (3), it contains Op and
γp(F ). If char(p) 6= ∞, then ϕholom,p(F ) is closed under the map
x 7→ (1+πpx)−1 for x with 1+πpx 6= 0. Therefore, Γp(F ) ⊆ ϕholom,p(F ).
If π−1

p ∈ Γp(F ), then π−1
p ∈ ϕholom,p(F ), so ϕholom,p(F ) = F by (5), and

thus ϕholom,p(F ) = Rp(F ). If π−1
p /∈ Γp(F ), then Γp(F ) = Rp(F ) by

Lemma 2.4.4, so ϕholom,p(F ) = Rp(F ). �
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2.5. Quantification over Classical Primes

In this section we translate first-order statements concerning the clas-
sical primes of F to statements about F and the corresponding holo-
morphy domains.

Lemma 2.5.1. Let p ∈ S with char(p) 6=∞. For a ∈ F let

Hp(a) = {P ∈ Sp(F ) : a ∈ OP}.

Then the following holds:

(1) If a, b ∈ F , then Hp(a) ∩Hp(b) = Hp(a
2 + πpb

2).
(2) If a ∈ F×, then Sp(F ) rHp(a) = Hp((πpa

2)−1).
(3) If P (Z1, . . . , Zn) is a boolean polynomial1, then there exists a

rational function

r(X) ∈ Q(πp)(X1, . . . , Xn)

such that for all a1, . . . , an ∈ F ,

P (Hp(a1), . . . , Hp(an)) = Hp(r(a1, . . . , an)). (2.1)

Proof.

Proof of (1). Let P ∈ Sp(F ) and a, b ∈ F . If vP(a) ≥ 0 and vP(b) ≥
0, then vP(a2 +πpb

2) ≥ 0 since vP(πp) ≥ 0. Conversely, if vP(a) < 0 or
vP(b) < 0, then, since vP(πp) = 1, 2vP(a) 6= 2vP(b) + vP(πp), and thus
vP(a2 + πpb

2) = min{vP(a2), vP(πpb
2)} < 0.

Proof of (2). Let P ∈ Sp(F ) and a ∈ F×. If vP(a) ≥ 0, then
vP(πpa

2) ≥ vP(πp) > 0, so vP((πpa
2)−1) < 0. Conversely, if vP(a) < 0,

then vP(πpa
2) ≤ −1, so vP((πpa

2)−1) ≥ 0.

Proof of (3). First note that for a ∈ F , Hp(a) = Hp(a) ∩Hp(1) =
Hp(a

2 + πp) by (1), and a2 + πp 6= 0. Hence, the set of boolean
polynomials P (Z) for which there exists a rational function r(X) ∈
Q(πp)(X1, . . . , Xn) such that r(a) /∈ {0,∞} and (2.1) hold for all
a1, . . . , an ∈ F contains the boolean polynomials Z1, . . . , Zn. By (1), it
is closed under intersections. By (2), it is closed under complements.
Therefore, it is also closed under unions, and hence contains all boolean
polynomials. �

Remark 2.5.2. In what comes, the predicate symbolR of the language
LR will be used in two different ways. It will interpret either a valuation
ring resp. positive cone OP, or a holomorphy domain Rp(F ). We write
(F,OP) and (F,Rp(F )), respectively, for the corresponding structures.

Notation 2.5.3. For convenience, we introduce the LR-formula

x ∈ R×

1see [FJ08, Chapter 7.6]
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as an abbreviation for the formula

x ∈ R ∧ x−1 ∈ R.

Remark 2.5.4. Note that formally we work in the language Lring of
rings, i.e. there is no function ·−1 in our language. However, it is com-
mon to use this function in first-order formulas when working in fields,
knowing that it can always be eliminated by introducing a new quan-
tifier. More precisely, if ϕ(x) is a formula, then ϕ(x−1) is equivalent in
the theory of fields to

(∃y)(xy = 1 ∧ ϕ(y))

or
x 6= 0 ∧ (∀y)(xy = 1→ ϕ(y)).

In other words, the function ·−1 can always be eliminated either by
introducing an existential or a universal quantifier. Therefore, we will
not make use of the function ·−1 in formulas we claim to be quantifier
free, but we will eventually use this function in universal or existential
formulas.

Proposition 2.5.5. Let p ∈ S.

(1) There exists a recursive map ϕ(x) 7→ ϕp,∃(x) from existential
LR-formulas to LR(πp)-formulas such that for every extension
F/K and elements a1, . . . , an ∈ F the following statements are
equivalent:
(1a) There exists P ∈ Sp(F ) such that (F,OP) |= ϕ(a).
(1b) (F,Rp(F )) |= ϕp,∃(a).

(2) There exists a recursive map ϕ(x) 7→ ϕp,∀(x) from universal
LR-formulas to LR(πp)-formulas such that for every extension
F/K and elements a1, . . . , an ∈ F the following statements are
equivalent:
(2a) (F,OP) |= ϕ(a) for all P ∈ Sp(F ).
(2b) (F,Rp(F )) |= ϕp,∀(a).

Proof. First of all, note that we can get ϕp,∀ from ϕp,∃ via ϕp,∀ :⇔
¬(¬ϕ)p,∃. Thus, it suffices to prove (1). For x ∈ F , let Hp(x) = {P ∈
Sp(F ) : x ∈ OP}.

Part A1: Case char(p) 6=∞. First assume that ϕ(x) is of the simple
form ∧

i

(fi(x) ∈ R) ∧
∧
i

(gi(x) /∈ R),

where fi, gi ∈ Z[X] for all i.
Assume that (1a) holds. Then there exists P ∈ Sp(F ) with fi(a) ∈

OP and gi(a) /∈ OP for all i. Hence,⋂
i

Hp(fi(a)) ∩
⋂
i

(Sp(F ) rHp(gi(a))) 6= ∅,
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or, equivalently,

(Sp(F ) r
⋂
i

Hp(fi(a))) ∪
⋃
i

Hp(gi(a)) 6= Sp(F ). (2.2)

By Lemma 2.5.1(3), applied to the left hand side of inequality (2.2),
there exists a rational function r ∈ Q(πp)(X) independent of a such
that

Hp(r(a)) = (Sp(F ) r
⋂
i

Hp(fi(a))) ∪
⋃
i

Hp(gi(a)).

But if Hp(r(a)) 6= Sp(F ) then r(a) /∈ Rp(F ). Therefore, if we let ϕp,∃(x)
be the formula

¬(r(x) ∈ R),

then (1a) implies (1b).
Conversely, suppose that (1b) holds. Then r(a) /∈ Rp(F ), and hence

Hp(r(a)) 6= Sp(F ). Therefore there exists P ∈ Sp(F ) with fi(a) ∈ OP

and gi(a) /∈ OP for all i, i.e. (1a) holds.

Part A2: Conclusion of the proof for char(p) 6= ∞. Now
assume that ϕ(x) is an arbitrary existential LR-formula in prenex dis-
junctive normal form, i.e. ϕ(x) is of the form

(∃y1, . . . , ym)
∨
j

[
∧
i

(fij(x,y) ∈ R) ∧
∧
i

(gij(x,y) /∈ R) ∧

∧
∧
i

(hij(x,y) = 0) ∧
∧
i

(kij(x,y) 6= 0)],

where fij, gij, hij, kij ∈ Z[X,Y]. Let ϕj(x,y) be the formula∧
i

(fij(x,y) ∈ R) ∧
∧
i

(gij(x,y) /∈ R).

Then ϕj is of the special form considered in Part A1. Let ϕp,∃(x) be
the formula

(∃y1, . . . , ym)
∨
j

[(ϕj)p,∃(x,y) ∧
∧
i

(hij(x,y) = 0) ∧
∧
i

(kij(x,y) 6= 0)].

Then ϕp,∃ satisfies the claim. This follows from the fact that exis-
tential quantifiers commute with each other (even first and second or-
der quantifiers, as in our case), and with disjunctions. Furthermore,
F |=

∧
i(hij(x,y) = 0) ∧

∧
i(kij(x,y) 6= 0) if and only if (F,Rp(F )) |=∧

i(hij(x,y) = 0) ∧
∧
i(kij(x,y) 6= 0).

Part B1: Case char(p) =∞. First of all, assume that ϕ(x) is of the
form ∧

i

(fi(x) ∈ R)

where f1, . . . , fm ∈ Z[X].
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Assume that (1a) holds. Then there exists an ordering P ∈ Sp(F )
with f1(a) ≥P 0, . . . , fm(a) ≥P 0. Hence, Rp(F )[f1(a), . . . , fm(a)], the
semiring generated by f1(a), . . . , fm(a) over Rp(F ), is contained in OP.
In particular,

Rp(F )[f1(a), . . . , fm(a)] ∩ (−Rp(F )) ⊆ OP ∩ (−OP),

so

Rp(F )[f1(a), . . . , fm(a)] ∩ (−Rp(F )) = {0}. (2.3)

Equality (2.3) says that all possible non-zero finite sums
r∑
j=1

sjf1(a)kj,1 · · · fm(a)kj,m ,

where sj ∈ Rp(F ) and kj,l ≥ 0 for all j, l, are not in −Rp(F ). Hence, if
ϕp,∃(x) is the formula

(∀s1, . . . , sr ∈ R) (−
r∑
j=1

sjf1(x)kj,1 · · · fm(x)kj,m ∈ Rp(F )

→
r∑
j=1

sjf1(x)kj,1 · · · fm(x)kj,m = 0),

where r = 2m, and (kj,1, . . . , kj,m) ranges over {0, 1}m, then (1a) implies
(1b).

Conversely, suppose that (1b) holds. Then

(∀s1, . . . , sr ∈ Rp(F )) (
r∑
j=1

sjf1(a)kj,1 · · · fm(a)kj,m 6= 0

→
r∑
j=1

sjf1(a)kj,1 · · · fm(a)kj,m /∈ −Rp(F )),

where r = 2m, and (kj,1, . . . , kj,m) ranges over {0, 1}m, holds. Since
F 2 ⊆ Rp(F ), this remains true if r ∈ N and the (kj,1, . . . , kj,m) are
taken from (Z≥0)m. Hence, (2.3) holds. Since −1 ∈ −Rp(F ), −1 /∈
Rp(F )[f1(a), . . . , fm(a)], so Rp(F )[f1(a), . . . , fm(a)] is a pre-positive
cone. By Lemma 1.4.1, there exists an ordering P ∈ Sp(F ) with
f1(a) ≥P 0, . . . , fm(a) ≥P 0, and hence (1a) holds.

Part B2: Conclusion of the proof for char(p) = ∞. Now
assume that ϕ(x) is an arbitrary existential LR-formula in prenex dis-
junctive normal form. Replace x /∈ R by (−x ∈ R)∧ (x 6= 0) to assume
that ϕ(x) is of the form

(∃y)
∨
j

[
∧
i

(fij(x,y) ∈ R) ∧
∧
i

(hij(x,y) = 0) ∧
∧
i

(kij(x,y) 6= 0)],

where fij, hij, kij ∈ Z[X,Y]. Now conclude the proof as in Part A2.
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Part C: Recursivity. Everything in the construction of ϕp,∃, like
finding the prenex normal form of a formula, or finding the rational
function r ∈ Q(πp)(X), can be done explicitly. Therefore, the map
ϕ(x) 7→ ϕp,∃(x) can be chosen to be recursive. �

Remark 2.5.6. We borrowed the idea for the case char(p) =∞ from
Prestel’s work [Pre81, p. 154]. The idea for the case char(p) 6= ∞
appears in Grob’s thesis [Gro87, proof of Theorem 4.01].

2.6. Quantification over Classical Closures

We use the quantification over classical primes of the previous section
to quantify over classical closures.

Definition 2.6.1. For p ∈ S with char(p) 6= ∞, we fix a finite set
Cp ⊆ K of representatives of K̄p.

Lemma 2.6.2. Let p ∈ S with char(p) 6= ∞, and let P ∈ Sp(F ) be
quasi-local (see Definition 2.1.18). Let n ∈ N and r = 2vP(n). Then
the following holds for each x ∈ F×:

(1) x /∈ (F×P )n if and only if for all y ∈ F , vP(ynx− 1) ≤ r.

(2) x ∈ (F×P )n if and only if for all y ∈ F , the following two
conditions hold:
(2a) vP(ynx/πkp ) 6= 0 for 1 ≤ k < n.
(2b) If vP(ynx) = 0, then

vP

(
yn

( ∑
0≤j≤r

cjπ
j
p

)n

x− 1

)
> r

for some c0, . . . , cr ∈ Cp.

Proof. Let O = Rp(FP) be the unique valuation ring of FP lying over
OP. Note that O× ∩ (F×P )n = (O×)n.

Proof of (1). First suppose that x = zn, where z ∈ F×P . We want to
show that there exists y ∈ F such that vP(ynx− 1) > r. Since O/OP

is immediate, there exists u ∈ F× with uz ∈ O×, and thus unx ∈ O×.
Therefore assume without loss of generality that x ∈ O×, i.e. x = zn

for some z ∈ O×. Since πp is a uniformizer for O, and Cp is a set of
representatives of O/πpO,

z−1 = c0 + c1πp + · · ·+ crπ
r
p + wπr+1

p ,
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where c0, . . . , cr ∈ Cp and w ∈ O. Then y := c0 + c1πp + · · ·+ crπ
r
p ∈ F

and

vP (ynx− 1) = vP

(
(z−1 − wπr+1

p )nx− 1
)

= vP

(
n∑
i=0

(n
i

)
zi−n(−wπr+1

p )izn − 1

)
=

= vP

(
n∑
i=1

(n
i

)
zi(−wπr+1

p )i

)
>

> r.

Conversely, suppose there is y ∈ F with vP(ynx − 1) > r. Then
vP(ynx) ≥ 0 and the polynomial f(Z) = Zn − ynx ∈ O[Z] satisfies

vP(f(1)) = vP(1− ynx) > r = 2vP(n) = 2vP(f ′(1)).

Therefore, f has a zero in FP by Hensel-Rychlik (Lemma 1.5.3), i.e. x ∈
(F×P )n.

Proof of (2). Suppose that (2a) holds for all y ∈ F . Then n 6 |vP(x)−
k for k = 1, . . . , n − 1. Since P is quasi-local, vP(F×) is a Z-group
(cf. Remark 2.1.19), so n|vP(x). Therefore there is some y ∈ F such
that vP(ynx) = 0. By (2b), there are c0, . . . , cr ∈ Cp such that

vP(yn(
∑

j cjπ
j
p)nx− 1) > r. By (1), x ∈ (F×P )n.

Conversely suppose that x ∈ (F×P )n. Then for all y ∈ F , n|vP(ynx),

so vP(ynx/πkp ) 6= 0 for 1 ≤ k < n, i.e. (2a) holds. If vP(ynx) = 0, then
there is z ∈ O× such that zn = ynx. Write z−1 as

z−1 = c0 + c1πp + · · ·+ crπ
r
p + wπr+1

p ,

with c0, . . . , cr ∈ Cp and w ∈ O. Then yn(
∑

j cjπ
j
p)nx = zn(z−1 −

wπr+1
p )n, so vP(yn(

∑
j cjπ

j
p)nx− 1) > r, and thus (2b) holds. �

Lemma 2.6.3. Let p ∈ S with char(p) 6= ∞, and let P ∈ Sp(F ) be
quasi-local. Let n ∈ N and r = 2vp(n), and write O = Rp(FP). Define
LR(K)-formulas

ϕn(x, y) :⇔ πrp(ynx− 1)−1 ∈ R
and

ψn(x, y) :⇔ (
n−1∧
k=1

ynxπ−kp /∈ R× ∧ (ynx ∈ R× →

→
∨

c0,...,cr∈Cp

(yn(
∑

0≤j≤r

cjπ
j
p)nx− 1)π−r−1

p ∈ R))

Then for x ∈ F× the following are equivalent:

(1) x /∈ (F×P )n.
(2) (FP,O) |= (∀y)(ϕn(x, y)).



2.6. QUANTIFICATION OVER CLASSICAL CLOSURES 45

(3) (F,OP) |= (∀y)(ϕn(x, y)).

Furthermore, the following are equivalent:

(1′) x ∈ (F×P )n.
(2′) (FP,O) |= (∀y)(ψn(x, y)).
(3′) (F,OP) |= (∀y)(ψn(x, y)).

Proof. Note that (F,OP) |= ϕn(x, y) if and only if vP(ynx− 1) ≤ r.
By Lemma 2.6.2(1), applied to the field FP, (1) implies (2). Since the
formula (∀y)(ϕn(x, y)) is universal, (2) implies (3). By Lemma 2.6.2(1),
applied to the field F , (3) implies (1).

Note that (F,OP) |= ψn(x, y) if and only if properties (2a) and
(2b) of Lemma 2.6.2(2) hold. By Lemma 2.6.2(2), applied to the field
FP, (1′) implies (2′). Since the formula (∀y)(ψn(x, y)) is universal, (2′)
implies (3′). Finally, by Lemma 2.6.2(2), applied to the field F , (3′)
implies (1′). �

Remark 2.6.4. One could imagine a different approach and define ψn
from ϕn by using a set of representatives of F×P /(F

×
P )n as parameters.

But since these representatives depend on n, this would imply the use of
infinitely many parameters, and would force us in the following lemma
to make stronger recursivity assumptions on K – which we wish to
avoid at this point. The approach we chose uses only a finite set of
parameters for all of the ψn.

Lemma 2.6.5. Let p ∈ S. There exists a recursive map ϕ(x) 7→
ϕ̂p,∀,R(x) from Lring-formulas to LR(K)-formulas such that for every
extension F/K and elements a1, . . . , am ∈ F the following holds:

(1) If F ′ |= ϕ(a) holds for all F ′ ∈ CC(F, p), then (F,Rp(F )) |=
ϕ̂p,∀,R(a).

(2) If (F,Rp(F )) |= ϕ̂p,∀,R(a) and P ∈ Sp(F ) is quasi-local, then
FP |= ϕ(a).

Proof.

Part A: Case char(p) = p 6=∞. Recall that the theory of p-adically
closed fields of fixed p-rank d has quantifier elimination in the language

LP,d = LR ∪ {c1, . . . , cd} ∪ {Pn : n ∈ N},
which is the language of rings augmented by a predicate R for the
p-valuation ring O, constants c1, . . . , cd for an Fp-basis of O/pO, and
predicates Pn for the n-th powers (Proposition 1.6.3).

In our case, we may choose c1, . . . , cd from K, since for P ∈ Sp(F ),
vP and vp have the same p-rank, and hence OP/pOP = Op/pOp.
Therefore, there exists a quantifier free formula ψ(x) in the language
LR(K) ∪ {Pn : n ∈ N} such that for each P ∈ Sp(F ) and each p-adic
closure F ′ of (F, vP) with p-valuation ring OF ′ , and every a ∈ Fm,
F ′ |= ϕ(a) if and only if F ′ |= ψ(a). Here F ′ |= ψ(a) means that R
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and Pn are interpreted, respectively, by the p-valuation ring OF ′ of F ′,
and the subset (F ′)n of n-th powers.

Let η(x) be the universal LR(K)-formula obtained from the dis-
junctive normal form of ψ(x) by replacing all occurrences of x ∈ Pn
resp. x /∈ Pn by the universal LR(K)-formulas (∀y)(ψn(x, y)) resp.
(∀y)(ϕn(x, y)) constructed in Lemma 2.6.3. If F ′ is as above, then
the prime of F ′ belonging to OF ′ is quasi-local, and hence (1) ⇔ (2)
and (1′) ⇔ (2′) of Lemma 2.6.3 imply that F ′ |= ψ(a) if and only if
(F ′,OF ′) |= η(a). Let ϕ̂p,∀,R(x) be the formula ηp,∀(x) that Proposi-
tion 2.5.5 attaches to η(x). Then the following are equivalent for every
a ∈ Fm.

(a) (F,OP) |= η(a) for all P ∈ Sp(F ).
(b) (F,Rp(F )) |= ϕ̂p,∀,R(a).

We claim that ϕ̂p,∀,R(x) satisfies (1) and (2).

Part A1: Proof of (1). Assume that F ′ |= ϕ(a) for all F ′ ∈
CC(F,P), P ∈ Sp(F ). Then F ′ |= ψ(a), and hence (F ′,OF ′) |= η(a).
Since η is universal, this implies that (F,OP) |= η(a) for all P ∈ Sp(F ).
By (a)⇒ (b), (F,Rp(F )) |= ϕ̂p,∀,R(a).

Part A2: Proof of (2). Assume that (F,Rp(F )) |= ϕ̂p,∀,R(a)
and P ∈ Sp(F ) is quasi-local, and let O = Rp(FP). By (b) ⇒ (a),
(F,OP) |= η(a). Recall that η was built from the quantifier free
LR(K) ∪ {Pn : n ∈ N}-formula ψ by replacing all atomic formulas x ∈
Pn resp. x /∈ Pn by the universal formulas constructed in Lemma 2.6.3.
By (2) ⇔ (3) and (2′) ⇔ (3′) of that lemma, these universal formu-
las are satisfied in (F,OP) if and only if they are satisfied in (FP,O).
Therefore, since (F,OP) is a substructure of (FP,O), (F,OP) |= η(a)
implies that (FP,O) |= η(a). As mentioned above, this implies that
FP |= ψ(a). Therefore, FP |= ϕ(a), as claimed.

Part B: Case char(p) = ∞. The theory of real closed fields has
quantifier elimination in the language L≤ = Lring ∪ {≤}, see Proposi-
tion 1.4.5. Thus, replacing x ≤ y by by y − x ∈ R, we get a quantifier
free LR-formula ψ(x) such that for every P ∈ Sp(F ) and a ∈ Fm,
FP |= ϕ(a) if and only if (FP,O) |= ψ(a), where O = Rp(FP) is the
positive cone (i.e. the set of squares) of FP. Since the ordering of FP

extends ≤P, (FP,O) |= ψ(a) if and only if (F,OP) |= ψ(a). Propo-
sition 2.5.5 gives an LR(K)-formula ψp,∀(x) such that (F,Rp(F )) |=
ψp,∀(a) if and only if (F,OP) |= ψ(a) for all P ∈ Sp(F ). Therefore, the
LR(K)-formula ϕ̂p,∀,R(x) :⇔ ψp,∀(x) satisfies (1) and (2).

Part C: Recursivity. The formula ϕ̂p,∀,R(x) is constructed from
ϕ via quantifier elimination, the formulas ϕn, ψn from Lemma 2.6.3,
and the map η 7→ ηp,∀ of Proposition 2.5.5. The map η 7→ ηp,∀ is re-
cursive by Proposition 2.5.5, and since the theory of real closed fields
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and the theory of p-adically closed fields of a fixed p-rank are decid-
able (Proposition 1.6.3 and Proposition 1.4.5), the quantifier elimina-
tion can be carried out recursively. Since the formulas ϕn and ψn
involve only parameters from the finite set

⋃
p∈S Cp ∪ {πp}, indepen-

dent of n, replacing x ∈ Pn and x /∈ Pn by the formulas (∀y)(ψn(x, y))
resp. (∀y)(ϕn(x, y)) from Lemma 2.6.3 can be done recursively. There-
fore, the map ϕ(x) 7→ ϕ̂p,∀,R(x) can be chosen to be recursive. �

Proposition 2.6.6. Let p ∈ S. There exists a recursive map ϕ(x) 7→
ϕ̂p,∀(x) from Lring-formulas to Lring(K)-formulas such that for every
extension F/K that satisfies Tholom,p, and for all elements a1, . . . , am ∈
F the following holds:

(1) If F ′ |= ϕ(a) for all F ′ ∈ CC(F, p), then F |= ϕ̂p,∀(a).
(2) If F |= ϕ̂p,∀(a) and P ∈ Sp(F ) is quasi-local, then FP |= ϕ(a).

Proof. Combine Lemma 2.6.5 with Proposition 2.4.7. �

2.7. Axiomatization of PSCC Fields

We use the results of the previous section to axiomatize the PSCC
property.

Lemma 2.7.1. Let p ∈ S and F ′ ∈ CC(F, p), and let V be a smooth
absolutely irreducible variety defined over F . Then V (F ′) = ∅ if and
only if Sp(F

′(V )) = ∅.

Proof. This follows from Lemma 1.4.4 and Lemma 1.6.2. �

Definition 2.7.2. Construct an Lring(K)-theory TPSCC as follows:
Let

fn(T,Z) =
∑
α
TαZ

α1
1 · · ·Zαn

n ∈ Z[T,Z]

be the general polynomial in n variables Z1, . . . , Zn of degree n with
coefficients T. Here α runs over all n-tuples α = (α1, . . . , αn), αi ∈
Z≥0,

∑n
i=1 αi ≤ n.

For n ∈ N, let ψn(x,y) be an Lring-formula stating that the poly-
nomial fn(x,Z) with coefficients x is absolutely irreducible, see for
example [FJ08, Chapter 11.3], and all singular points on the affine hy-
persurface defined by this polynomial lie on the subvariety defined by
the polynomial fn(y,Z) with coefficients y.

Let ηn(x,y) be the Lring-formula

(∃z)(fn(x, z) = 0 ∧ fn(y, z) 6= 0)

stating that the polynomial with coefficients x has a zero which is not
a zero of the polynomial with coefficients y. By Proposition 2.6.6 there
exists an Lring(K)-formula (η̂n)p,∀(x,y) such that if F satisfies Tholom,p,
then the following holds for all tuples a,b from F .

(a) If F ′ |= ηn(a,b) for all F ′ ∈ CC(F, p), then F |= (η̂n)p,∀(a,b).
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(b) If F |= (η̂n)p,∀(a,b) and P ∈ Sp(F ) is quasi-local, then FP |=
ηn(a,b).

Let ϕn be the Lring(K)-sentence

(∀x,y)[(ψn(x,y) ∧
∧
p∈S

(η̂n)p,∀(x,y))→ ηn(x,y)].

Let TPSCC consist of the following sentences.

(1) For every p ∈ S, the theory Tholom,p.
(2) For every n ∈ N, the sentence ϕn.

Proposition 2.7.3. The field F satisfies TPSCC if and only if F is
PSCC.

Proof. First assume that F is PSCC. Then F is also PSCL (cf. Re-
mark 2.2.6). Hence, if p ∈ S, then ϕholom,p defines Rp(F ) in F by
Proposition 2.4.2. Therefore, by Proposition 2.4.7, F satisfies Tholom,p.
Thus, F satisfies (1).

By Proposition 2.2.11, each P ∈ Sp(F ) is quasi-local. By (b), for
all tuples a,b from F , if F |= (η̂n)p,∀(a,b) then FP |= ηn(a,b) for every
P ∈ Sp(F ). Therefore, if F |= ψn(a,b) ∧

∧
p∈S(η̂n)p,∀(a,b), then the

conditions

fn(a,Z) = 0, fn(b,Z) 6= 0 (2.4)

define a non-singular variety V which has an FP-rational point for every
P ∈ SS(F ). Therefore, since F is PSCL, V has an F -rational point,
so F |= ηn(a,b). Consequently, F satisfies (2).

Conversely, assume that F satisfies TPSCC. Then, for all p ∈ S, F
satisfies Tholom,p. Let V be any absolutely irreducible smooth variety
over F that has an F ′-rational point for every F ′ ∈ CC(F, S). Then the
F ′-rational points are Zariski-dense on V , as follows from Lemma 2.7.1.
Therefore, assume without loss of generality that V is given by tuples
a resp. b from F as in (2.4). Thus, F ′ |= ηn(a,b) for every F ′ ∈
CC(F, S). Therefore, by (a), F |= (η̂n)p,∀(a,b). Since F satisfies (2),
F |= ηn(a,b), i.e. V has an F -rational point, and so F is PSCC. �

Remark 2.7.4. Note that Proposition 2.7.3 gives an Lring-axiomati-
zation of PpC, PRC, and PCM fields, cf. Remark 2.2.7.

Remark 2.7.5. We can use our results to prove the conjecture posed
by Darnière in [Dar01, Remark 11]: If F is a finite family of fields

taken among R and the finite extensions of the fields Q̂p, and QF is
the maximal Galois extension of Q contained in every F ∈ F , then
there exists a finite extension K/Q contained in QF and a finite set
of primes S of K such that QF is PSCC. Hence, QF is ‘restricted
RC-local’ by Proposition 2.7.3, and RF is Lring(K)-definable in QF by
Proposition 2.4.2.
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Remark 2.7.6. If fact, with a little more effort, our method can be ex-
tended to allow finite initial ramification and finite residue field exten-
sion of the p-valuations, and hence to cover all ‘PCC’ fields of [Pop03].

Corollary 2.7.7. Let p ∈ S and let ϕ(x) be an Lring-formula. The
Lring(K)-formula ϕ̂p,∀(x) of Proposition 2.6.6 satisfies the following:
For every PSCC field F ⊇ K and for all elements a1, . . . , am ∈ F the
following are equivalent:

(1) F |= ϕ̂p,∀(a).
(2) F ′ |= ϕ(a) for all F ′ ∈ CC(F, p).

Proof. By Proposition 2.7.3, F satisfies Tholom,p. Furthermore, by
Proposition 2.2.11, every P ∈ Sp(F ) is quasi-local. Thus, the equiva-
lence of (1) and (2) follows from Proposition 2.6.6. �

2.8. The Strong Approximation Property

In this section we discuss the ‘strong approximation property’ and
prove that every PSCC field satisfies this property. We need the strong
approximation property for the characterization of totally S-adic ex-
tensions in terms of holomorphy domains, which follows in the next
section.

Definition 2.8.1. Let S̃(F ) be the set of all primes of F , and let
S̃p(F ) be the subset of those lying over p ∈ S. We equip S̃(F ) with the
following Zariski-topology: A subbasis is given by sets of the form

H(a) = {P ∈ S̃(F ) : a ∈ OP},

where a ∈ F . A set S ⊆ S̃(F ) is profinite if S, as a subspace of
S̃(F ), is a profinite space. We say that S satisfies SAP (the Strong
Approximation Property) if S is profinite and the family H(a) ∩ S,
a ∈ F , is closed under finite intersections.

Let S̃P(F ) = S̃(F ) r S̃∞(F ) be the set of non-archimedean primes
of F . We also consider the following (finer) patch topology on S̃P(F ):
A subbasis is given by sets of the form

HP(a) = {P ∈ S̃P(F ) : vP(a) ≥ 0}
and

H ′P(a) = {P ∈ S̃P(F ) : vP(a) > 0},
where a ∈ F .

Lemma 2.8.2. For every p ∈ S, Sp(F ) is profinite, and the family
H(a) ∩ Sp(F ), a ∈ F , is closed under complements (in Sp(F )).

Proof.

Part A: Case char(p) 6=∞. First note that for a ∈ F×,

HP(a) = S̃P(F ) rH ′P(a−1),
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so HP(a) is open-closed in the patch topology. By Lemma 2.5.1(2),

Sp(F ) rHP(a) = HP((πpa
2)−1) ∩ Sp(F ),

so the family HP(a) ∩ Sp(F ), a ∈ F , is closed under complements and
the patch topology on Sp(F ) coincides with the Zariski-topology. By

[HJP07, Proposition 8.2], the patch topology on S̃P(F ) is profinite.
Hence, also the closed subset

S̃p(F ) =
⋂
a∈Op

HP(a) ∩
⋂

a∈KrOp

(S̃P(F ) rHP(a))

is profinite. Therefore, it suffices to show that Sp(F ) is closed in S̃p(F ).

Claim A1. The set

S1 := {P ∈ S̃p(F ) : vP is discrete and vP(πp) = 1}
is closed in S̃p(F ).

Indeed, for P ∈ S̃p(F ), vP(πp) is the smallest positive element of
the value group vP(F×) if and only if for all a ∈ F×, vP(a) ≤ 0 or
vP(a) ≥ vP(πp). Thus,

S1 = S̃p(F ) ∩
⋂
a∈F×

(HP(a−1) ∪HP(π−1
p a))

is closed.

Claim A2. The set Sp(F ) = {P ∈ S1 : F̄P = K̄p} is closed in S1.

Indeed, let F = {f ∈ Op[X] : f̄ ∈ K̄p[X] has no zero in K̄p}. Then
for P ∈ S1, F̄P = K̄p if and only if no f ∈ F has a zero in F̄P. That is,

Sp(F ) = S1 ∩
⋂
f∈F

⋂
a∈F×

H(π−1
p a−1) ∪H(f(a)−1),

and this proves the claim.

Part B: Case char(p) = ∞. Since for a ∈ F×, Sp(F ) rH(a) =
H(−a)∩Sp(F ), the family H(a)∩Sp(F ) is closed under complements.
By [Pre84, 6.5], the Zariski-topology on the space S∞(F ) of orderings
is profinite. Since each of the sets H(a) ∩ S∞(F ) is closed in S∞(F ),

Sp(F ) =
⋂
a∈Op

H(a) ∩ S∞(F )

is closed in S∞(F ), and hence profinite. �

Lemma 2.8.3. If char(p) 6=∞, then Sp(F ) satisfies SAP.

Proof. By Lemma 2.8.2, Sp(F ) is profinite. By Lemma 2.5.1(1), the
family H(a)∩Sp(F ), a ∈ F , is closed under finite intersections. Hence,
Sp(F ) satisfies SAP. �
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Definition 2.8.4. We say that F is S-SAP if Sp(F ) satisfies SAP for
each p ∈ S.

Lemma 2.8.5. If F/K is algebraic, then F is S-SAP.

Proof. Let p ∈ S. If char(p) 6= ∞, then Sp(F ) satisfies SAP by
Lemma 2.8.3. If char(p) = ∞, let a, b ∈ F . Then, since F/K is
algebraic, there exists a finite subextension L/K of F/K such that
a, b ∈ L. Since L/K is finite, Sp(L) is finite and every P ∈ Sp(L) is lo-
cal. Therefore, Lemma 1.5.1 gives c ∈ L such that for P ∈ Sp(L),
1 ≤P c ≤P 3 if a, b ∈ OP, and −3 ≤P c ≤P −1 otherwise. If
P ∈ Sp(F ), then P|L ∈ Sp(L), hence c ∈ OP if and only if a, b ∈ OP,
i.e. H(a)∩H(b)∩Sp(F ) = H(c)∩Sp(F ). Thus, Sp(F ) satisfies SAP. �

If F is PRC, then S∞(F ) satisfies SAP, see [Pre81, Proposition 1.3].
In fact this holds for every PSCC field. We prove this by combining the
construction of Section 2.3 with the specific polynomial constructed by
Prestel.

Lemma 2.8.6. For a, b ∈ F×, let

fa,b(X, Y ) = abX2Y 2 + aX2 + bY 2 − 1 ∈ F [X, Y ].

If p ∈ S with char(p) =∞, and P ∈ Sp(F ), then the following holds:

(1) fa,b has a zero in FP.
(2) If x, y ∈ F and fa,b(x, y) >P −1, then ab(ax2 + by2) ≥P 0 if

and only if a ≥P 0 and b ≥P 0.

Proof.

Proof of (1). First note that

fa,b(X, Y ) = aX2(bY 2 + 1) + (bY 2 − 1).

One can choose y ∈ F such that (− 1
a
) by

2−1
by2+1

>P 0. Indeed, if a >P 0,

let y = 0. If a <P 0 and b >P 0, let y = 1 + b−1. If a <P 0 and b <P 0,
let y = 1− b−1. Since FP is real closed, there exists x ∈ FP such that

x2 = (− 1
a
) by

2−1
by2+1

, hence fa,b(x, y) = 0.

Proof of (2). First note that fa,b(0, 0) = −1, so x 6= 0 or y 6= 0.
Furthermore, fa,b(x, y) >P −1 implies that

ax2 + by2 >P −abx2y2. (2.5)

If a >P 0 and b >P 0, then ab(ax2 + by2) ≥P 0. If a <P 0 and
b <P 0, then ab >P 0 and ax2 + by2 <P 0 (since x 6= 0 or y 6= 0), so
ab(ax2 + by2) <P 0. If a >P 0 and b <P 0, or a <P 0 and b >P 0, then
ab <P 0 and thus ab(ax2 + by2) <P −a2b2x2y2 ≤P 0 by (2.5). �

Proposition 2.8.7. If F is PSCC, then F is S-SAP.
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Proof. Let p ∈ S. If char(p) 6= ∞, then Sp(F ) satisfies SAP by
Lemma 2.8.3. Therefore, assume that char(p) =∞, and let a, b ∈ F×.

We want to use the polynomials constructed in Section 2.3. Recall
Lemma 2.4.1, which gives a translation from our current setting to
Setting 2.3.1. Let

Ga,b(X, Y, Z) = H2(Z)(1− Ai(X)C(X)fa,b(X, Y ))−H2(1),

where Ai, C,Hu, fa,b are as in Lemma 2.3.5 (where πi is chosen accord-
ing to Lemma 2.4.1), Lemma 2.3.9, Lemma 2.3.11, and Lemma 2.8.6.
By (A1), (C1), and Lemma 2.8.6(1), Ai(X)C(X)fa,b(X, Y ) has a zero
in FP for each P ∈ SS(F ). Since F is PSCC, (H3) and Lemma 2.3.4
imply that there exist x, y, z ∈ F such that Ga,b(x, y, z) = 0. Thus, if
P ∈ Sp(F ), then

1− Ai(x)C(x)fa,b(x, y) =
H2(1)

H2(z)
≤P

5

4
,

by (H1) and (H2), so

Ai(x)C(x)fa,b(x, y) ≥P −
1

4
.

Since Ai(x)C(x) >P 1 by (A5) and (C2), this implies that

fa,b(x, y) ≥P −
1

4
>P −1.

Therefore, by Lemma 2.8.6(2),

H(a) ∩H(b) ∩ Sp(F ) = H(c) ∩ Sp(F ),

where

c = ab(ax2 + by2) ∈ F.
Hence, Sp(F ) satisfies SAP, as claimed. �

2.9. Totally S-adic Field Extensions

We define totally S-adic field extensions and describe them in terms of
holomorphy domains.

Definition 2.9.1. Let p ∈ S. If M/F is an extension, let

resp : Sp(M)→ Sp(F )

given by

Q 7→ Q|F
be the restriction map (cf. Definition 2.1.4).

Lemma 2.9.2. If p ∈ S and M/F is an extension, then the restric-
tion map resp : Sp(M) → Sp(F ) is continuous in the Zariski-topology
(Definition 2.8.1).
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Proof. Let a ∈ F . The inverse image under resp of the basic open set
{P ∈ Sp(F ) : a ∈ OP} is the basic open set {Q ∈ Sp(M) : a ∈ OQ}.
Hence, resp is continuous. �

Definition 2.9.3. Let p ∈ S. We call an extension M/F totally
p-adic if the restriction map resp : Sp(M) → Sp(F ) is surjective. We
call M/F totally S-adic if M/F is totally p-adic for each p ∈ S.

Remark 2.9.4. Note that if K = Q and |S| = 1, then our notion of
totally S-adic extensions coincides with the classical notions of totally
real extensions (as in [Pre81], [Ers82]) resp. totally p-adic extensions
(as in [Gro87], [Jar91]). The following lemmas unify results from these
works.

Remark 2.9.5. In [HJP09b] there is a section titled ‘Totally S1-adic
Extensions’, and there is a definition of a ‘maximal totally S1-adic
extension’. However, note that the ‘maximal totally S1-adic exten-
sion’ of K is not a maximal totally S-adic extension in our sense (where
S = S1).

Lemma 2.9.6. Let p ∈ S. If M/F is an extension and Sp(F ) satisfies
SAP, then the following statements are equivalent:

(1) M/F is totally p-adic.
(2) Rp(M) ∩ F = Rp(F ).
(3) Rp(M) ∩ F ⊆ Rp(F ).

Proof. Proof of (1) ⇒ (2). Assume that M/F is totally p-adic.
Then

Rp(F ) =
⋂

P∈Sp(F )

OP =
⋂

Q∈Sp(M)

(OQ ∩ F ) = Rp(M) ∩ F.

Proof of (2)⇒ (3). This is trivial.

Proof of (3)⇒ (1). Assume that the restriction map resp : Sp(M)→
Sp(F ) is not surjective. By Lemma 2.8.2, Sp(M) and Sp(F ) are profi-
nite spaces. Hence, since resp is continuous (Lemma 2.9.2), resp(Sp(M))
is closed in Sp(F ). Therefore, Sp(F ) r resp(Sp(M)) is nonempty and
open. If follows that the complement of a basic open-closed set con-
tained in Sp(F ) r resp(Sp(M)) is an open-closed proper subset X of
Sp(F ) containing resp(Sp(M)).

By Lemma 2.8.2, the subbasis H(a) ∩ Sp(F ), a ∈ F , of Sp(F ) is
closed under complements. Hence, since Sp(F ) satisfies SAP, X =
H(x) ∩ Sp(F ) for some x ∈ F by Lemma 1.3.5. Therefore,

resp(Sp(M)) ⊆ H(x) ∩ Sp(F ) $ Sp(F ).

Then x ∈ Rp(M) ∩ F but x /∈ Rp(F ), so Rp(M) ∩ F 6⊆ Rp(F ). �
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Corollary 2.9.7. Assume that F is PSCC. If F ≺M is an elemen-
tary extension, then M/F is regular and totally S-adic.

Proof. Every elementary extension is regular, see for example [FJ08,
7.3.3]. By Proposition 2.7.3, since F is PSCC and M ≡ F , M is PSCC.
Thus, by Proposition 2.4.2, since F ≺M , Rp(M)∩F = Rp(F ) for each
p ∈ S. By Proposition 2.8.7, since F is PSCC, F is S-SAP. Therefore,
by Lemma 2.9.6, M/F is totally S-adic. �

Lemma 2.9.8. The field F is PSCC if and only if for every domain
R = F [x1, . . . , xn] which is finitely generated over F and whose quo-
tient field M is regular and totally S-adic over F , there exists an F -
homomorphism R→ F .

Proof. First assume that F is PSCC. If M/F is regular, then R is the
coordinate ring of an absolutely irreducible affine variety V defined over
F . Let p ∈ S and P ∈ Sp(F ). By Proposition 2.2.11, since F is PSCC,
P is quasi-local. If M/F is totally S-adic, there exists Q ∈ Sp(M)
lying over P. Then MQ ⊇ FP(V ), hence Sp(FP(V )) 6= ∅. Thus, since
FP ∈ CC(F,P), V has a simple FP-rational point by Lemma 2.7.1. So
since F is PSCC, V has an F -rational point, and therefore there exists
an F -homomorphism R→ F .

Conversely, let V be an absolutely irreducible affine variety over F ,
and assume that it has an F ′-rational point for every F ′ ∈ CC(F, S).
Then R = F [V ] is a domain which is finitely generated over F and
whose quotient field M = F (V ) is regular over F . Let p ∈ S, P ∈
Sp(F ), and F ′ ∈ CC(F,P). Then Sp(F

′(V )) 6= ∅ by Lemma 2.7.1, so
if Q ∈ Sp(F

′(V )), then Q|M ∈ Sp(M) and Q|F = P, hence M/F
is totally S-adic. Consequently, by assumption there exists an F -
homomorphism R→ F , i.e. V has an F -rational point, as claimed. �

Lemma 2.9.9. Let M/F be an algebraic extension. Then the following
holds:

(1) CC(M,S) ⊆ CC(F, S).
(2) If M/F is totally S-adic Galois and F is S-quasi-local, then

CC(M,S) = CC(F, S).
(3) If N/F is totally S-adic Galois, F ⊆ M ⊆ N is a subexten-

sion, and F is S-quasi-local, then CC(F, S) = CC(M,S) =
CC(N,S).

Proof. Proof of (1). Let Q ∈ Sp(M) and let M ′ ∈ CC(M,Q).
Since tp(Q) = tp(Q|F ) = tp(p), and M ′/F is algebraic,
M ′ ∈ CC(F,Q|F ) ⊆ CC(F, S), as claimed.

Proof of (2). Let P ∈ Sp(F ), and let F ′ ∈ CC(F,P). Since P
is quasi-local, F ′ ∼=F FP. Since M/F is totally S-adic, there exists
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Q ∈ Sp(M) with Q|F = P. Then FP ⊆ MQ, so FP = MQ since
FP ∈ CC(F,P). Thus, FP ∈ CC(M,S). Hence, since M/F is Galois,
F ′ ∈ CC(M,S), as claimed.

Proof of (3). Since CC(N,S) ⊆ CC(M,S) ⊆ CC(F, S) by (1), and
CC(N,S) = CC(F, S) by (2), CC(F, S) = CC(M,S) = CC(N,S). �

2.10. The Classical Closures of a PSCL Field

We prove that local primes of an algebraic PSCL field lie over primes
in S.

Lemma 2.10.1. Let p be a local prime of K which is not contained in
S. If F is PSCL, then Sp(F ) = ∅.

Proof. Let S = {p1, . . . , pn} and S ′ = S∪{pn+1}, where pn+1 = p. By
Lemma 2.4.1, we can apply Setting 2.3.1 to S ′. Let a ∈ F be arbitrary.

Part A: Case char(p) 6=∞. Let

Gi,a(X, Y ) = Ai(Y )(1 + π−4
i Ai(X)Bi(X)Di,a(X))− Ai(1)

be as in Lemma 2.3.8 applied to S ′ and i = n + 1. Let P ∈ SS(F ) =
SS′(F ) rSp(F ). We claim that

Ai(X)Bi(X)Di,a(X)

has a zero in FP. Indeed, if char(P) 6= 2, this follows from (A1). If
char(P) = 2, this follows from (B1).

Assume without loss of generality that Ai(1) 6= 0. By Lemma 2.3.4
and (A4), Gi,a is absolutely irreducible and has a simple zero in FP

for all P ∈ SS(F ). Since F is PSCL, Gi,a has a zero in F . Hence, by
Lemma 2.3.8(1), vP(a) ≥ 0 for all P ∈ Sp(F ). So since a ∈ F was
arbitrary, Sp(F ) = ∅, as claimed.

Part B: Case char(p) =∞. Let u ∈ F× and let

Gi,a,u(X, Y ) = Hu(Y )(1 + Ai(X)C(X)Ea(X))−Hu(1)

be as in Lemma 2.3.12 applied to S ′ and i = n+1. Let P ∈ SS(F ). We
claim that Ai(X)C(X)Ea(X) has a zero in FP. Indeed, if char(P) 6= 2,
this follows from (A1). If char(P) = 2, it follows from (C1).

Assume without loss of generality that Hu(1) 6= 0. By Lemma 2.3.4,
(H3), and the assumption that F is PSCL, it follows that Gi,a,u has
a zero in F . Hence, Lemma 2.3.12(1) implies that a ≥P − 1

u2 for all
P ∈ Sp(F ). Consequently, since u was arbitrary, a ≥P 0. Hence, since
a was arbitrary, Sp(F ) = ∅, as claimed. �

Proposition 2.10.2. Let P be a local prime of F . If F/K is algebraic
and F is PSCL, then P|K ∈ S.
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Proof. Since F/K is algebraic, there exists a finite extension K1/K
contained in F such that tp(P) = tp(P|K1). Let S1 = SS(K1). Then
SS(F ) = SS1(F ), and F is PS1CL. Since K1/K is finite, S1 is finite.
Therefore, assume without loss of generality that K = K1.

Let p = P|K . Since P is local, also p is local. Since tp(P) =
tp(p), P ∈ Sp(F ). In particular, Sp(F ) 6= ∅. Therefore, p ∈ S by
Lemma 2.10.1, as claimed. �

Remark 2.10.3. With the generalization of our results indicated in
Remark 2.7.6, one could prove Proposition 2.10.2 for arbitrary PSCL
fields F and for arbitrary classical primes P of F .

Remark 2.10.4. In the case that F is PAC, Proposition 2.10.2 follows
from the theorem of Frey-Prestel, see [FJ08, 11.5.1] and [FJ08, 11.5.5].
The case of PRC and PpC fields is proven in [GJ91]. The general case
appears in [Pop03, Theorem 2.9].

2.11. A PSCC Embedding Lemma

In this section we prove an embedding theorem for PSCC fields. It
generalizes the ‘PAC Embedding Lemma’ of [JK75] (cf. [FJ08, 20.2.2]),
and the proofs are very similar. A slightly more general statement, in
fact a generalization to ‘PCC’ fields, appears in [Pop86]. The work
[Dar01] contains a further generalization to certain rings with an ‘RC-
local’ quotient field. The special case of PRC fields is proven in [Ers84],
and a partial case for PpC fields in [Kün89b].

Lemma 2.11.1. If P is a classical prime of F with F ∈ CC(F,P), and
E is a field with Gal(E) ∼= Gal(F ), then there exists a classical prime
Q of E with tp(Q) = tp(P) and E ∈ CC(E,Q).

Proof. If char(P) = ∞, this follows from Proposition 1.4.3. If
char(P) 6=∞, it follows from Proposition 1.6.6. �

Lemma 2.11.2. Let K ⊆ E ⊆ F , p ∈ S, Q ∈ Sp(F ) and P =

Q|E ∈ Sp(E). If F ′ ∈ CC(F,Q), then E ′ := F ′ ∩ Ẽ ∈ CC(E,P)
and res: Gal(F ′) → Gal(E ′) is an isomorphism. In particular, if
F ′ ∈ CC(F, p), then E ′ := F ′ ∩ Ẽ ∈ CC(E, p).

Proof. The field E ′ is algebraically closed in the real closed resp. p-
adically closed field F ′, so it is real closed resp. p-adically closed itself,
see Lemma 1.4.2 and Lemma 1.6.1. Let Q′ be the unique prime of
F ′ over Q. Then P′ = Q′|E′ is the unique classical prime of E ′ with
char(P′) = char(Q′). Moreover, tp(P′) = tp(P′|E) = tp(p), so E ′ ∈
CC(E,P′|E). Since P′|E = Q′|E = P, it follows that E ′ ∈ CC(E,P).

Since E ′ ≡ F ′ by model completeness (Proposition 1.4.5 and Propo-
sition 1.6.3), and Gal(F ′) is finitely generated (Proposition 1.4.3 and
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Lemma 1.6.5), Gal(E ′) ∼= Gal(F ′) by Lemma 1.3.4. Thus the epimor-
phism res: Gal(F ′) → Gal(E ′) is an isomorphism by Lemma 1.3.2(3).

�

Lemma 2.11.3. Let p ∈ S, let L/K be an extension, and assume
that E,F are linearly disjoint extensions of L. If L ∈ CC(L, p),
E ∈ CC(E, p), and F ∈ CC(F, p), then Sp(EF ) 6= ∅.

Proof. By Lemma 2.11.2, E/L and F/L are regular. Hence, EF/L
is regular, since E and F are linearly disjoint over L. Suppose that
Sp(EF ) = ∅. By Lemma 2.4.5, there exist finitely generated subexten-
sions E0/L of E/L and F0/L of F/L such that Sp(E0F0) = ∅.

The fields E0, F0, E0F0 are function fields of varieties V , W , V ×W
over L. By Lemma 2.7.1, since Sp(E0) 6= ∅ and Sp(F0) 6= ∅, V and W
have simple L-rational points. This implies that also V × W has a
simple L-rational point, so Sp(E0F0) 6= ∅, again by Lemma 2.7.1, a
contradiction. �

Remark 2.11.4. The real case of this lemma occurs in [Pre81] and
[Ers83b], where it is attributed to [vdD78]. The p-adic case is proven
in [Gro87] and [Kün89b].

Proposition 2.11.5. Let L ⊇ K and let E/L, F/L be regular exten-
sions, where E is countable and F is ℵ1-saturated and PSCC. Then
for every homomorphism

γ: Gal(F )→ Gal(E)

with resẼ/L̃ ◦ γ = resF̃ /L̃|Gal(F ), there exists an L-embedding

Ẽ → F̃

such that γ(τ) = τ |Ẽ for all τ ∈ Gal(F ).

Proof.

Part A: The field crossing argument. Assume without loss of
generality that E and F are linearly disjoint over L and contained in
a common field. Then Ẽ and F̃ are linearly disjoint over L̃. So since
resẼ/L̃ ◦ γ = resF̃ /L̃|Gal(F ), the homomorphism γ defines an embedding

ϕ: Gal(F )→ Gal(ẼF̃ /EF )

with

resẼF̃ /F̃ ◦ ϕ = idGal(F ) and resẼF̃ /Ẽ ◦ ϕ = γ,

see for example [FJ08, 2.5.5]. Let D be the fixed field of ϕ(Gal(F )) in
ẼF̃ . Then

resẼF̃ /F̃ : Gal(ẼF̃ /D)→ Gal(F )

is an isomorphism, hence D/F is regular. The situation is as follows.
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ẼF̃

D

Ẽ F̃

EF

E F

L

K

Part B: Claim. D/F is totally S-adic.
Let p ∈ S, P ∈ Sp(F ), F ′ ∈ CC(F,P), and P′ ∈ Sp(F

′). Then L′ =

L̃∩F ′ ∈ CC(L, p), and resF̃ /L̃ is injective on Gal(F ′) by Lemma 2.11.2.

Since resẼ/L̃ ◦ γ = resF̃ /L̃|Gal(F ), also γ is injective on Gal(F ′), and

L′ is the algebraic closure of L in the fixed field E ′ of γ(Gal(F ′)) in
Ẽ. By Lemma 2.11.1, there exists a classical prime Q′ of E ′ with
tp(Q′) = tp(P) and E ′ ∈ CC(E ′,Q′). Since L′ is algebraically closed
in both F ′ and E ′, Q′|L′ = P′|L′ by Lemma 2.11.2, so E ′ ∈ CC(E, p).

By Lemma 2.11.2, resẼ/L̃: Gal(E ′) → Gal(L′) is an isomorphism,

so E ′L̃ = Ẽ. Hence, E ′F̃ = ẼF̃ and thus resẼF̃ /F̃ is injective on

Gal(ẼF̃ /E ′F ′). Together with resẼF̃ /F̃ ◦ ϕ = idGal(F ) this implies

that Gal(ẼF̃ /E ′F ′) ⊆ ϕ(Gal(F ′)). In particular, E ′F ′ ⊇ D. By
Lemma 2.11.3, there exists Q ∈ Sp(E

′F ′). Since F ′ ⊆ E ′F ′ and
F ′ ∈ CC(F,P), Q|F = P. Thus Q|D ∈ Sp(D) extends P, and this
proves the Claim.

Part C: Conclusion of the proof. Since ẼF̃ = DF̃ and ẼF̃ /D is
algebraic, Ẽ ⊆ ẼF̃ = D[F̃ ] = F̃ [D]. Hence, since Ẽ is countable, there
exists a countable subset D0 ⊆ D such that Ẽ ⊆ F̃ [D0]. Since F is
PSCC and D/F is totally S-adic by the Claim, Lemma 2.9.8 implies
that for every finite subset D1 of D0, there is an F -homomorphism
F [D1] → F . Therefore, since F is ℵ1-saturated, there exists an F -
homomorphism F [D0] → F . Since D/F is regular, the latter homo-
morphism extends to an F̃ -homomorphism δ: F̃ [D0]→ F̃ .
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For τ ∈ Gal(F ) and x ∈ F̃ ∪D0, δ(ϕ(τ)x) = τ(δ(x)). Indeed, if x ∈
F̃ , then δ(ϕ(τ)x) = δ(τx) = τx = τ(δx), since resẼF̃ /F̃ ◦ ϕ = idGal(F )

and δ|F̃ = idF̃ . And if x ∈ D0, then δ(ϕ(τ)x) = δ(x) = τ(δ(x)) since

ϕ(Gal(F )) = Gal(ẼF̃ /D) and δ(D0) ⊆ F . Therefore the restriction of
δ to Ẽ satisfies all of the requirements. �





CHAPTER 3

Absolute Galois Group Piles

Starting from a Hilbertian field K and a finite set S of primes of K,
[HJP09b] proves that for almost all σ ∈ Gal(K)e, the absolute Galois
group of Ktot,S(σ) is a free product of a free part and S-local subgroups.
The proof depends on properties of the structures that consist of the
groups and all the S-local subgroups. These structures are called ‘group
piles’. In Chapter 4 and Chapter 5 we use this notion to investigate
the model theory of the fields Ktot,S(σ) and Ktot,S[σ].

For this chapter, we fix a finite set S not containing 0. All
notions of this chapter depend on S. Furthermore, let e ≤ ω
be an ordinal number.

3.1. Group Piles

We introduce the subgroup functor and the category of group piles.

Definition 3.1.1. Let G = lim←−N G/N be a profinite group, where N
runs over all open normal subgroups of G. Then the set

Subgr(G)

of all closed subgroups of G is equipped with a profinite topology,
induced by Subgr(G) = lim←−N Subgr(G/N). A basis of open-closed sets
for this topology is given by sets of the form

{Γ ∈ Subgr(G) : ΓN = HN},

where N is an open normal subgroup of G and H is a closed subgroup
of G. The group G acts continuously on Subgr(G) by conjugation.

A homomorphism α: G→ H of profinite groups induces a map

Subgr(α): Subgr(G)→ Subgr(H)

given by Γ 7→ α(Γ).

Lemma 3.1.2. The map Subgr is a covariant functor from the category
of profinite groups (with homomorphisms) to the category of profinite
spaces (with continuous maps).

Proof. We only have to show that if α: G→ H is a homomorphism of
profinite groups, then the induced map Subgr(G)→ Subgr(H) is con-
tinuous. Since Subgr(H) = lim←−N Subgr(H/N), it suffices to prove that

61
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Subgr(G) → Subgr(H/N) is continuous, where N is an open normal
subgroup of H. Since

G - H

G/α−1(N)
?

- H/N
?

commutes, also

Subgr(G) - Subgr(H)

Subgr(G/α−1(N))
?

- Subgr(H/N)
?

commutes. Since Subgr(G/α−1(N)) is discrete, and the vertical arrows
are continuous, the claim follows. �

Lemma 3.1.3. If H is a closed subgroup of a profinite group G, then
Subgr(H) is a closed subspace of Subgr(G).1

Proof. By Lemma 3.1.2, the inclusion Subgr(H)→ Subgr(G) is con-
tinuous. Since both spaces are compact Hausdorff, the inclusion is
closed, and thus a topological embedding. �

Definition 3.1.4. A group pile is a structure

G = (G,G0,Gp)p∈S

consisting of

(1) a profinite group G,
(2) a nonempty G-invariant closed subset G0 ⊆ Subgr(G) such

that the elements of G0 are pairwise conjugate in G, and
(3) a G-invariant closed subset Gp ⊆ Subgr(G) for each p ∈ S.

We let
G =

⋃
p∈S

Gp.

Remark 3.1.5. Condition (2) says that G0 consists of a single G-orbit
in Subgr(G), i.e. there exists G0 ∈ G0 such that G0 = (G0)G :=
{(G0)g : g ∈ G}. Hence, our notion of group piles coincides with
the group piles of [HJP09b], except for a small difference in notation
concerning G0. The notion of group piles is also related to the ‘∆∗-
groups’ in [Ers95], [Ers96a], and [Ers99].

Definition 3.1.6. The order resp. rank of G is the order resp. (profi-
nite) rank of G. A finite group pile is a group pile of finite order. We
call G self-generated if there exists G0 ∈ G0 such that G = 〈G0,G〉,

1That is, Subgr(H) is a closed subset of Subgr(G) and the inclusion
Subgr(H)→ Subgr(G) is a topological embedding.
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i.e. G is generated by G0 and the groups in Gp, p ∈ S. It is called bare
if G = {1}, and deficient if G0 = {1}. The deficient reduct of G is

Gdef = (G, {1},Gp)p∈S.

Instead of (G, {1},Gp)p∈S, we also write (G,Gp)p∈S. We call G sepa-
rated if the sets Gp, p ∈ {0} ∪ S, are disjoint, and reduced if there
are no non-trivial inclusions among the elements of G.

Remark 3.1.7. Note that if G is self-generated, then G = 〈G0,G〉 for
any G0 ∈ G0.

Definition 3.1.8. A homomorphism of group piles

f : (G,G0,Gp)p∈S → (H,H0,Hp)p∈S

is a homomorphism of profinite groups f : G→ H such that f(Gp) ⊆ Hp

for each p ∈ {0} ∪ S. It is an epimorphism if f : G→ H is surjective
and f(Gp) = Hp for each p ∈ {0} ∪ S. It is an isomorphism if in
addition f : G→ H is an isomorphism. The homomorphism f is called
rigid if f |Γ is injective for each Γ ∈ G.

If N is a closed normal subgroup of G, let

Gp,N = {ΓN/N : Γ ∈ Gp} ⊆ Subgr(G/N).

Then the quotient

G/N = (G/N,G0,N ,Gp,N)p∈S

is again a group pile. The quotient map G → G/N extends to an
epimorphism of group piles G → G/N , and every epimorphism of
group piles is of this form.

Remark 3.1.9. We identify the category of bare deficient group piles
(with homomorphisms) with the category of profinite groups (with ho-
momorphisms) via the forgetful functor (G,G0,Gp)p∈S 7→ G.

Definition 3.1.10. Let I be a directed set. An inverse system of
group piles (over I) is a family Gi = (Gi,Gi,0,Gi,p)p∈S, i ∈ I, of group
piles with epimorphisms πji: Gj → Gi (i ≤ j) that satisfy πii = idGi

and πji ◦ πkj = πki (i ≤ j ≤ k).
The inverse limit

G = (G,G0,Gp)p∈S = lim←−
i∈I

Gi

is defined as follows: Let

G := lim←−
i∈I

Gi

be the inverse limit of profinite groups. Then

Subgr(G) = lim←−
i∈I

Subgr(Gi),
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so

Gp := lim←−
i∈I
Gi,p ⊆ Subgr(G)

is a closed subset of Subgr(G) for each p ∈ {0} ∪ S. Since all Gi,p are
Gi-invariant, Gp is G-invariant. Since each Gi,0 consists of a single Gi-
orbit, G0 consists of a single G-orbit. Therefore, G is indeed a group
pile.

The failure of a deficient group pile G to be self-generated can be
measured by a certain quotient Ḡ of G. We introduce some notions
related to that quotient.

Lemma 3.1.11. Let G = (G,G0,Gp)p∈S be a group pile and H ≤ G
a closed subgroup with Γ ≤ H for all Γ ∈ G. Then Gp is closed in
Subgr(H) for each p ∈ S.

Proof. Since Gp is closed in Subgr(G) and is contained in the subspace
Subgr(H) (Lemma 3.1.3), it is also closed in that subspace. �

Definition 3.1.12. For a group pile G = (G,G0,Gp)p∈S let

G′ := 〈G〉

be the closed subgroup generated by the subgroups in Gp, p ∈ S. Then,
by Lemma 3.1.11,

G′ := (G′,Gp)p∈S

is a (self-generated and deficient) group pile. Since G is G-invariant,
G′ is normal in G. Hence, the quotient

Ḡ := G/G′

is a (bare) group pile.

Lemma 3.1.13. If ϕ: G → H is an epimorphism of group piles, then
ϕ(G′) = H ′.

Proof. By definition of an epimorphism of group piles, ϕ(G) = H.
Hence, since ϕ is continuous and closed, ϕ(〈G〉) = 〈H〉, as claimed. �

Definition 3.1.14. Let ϕ: G→ H be an epimorphism of group piles.
By Lemma 3.1.13, its restriction

ϕ′: G′ → H′

is an epimorphism of self-generated deficient group piles. Moreover,
the induced map

ϕ̄: Ḡ→ H̄

is an epimorphism of bare group piles.
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Lemma 3.1.15. The map G 7→ G′ (resp. G 7→ Ḡ) is a covariant
functor from the category of group piles with epimorphisms to the cate-
gory of self-generated deficient group piles with epimorphisms (resp. the
category of bare group piles with epimorphisms).

Proof. This follows from Lemma 3.1.13. �

Lemma 3.1.16. Let G = (G,Gp)p∈S be a deficient group pile and A =
A a bare deficient group pile. Then the map ϕ 7→ ϕ̄ gives a bijection
between the epimorphisms from G to A and the epimorphisms from Ḡ
to A.

Proof. If ϕ: G→ A is an epimorphism of deficient group piles, then
ϕ̄: Ḡ→ Ā = A is an epimorphism of bare deficient group piles. Con-
versely, given an epimorphism ϕ̄: Ḡ→ A, the composition ϕ̄◦π, where
π: G→ Ḡ is the quotient map, is an epimorphism from G to A. These
two operations are inverse to each other. �

Definition 3.1.17. Let G be a group pile. We say that G is e-
generated if e < ω and rank(Ḡ) ≤ e, or if e = ω. We say that G
is e-bounded if e < ω, G is self-generated, and rank(G0) ≤ e for all
G0 ∈ G0, or if e = ω.

Remark 3.1.18. Note that a deficient group pile is self-generated if
and only if it is 0-generated. Every e-bounded group pile is e-generated.

Lemma 3.1.19. Let ϕ: G → H be an epimorphism of group piles. If
G is e-generated, then H is e-generated. If G is e-bounded, then H is
e-bounded.

Proof. If e = ω, there is nothing to prove, so assume that e < ω.
The induced map ϕ̄: Ḡ → H̄ is an epimorphism by Lemma 3.1.15, so
rank(H̄) ≤ rank(Ḡ) ≤ e. If G is self-generated, then also H is self-
generated. Since ϕ(G0) = H0, if H0 ∈ H0, there exists G0 ∈ G0 with
ϕ(G0) = H0 and thus rank(H0) ≤ rank(G0) ≤ e. �

Lemma 3.1.20. A deficient group pile G is e-generated if and only if
every finite quotient of G is e-generated.

Proof. If e = ω, there is nothing to prove, so assume that e < ω.
If G is e-generated, then every finite quotient of G is e-generated
by Lemma 3.1.19. Conversely, suppose that G is not e-generated.
Then there is an epimorphism Ḡ → A onto a finite group A with
rank(A) > e (see for example [RZ00, 2.5.3]), so A is a finite quotient
of G (Lemma 3.1.16) which is not e-generated. �
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3.2. Embedding Problems for Group Piles

We introduce embedding problems and prove that a locally solvable
finite embedding problem can be dominated by a rigid finite embedding
problem.

Definition 3.2.1. An embedding problem for G is a pair

EP = (ϕ: G→ A, α: B→ A)

of epimorphisms of group piles. It is called finite, self-generated,
e-generated, e-bounded, deficient, or bare, if B has this property.
It is called rigid if α is rigid. A solution of the embedding problem
(ϕ, α) is an epimorphism γ: G → B such that α ◦ γ = ϕ. We picture
this as follows.

G

B
α-

γ

�...
....

....
....

...

A

ϕ

?

The embedding problem EP is locally solvable if, writing G =
(G,G0,Gp)p∈S and B = (B,B0,Bp)p∈S, the following holds for every
p ∈ {0} ∪ S:

(∗) For every Γ ∈ Gp there is a ∆ ∈ Bp, and for every ∆ ∈ Bp there
is a Γ ∈ Gp, such that there exists an epimorphism γΓ: Γ→ ∆
with α ◦ γΓ = ϕ|Γ.

Lemma 3.2.2. If there exists G0 ∈ G0 and B0 ∈ B0 and an epimor-
phism γ0: G0 → B0 with α ◦ γ0 = ϕ|G0, then (∗) holds for p = 0.

Proof. If g ∈ G and Γ = (G0)g ∈ G0, choose b ∈ B with α(b) = ϕ(g),
and let ∆ = (B0)b. If b ∈ B and ∆ = (B0)b ∈ B0, choose g ∈ G
with ϕ(g) = α(b), and let Γ = (G0)g. Define γΓ: Γ → ∆ by γΓ(x) =

γ0(xg
−1

)b. Then α(γΓ(x)) = ϕ(xg
−1

)ϕ(g) = ϕ(x) for all x ∈ Γ. �

Lemma 3.2.3. Every rigid deficient embedding problem is locally solv-
able.

Proof. Suppose EP is rigid and deficient. Since B is deficient, also
A is deficient, so if G0 ∈ G0, then ϕ(G0) = 1. Thus, (∗) is satisfied
for p = 0. Let p ∈ S. If Γ ∈ Gp, choose ∆ ∈ Bp with α(∆) = ϕ(Γ).
If ∆ ∈ Bp, choose Γ ∈ Gp with ϕ(Γ) = α(∆). Since α is rigid, γΓ =
(α|∆)−1 ◦ ϕ|Γ maps Γ onto ∆ and satisfies α ◦ γΓ = ϕ|Γ. �

Definition 3.2.4. Let ϕ : G→ A and α : B→ A be homomorphisms
of deficient group piles. Define the (symmetric) deficient fibre prod-
uct as the deficient group pile

H = (H,Hp)p∈S = B×A G
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with projections β: H→ G, π: H→ B as in the diagram

B×A G
β- G

B

π

?
α- A

ϕ

?

as follows:
H = B ×A G

is the fibre product of profinite groups, β: H → G and π: H → B are
the projections, and, for p ∈ S,

Hp = {Γ ∈ Subgr(H) : β(Γ) ∈ Gp, π(Γ) ∈ Bp} .
Define the (asymmetric) rigid product as the deficient group pile

Hrig = (H,Hrig
p )p∈S = B×rig

A G

by
Hrig

p = {Γ ∈ Hp : β|Γ is injective} .

Lemma 3.2.5. Let EP = (ϕ: G → A, α: B → A) be an embedding
problem of deficient group piles.

(1) The deficient fibre product B×AG is a deficient group pile and
the projections β and π are homomorphisms of group piles. If
EP is locally solvable, then β and π are epimorphisms.

(2) If B and G are finite, then the rigid product B ×rig
A G is a

deficient group pile. If EP is locally solvable, then π is an
epimorphism and β is a rigid epimorphism.

Proof. Since Gp is G-invariant and Bp is B-invariant, Hp and Hrig
p are

H-invariant. The epimorphism β: H → G induces a continuous surjec-
tion Subgr(H)→ Subgr(G) by Lemma 3.1.2. Hence, {Γ ≤ H : β(Γ) ∈
Gp}, as the inverse image of the closed set Gp, is closed. The same is
true for π, and therefore Hp is closed. If B and G are finite, also H is

finite, so in that case Hrig
p is closed. By the definition of Hp, β and π

are homomorphisms of group piles.
Now suppose that EP is locally solvable. Given G1 ∈ Gp, there is

B1 ∈ Bp and an epimorphism γ: G1 → B1 with α ◦ γ = ϕ|G1 . It defines
a homomorphism γ̂: G1 → H with β ◦ γ̂ = idG1 and π ◦ γ̂ = γ. Let
H1 = γ̂(G1). Then β(H1) = G1 ∈ Gp and π(H1) = γ(G1) = B1 ∈
Bp, so H1 ∈ Hp. Furthermore, since β ◦ γ̂ = idG1 , β|H1 is injective.

Consequently, H1 ∈ Hrig
p . Similarly, given B1 ∈ Bp, there is H1 ∈ Hrig

p

with π(H1) = B1. Therefore, β and π are epimorphisms of group piles.
In the case of the rigid product, β is furthermore a rigid epimorphism
by the definition of Hrig

p . �

Remark 3.2.6. Note that the deficient fibre product is a fibre product
in the category of deficient group piles (with homomorphisms). The
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rigid product can be seen as a canonical version of [HJP09b, Lemma-
Construction 4.2].

Lemma 3.2.7. Let (ϕ: G → A, α: B → A) be a locally solvable
embedding problem. Then for every normal subgroup N/B, the induced
embedding problem (G → A/α(N),B/N → A/α(N)) is also locally
solvable.

G

B
α - A

ϕ

?

B/N

π

?
α̃- A/α(N)

π̃

?

Proof. Let B̃ = (B̃, B̃0, B̃p)p∈S = B/N and Ã = (Ã, Ã0, Ãp)p∈S =

A/α(N), and let π: B → B̃, π̃: A → Ã be the quotient maps and

α̃: B̃→ Ã the induced epimorphism. Then π̃ ◦ α = α̃ ◦ π. We have to
prove that the embedding problem (π̃ ◦ ϕ, α̃) is locally solvable.

Let p ∈ {0} ∪ S and let Γ ∈ Gp be given. Then there is a ∆ ∈ Bp

and an epimorphism γΓ: Γ→ ∆ with α◦γΓ = ϕ|Γ. Let Λ = π(∆) ∈ B̃p.
Then π ◦ γΓ: Γ→ Λ is an epimorphism with α̃ ◦ (π ◦ γΓ) = π̃ ◦α ◦ γΓ =
(π̃ ◦ ϕ)|Γ.

Conversely, let Λ ∈ B̃p be given. Choose ∆ ∈ Bp with π(∆) = Λ.
Then there is a Γ ∈ Gp and an epimorphism γΓ: Γ→ ∆ with α ◦ γΓ =
ϕ|Γ. Hence, π ◦ γΓ: Γ → Λ is an epimorphism with α̃ ◦ (π ◦ γΓ) =
π̃ ◦ α ◦ γΓ = (π̃ ◦ ϕ)|Γ. �

The following lemma is a special case of [HJP09b, Lemma 4.1].

Lemma 3.2.8. Let (ϕ: G → A, α: B → A) be a locally solvable
finite embedding problem. Then there exists an open normal subgroup
N / G with N ≤ Ker(ϕ), such that the induced embedding problem
(G/N → A,B→ A) is locally solvable.

G

G/N

π

?

B
α - A

ϕ̃

?

Proof. Since (ϕ, α) is locally solvable, we can find for each p ∈ {0}∪S
an Ip, a family {(Bi, Gi) ∈ Bp × Gp : i ∈ Ip} with Bp = {Bi : i ∈ Ip}
and Gp = {Gi : i ∈ Ip}, and a family γi: Gi → Bi of epimorphisms with
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α◦γi = ϕ|Gi (i ∈ Ip). For every i ∈
⋃

p∈{0}∪S Ip, choose an open normal

subgroup Ni / G with Ni ≤ Ker(ϕ) and Ni ∩ Gi ≤ Ker(γi). Extend
γi to an epimorphism γi: GiNi → Bi by setting γi(Ni) = 1, so now
α◦γi = ϕ|GiNi . The set Gi = {∆ ∈ Gp : ∆Ni = GiNi} is an open-closed
neighbourhood of Gi in Gp. In particular,

⋃
i∈Ip Gi = Gp. Since Gp is

compact, there is a finite subset Jp ⊆ Ip such that Gp =
⋃
i∈Jp
Gi.

Enlarge Jp, if necessary, to assume that Bp = {Bi : i ∈ Jp} for all
p ∈ {0} ∪ S. Let J =

⋃
p∈{0}∪S Jp. Then N :=

⋂
i∈J Ni is an open

normal subgroup of G with N ≤ Ker(ϕ). Let H = G/N , and let
π: G → H and ϕ̃: H → A be the induced epimorphisms. We claim
that the embedding problem (ϕ̃, α) is locally solvable.

Let p ∈ {0} ∪ S and let H1 ∈ Hp. Then there is a G1 ∈ Gp

with π(G1) = H1, and there is an i ∈ Jp with G1 ∈ Gi. Note that
Ker(π) = N ≤ Ni ≤ Ker(γi). Thus G1Ni = GiNi implies that γi(G1) =
γi(Gi) = Bi. Let γ1 = γi|G1 . The epimorphism γ1: G1 → Bi induces
an epimorphism γ̃1: H1 → Bi with α ◦ γ̃1 = ϕ̃|H1 .

Let B1 ∈ Bp. Choose i ∈ Jp with Bi = B1 and let Hi = π(Gi) ∈ Hp.
Then γi: Gi → B1 induces an epimorphism γ̃i: Hi → B1 with α ◦ γ̃i =
ϕ̃|Hi . �

Proposition 3.2.9. Let (ϕ: G→ A, α: B→ A) be a locally solvable
e-bounded finite embedding problem where G is e-bounded. Then it
can be dominated by an e-bounded rigid finite embedding problem,
i.e. there exist epimorphisms α̂: B̂ → Â, ϕ̂: G → Â, β̂: Â → A,
β: B̂ → B such that ϕ = β̂ ◦ ϕ̂ and β̂ ◦ α̂ = α ◦ β, and (ϕ̂, α̂) is an
e-bounded rigid finite embedding problem.

G

B̂
α̂- Â

ϕ̂
?

B

β

?
α- A

β̂

?

Proof. By Lemma 3.2.8, there are a finite group pile Â and epimor-
phisms ϕ̂: G → Â, β̂: Â → A with ϕ = β̂ ◦ ϕ̂ such that (β̂, α) is a

locally solvable embedding problem. Since G is e-bounded, also Â is
e-bounded (Lemma 3.1.19).

Let B̃ = Bdef ×rig
Adef Âdef be the rigid product and let α̃: B̃→ Âdef

and β̃: B̃ → Bdef be the projections. By Lemma 3.2.5(2), α̃ is a rigid

epimorphism and β̃ is an epimorphism. Choose Â0 ∈ Â0 and B0 ∈ B0

and an epimorphism γ0: Â0 → B0 with α ◦ γ0 = β̂|Â0
. Then γ0 defines
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a homomorphism γ̂0: Â0 → B̃ with α̃ ◦ γ̂0 = idÂ0
and β̃ ◦ γ̂0 = γ0. Let

B̃0 = γ̂0(Â0) and note that α̃(B̃0) = Â0 and β̃(B̃0) = B0.

Case e = ω. If e = ω, let B̂ = (B̃, (B̃0)B̃, B̃p)p∈S, and let α̂: B̂ → Â

and β: B̂→ B be the epimorphisms induced by α̃ resp. β̃. Then (ϕ̂, α̂)
is a rigid finite embedding problem which dominates (ϕ, α), so we are
done.

Case e < ω. In this case, rank(B̃0) ≤ rank(Â0) ≤ e, and since

Â and B are self-generated, Â = 〈 Â0, Â
′ 〉 and B = 〈B0, B

′〉. Let

B̂ = 〈 B̃0, B̃
′ 〉 ≤ B̃ and B̂0 = (B̃0)B̂. Then B̂ = (B̂, B̂0, B̃p)p∈S is a

self-generated group pile by Lemma 3.1.11, and α̃(B̂) = 〈 Â0, Â
′ 〉 =

Â and β̃(B̂) = 〈B0, B
′〉 = B by Lemma 3.1.13. Since Â0 = (Â0)Â

and B0 = (B0)B, α̃(B̂0) = Â0 and β̃(B̂0) = B0, so α̃|B̂ and β̃|B̂ are

epimorphisms of group piles. Therefore, with α̂ = α̃|B̂ and β = β̃|B̂,
(ϕ̂, α̂) is a rigid e-bounded finite embedding problem which dominates
(ϕ, α). �

3.3. Free Product Group Piles

In this section we introduce and study the free product of a profinite
group and a group pile.

Lemma 3.3.1. Let π: G → H be an epimorphism of profinite groups.
Let e ∈ Z≥0, let N/G be a closed normal subgroup with rank(G/N) ≤ e,
and let h1, . . . , he ∈ H such that H = 〈h1, . . . , he, π(N)〉. Then there
exist g1, . . . , ge ∈ G such that G = 〈g1, . . . , ge, N〉 and π(gi) = hi,
i = 1, . . . , e.

Proof. Let Ḡ = G/N , H̄ = H/π(N), and let π̄: Ḡ → H̄ be the
induced epimorphism. Then H̄ =

〈
h̄1, . . . , h̄e

〉
, so Gaschütz’ lemma

(Proposition 1.3.1) implies that there are g1, . . . , ge ∈ G such that Ḡ =
〈ḡ1, . . . , ḡe〉 and π̄(ḡi) = h̄i, i = 1, . . . , e. So, G = 〈g1, . . . , ge, N〉 and
there are n1, . . . , ne ∈ N such that π(gi) = hiπ(ni), i = 1, . . . , e. Thus,
setting g′i = gin

−1
i , G = 〈g′1, . . . , g′e, N〉 and π(g′i) = hi, i = 1, . . . , e. �

Lemma 3.3.2. Let A be an e-bounded self-generated group pile and
let G be an e-generated deficient group pile. For every epimorphism
π: G→ Adef there exists an e-bounded self-generated group pile B with
Bdef = G such that π: B→ A is an epimorphism.

Proof. If e = ω, let A0 ∈ A0 and B = (G, (π−1(A0))G,Gp)p∈S. Since
A = 〈A0, A

′〉, B is self-generated by Lemma 3.1.13, and π: B → A is
an epimorphism.

If e < ω, let A0 ∈ A0 and choose a1, . . . , ae ∈ A with A0 =
〈a1, . . . , ae〉. By Lemma 3.1.13, A = 〈a1, . . . , ae, A

′〉 and A′ = π(G′),
so Lemma 3.3.1 gives g1, . . . , ge ∈ G with G = 〈g1, . . . , ge, G

′〉 and
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π(gi) = ai. Let G0 = 〈g1, . . . , ge〉 and B = (G, (G0)G,Gp)p∈S. Then B
is e-bounded and π: B→ A is an epimorphism. �

Definition 3.3.3. Let H = (H,Hp)p∈S be a deficient group pile and
let F be a profinite group. Define the free product group pile

G = (G,G0,Gp)p∈S = F ∗H

of F with H as follows: Let

G := F ∗H

be the free product of profinite groups,

G0 := {F g : g ∈ G},

and, for p ∈ S,

Gp := {∆g : ∆ ∈ Hp, g ∈ G}.

Lemma 3.3.4. Let G = F ∗H be a free product group pile. Then the
following holds:

(1) G is a group pile.
(2) G = 〈F,H〉.
(3) If H is self-generated, then G is self-generated.
(4) The map Hp/H → Gp/G induced by the embedding Hp → Gp

is a homeomorphism for every p ∈ S.

Proof.

Proof of (1). Since H is a closed subgroup of G, the embedding
Hp → Subgr(G) is continuous for every p ∈ S by Lemma 3.1.3. Thus
also the map Hp×G→ Subgr(G) given by (∆, g) 7→ ∆g is continuous.
Therefore, since Hp×G is compact, its image Gp is closed in Subgr(G).
By definition, Gp is also G-invariant. Similarly, also G0 is closed and
G-invariant. Thus, G is indeed a group pile.

Proof of (2). Since G = F ∗H, we have G = 〈F,H〉, cf. Section 1.3.

Proof of (3). If H = 〈H〉, then G = 〈F,H〉 by (2), so G = 〈F,G〉,
since H ⊆ G. Therefore, since F ∈ G0, G is self-generated.

Proof of (4). By definition of Gp, the map Hp/H → Gp/G is sur-
jective. It is also injective, since if 1 6= Γ1,Γ2 ∈ Hp and g ∈ G with
Γg1 = Γ2, then Hg ∩H 6= 1, so g ∈ H by Lemma 1.3.3.

Since the embedding Hp → Gp is continuous (Lemma 3.1.3), and
the projections Hp → Hp/H and Gp → Gp/H are continuous and closed
(Lemma 1.3.6), the induced map Hp/H → Gp/H is continuous. Since
also the quotient map Gp/H → Gp/G is continuous, the composition
Hp/H → Gp/G is a homeomorphism. �

The following lemma justifies the name ‘free product group pile’.
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Lemma 3.3.5. Let G = F ∗H be a free product group pile and let A =
(A, (A0)A,Ap)p∈S be a group pile. For every epimorphism α: F → A0

and homomorphism β: H → Adef , there is a unique homomorphism
γ: G→ A with γ|F = α and γ|H = β.

Proof. By the universal property of the free product there is a unique
homomorphism γ: G→ A with γ|F = α and γ|H = β. For p ∈ S, every
Γ ∈ Gp is G-conjugate to some ∆ ∈ Hp, so γ(Γ) = γ(∆)a = β(∆)a ∈ Ap

for some a ∈ A. Moreover, γ(F g) = A
γ(g)
0 ∈ (A0)A, so γ extends to a

homomorphism of group piles. �

Lemma 3.3.6. Let G = F ∗H be a free product group pile where H is
self-generated and deficient. Then the composition

ε: F ↪→ G→ Ḡ

is an isomorphism of profinite groups.

Proof. The fact that G = 〈F,H〉 (Lemma 3.3.4(2)) and G′ ≥ H ′ = H
since H is self-generated imply that G = 〈F,G′〉. Hence, ε is surjective.
By Lemma 3.3.5 there is an epimorphism δ: (F ∗ H)def → F with
δ|F = idF and δ|H = 1. Since every Γ ∈ G is conjugate to a subgroup
of H, this implies that δ|G′ = 1, so δ factors as δ = δ0 ◦ π through the
quotient map π: G→ Ḡ. Then δ0 ◦ ε = idF , so ε is also injective. �

Lemma 3.3.7. Every finite e-generated bare deficient embedding prob-
lem (ϕ : F̂e → A, α : B → A) for the free group F̂e has a solution.

Proof. Let F̂e be free on X ⊆ F̂e. Since X converges to 1 and A is
finite, there exists a finite subset X0 = {x1, . . . , xk} ⊆ X with k ≤
e such that ϕ(X rX0) = 1. It follows that 〈ϕ(X0)〉 = A. Since
rank(B) ≤ e, we can assume without loss of generality that rank(B) ≤
k. By Proposition 1.3.1, there exist generators b1, . . . , bk of B with
α(bi) = ϕ(xi) for i = 1, . . . , k. Then the map γ0 : X → B given by
γ0(x) = 1 if x ∈ X rX0, and γ0(xi) = bi for i = 1, . . . , k, extends to

an epimorphism γ : F̂e → B with α ◦ γ = ϕ, as claimed. �

Lemma 3.3.8. Let G be an e-bounded and self-generated group pile,
and let (ϕ: Gdef → Ã, α: B̃ → Ã) be a locally solvable e-generated

deficient finite embedding problem. If G0
∼= F̂e for G0 ∈ G0, then there

exist A and B with Adef = Ã and Bdef = B̃ such that (ϕ: G →
A, α: B → A) is a finite locally solvable e-bounded self-generated
embedding problem.

Proof. Let G0 ∈ G0 and A0 = ϕ(G0). Then G = 〈G0, G
′〉 im-

plies Ã = 〈 A0, Ã
′ 〉 (Lemma 3.1.13), so A = (Ã, (A0)Ã, Ãp)p∈S is e-

bounded self-generated. By Lemma 3.3.2, there exists an e-bounded

self-generated group pile B = (B̃, (B0)B̃, B̃p)p∈S such that α: B→ A is
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an epimorphism. Without loss of generality assume that α(B0) = A0.
We claim that EP = (ϕ: G→ A, α: B→ A) is locally solvable.

Since G0
∼= F̂e and B is e-bounded, there exists an epimorphism

γ0: G0 → B0 with α ◦ γ0 = ϕ|G0 by Lemma 3.3.7. By Lemma 3.2.2,
this implies that EP is locally solvable. �

3.4. Semi-Constant Group Piles

In this section we introduce group piles of free products over semi-
constant sheaves. First we recall the notion of free products of profinite
groups in the sense of [Har87] and [Mel90].

A sheaf of profinite groups is a triple (X, τ, T ) where τ : X → T is
a continuous surjection of profinite spaces such that all fibres of τ are
profinite groups and the map

{(x, y) ∈ X ×X : τ(x) = τ(y)} → X, (x, y) 7→ x−1y (3.1)

is continuous. A morphism λ: (X, τ, T ) → G from a sheaf (X, τ, T )
into a profinite group G is a continuous map λ: X → G that is a
homomorphism of groups on each fibre of τ . A free product of the
sheaf (X, τ, T ) is a morphism λ: (X, τ, T ) → G into a profinite group
G with the following universal property: For every morphism β from
(X, τ, T ) into a profinite group H there exists a unique homomorphism
γ: G→ H such that γ ◦ λ = β. For any sheaf (X, τ, T ), a free product
(X, τ, T ) → G exists and is unique up to isomorphism, see [Mel90,
(1.14)]. Note that in the special case where T = {t1, t2} is a discrete
space consisting of two points, if (X, τ, T )→ G is a free product, then

G ∼= τ−1(t1) ∗ τ−1(t2)

is a free product in the sense of Section 1.3.

Lemma 3.4.1. If λ: (X, τ, T )→ G is a free product, then for every t ∈
T , λ maps the profinite group τ−1(t) isomorphically onto the subgroup
Gt := λ(τ−1(t)) ≤ G. The groups Gt satisfy the following properties.

(1) G = 〈Gt : t ∈ T 〉.
(2) If g ∈ G and t, s ∈ T with (Gt)

g ∩ Gs 6= 1, then t = s and
g ∈ Gt.

Proof. For the fact that λ is injective on each fibre of τ see [Mel90,
(1.15) Lemma (2)]. For (1) see [Mel90, (1.15) Lemma (1)]. For (2) see
[Mel90, (4.9) Proposition (2)]. �

Definition 3.4.2. Suppose that for every p ∈ S we are given a non-
trivial profinite group Γp and a (nonempty) profinite space Tp. Define
a triple

(X, τ, T ) =

(⋃
·

p∈S

Γp × Tp, π,
⋃
·

p∈S

Tp

)
,
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where π:
⋃
· p∈S Γp × Tp →

⋃
· p∈S Tp is piecewise defined to be the pro-

jection Γp × Tp → Tp. Then the map (3.1) is continuous, and hence
(X, τ, T ) is a sheaf, which is called the semi-constant sheaf of (Γp)p∈S
over (Tp)p∈S.

Definition 3.4.3. Let

λ:

(⋃
·

p∈S

Γp × Tp, π,
⋃
·

p∈S

Tp

)
→ H

be the free product of the semi-constant sheaf of (Γp)p∈S over (Tp)p∈S,
and let Hp,t := λ(Γp × {t}). Define

Hp,0 = {Hp,t : t ∈ Tp} ⊆ Subgr(H)

and
Hp =

{
Γh : Γ ∈ Hp,0, h ∈ H

}
⊆ Subgr(H).

Then H = (H,Hp)p∈S is called the semi-constant group pile of
(Γp)p∈S over (Tp)p∈S.

Lemma 3.4.4. Let H be the semi-constant group pile of (Γp)p∈S over
(Tp)p∈S. Then the following holds.

(1) H is a self-generated deficient group pile. Moreover,

H = 〈Hp,0〉p∈S .

(2) H is separated and reduced (cf. Definition 3.1.6), and 1 /∈ H.
(3) Let p ∈ S. The map Tp → H given by t 7→ Hp,t is continuous.

The map Tp → Hp/H given by t 7→ (Hp,t)
H is a homeomor-

phism. In particular, Tp and Hp,0 are homeomorphic.

Proof.

Proof of (3). Let θ: Tp → H be the map t 7→ Hp,t.
To prove that θ is continuous, it suffices to show that the map

Tp → Subgr(H/N) given by t 7→ Hp,tN/N is continuous for each open
normal subgroup N of H. Let ρ: H → H/N be the quotient map. Then
α = ρ ◦ λ|Γp×Tp is continuous. If x ∈ H/N and t ∈ Tp, then x ∈ ρ(Hp,t)
if and only if t ∈ π(α−1(x)). The projection π|Γp×Tp is open, and H/N
is finite. Hence, if U ∈ Subgr(H/N), then {t ∈ Tp : ρ(Hp,t) = U} =
π(α−1(U)) is open, as claimed.

The map Tp → Hp/H is the composition of θ and the quotient map
η: H → H/H. If t1, t2 ∈ Tp with (η ◦ θ)(t1) = (η ◦ θ)(t2), then there ex-
ists h ∈ H such that (Hp,t1)h = Hp,t2 . Hence, (Hp,t1)h ∩Hp,t2

∼= Γp 6= 1,
so t1 = t2 by Lemma 3.4.1(2). Therefore, η ◦ θ is injective. By
Lemma 1.3.6, η is continuous and Hp/H is a profinite space. Con-
sequently, η ◦ θ is a homeomorphism.

Proof of (1). First, H is a group pile. Indeed, Hp is the image
of the compact set Tp × H under the map (t, h) 7→ (Hp,t)

h, which is
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continuous by (3). Therefore, Hp is closed for each p ∈ S. Finally,
H = 〈Hp,0〉p∈S by Lemma 3.4.1(1), so in particular H is self-generated.

Proof of (2). Since Γp 6= 1 for each p ∈ S, 1 /∈ H. If p, q ∈ S and
Γ ∈ Hp, Γ1 ∈ Hq with Γ ⊆ Γ1, then there exist h, h1 ∈ H such that

Γh ∈ Hp,0 and Γh1
1 ∈ Hq,0. Then (Γh)h

−1h1 ∩ Γh1
1 = Γh1 6= 1, hence

p = q, Γh = Γh1
1 , and h−1h1 ∈ Γh by Lemma 3.4.1(2). This implies

that h1h
−1 ∈ Γ ⊆ Γ1, so Γ = Γh1h−1

1 = Γ1, and hence H is separated
and reduced. �

Definition 3.4.5. Let H be the semi-constant group pile of (Γp)p∈S

over (Tp)p∈S (Definition 3.4.3), and let G = F̂e ∗H be the free product
group pile (Definition 3.3.3). We call G the e-free semi-constant
group pile of (Γp)p∈S over (Tp)p∈S.

Lemma 3.4.6. Let G = F̂e ∗H be the e-free semi-constant group pile
of (Γp)p∈S over (Tp)p∈S. Then the following holds.

(1) G is an e-bounded and self-generated group pile.
(2) G is separated and reduced.

Proof.

Proof of (1). By Lemma 3.4.4(1) and Lemma 3.3.4(1), G is a group
pile. By Lemma 3.4.4(1), H is self-generated, hence G is self-generated

by Lemma 3.3.4(3). If G0 ∈ G0, then G0
∼= F̂e implies that rank(G0) =

rank(F̂e) = e, and therefore G is e-bounded.

Proof of (2). By Lemma 3.4.4(2), 1 /∈ H, and thus 1 /∈ G. If p, q ∈ S,
and Γ ∈ Gp and Γ1 ∈ Gq with Γ ⊆ Γ1, then there exist g, g1 ∈ G such

that Γg ∈ Hp and Γg1

1 ∈ Hq. In particular, Hg−1 ∩ Hg−1
1 ⊇ Γ 6= 1,

so Lemma 1.3.3 implies that g−1g1 ∈ H. Thus, Γg1 ∈ Hp. Hence,
Γg1 ⊆ Γg1

1 implies that Γg1 = Γg1

1 , since H is reduced by Lemma 3.4.4(2).
Therefore, Γ = Γ1, hence G is reduced.

Moreover, Γg1 ∈ Hp∩Hq. If follows that p = q since H is separated
by Lemma 3.4.4(2). Let Γ ∈ G0. If e = 0, then Γ = 1, hence Γ /∈ G.
If e > 0 and Γ ∈ G, then there exists g ∈ G such that Γg ∈ H, so
Γg ∩ H = Γg 6= 1, contradicting Lemma 3.4.1(2). Therefore, G is
separated. �

Besides the Gaschütz lemma, we need the following variant of it:

Proposition 3.4.7 (Efrat). Let α: B → A be an epimorphism of
finite groups, A1, . . . , An subgroups of A, and B1, . . . , Bn subgroups of
B. Suppose that A = 〈A1, . . . , An〉, B = 〈B1, . . . , Bn〉, and for all i,
α(Bi) is conjugate to Ai. Then there exist b1, . . . , bn ∈ B such that
B =

〈
Bb1

1 , . . . , B
bn
n

〉
and α(Bbi

i ) = Ai for all i.

Proof. See [Efr97]. �
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The following result is essentially proven in [HJP09b, Proposition
5.3(h)]. One reason why we cannot just quote [HJP09b] is that we also
need the case e = ω.

Proposition 3.4.8. Let G = F̂e ∗H be the e-free semi-constant group
pile of (Γp)p∈S over (Tp)p∈S, where each Tp is perfect, and let (ϕ: G→
A, α: B → A) be a finite rigid e-bounded self-generated embedding
problem for G. Then (ϕ, α) has a solution γ: G→ B.

Proof. By definition, H = (H,Hp)p∈S, where

λ:

(⋃
·

p∈S

Γp × Tp, π,
⋃
·

p∈S

Tp

)
→ H

is a free product, Hp,t = λ(Γp × {t}), Hp,0 = {Hp,t : t ∈ Tp}, and
Hp = {∆h : ∆ ∈ Hp,0, h ∈ H}. Let Ap,0 = ϕ(Hp,0).

Since Hp,0 meets all H-conjugacy classes of Hp, and Hp meets all G-
conjugacy classes of Gp, Ap,0 = ϕ(Hp,0) meets all A-conjugacy classes of
Ap. Thus, every subgroup in α(Bp) is conjugate to a subgroup in Ap,0.
Since α(Bp) = Ap, we can write Bp = {Bp,i : i ∈ Ip} for some finite
index set Ip, and Ap,0 = {Ap,i : i ∈ Ip}, such that α(Bp,i) is conjugate
to Ap,i for every p ∈ S and i ∈ Ip.

Let B0 ∈ B0, G0 = F̂e ∈ G0 and A0 = ϕ(G0) ∈ A0. Since
B is self-generated, B = 〈B0, Bp,i〉p∈S,i∈Ip . By Lemma 3.4.4(1) and

Lemma 3.3.4(2), G = 〈G0,Hp,0〉p∈S. Therefore A = 〈A0, Ap,i〉p∈S,i∈Ip , so

by Proposition 3.4.7 there exist b ∈ B and bp,i ∈ B for every p ∈ S and
i ∈ Ip, such that with Bp,0 = {(Bp,i)

bp,i : i ∈ Ip}, B =
〈
(B0)b,Bp,0

〉
p∈S,

α((B0)b) = A0 and α((Bp,i)
bp,i) = Ap,i for every p and i. Without loss

of generality assume that Bb
0 = B0. Omit some of the (Bp,i)

bp,i , if nec-

essary, to assume from now on that they are distinct. Since G0 = F̂e
and B is e-bounded, there exists an epimorphism γ0: G0 → B0 with
α ◦ γ0 = ϕ|G0 by Lemma 3.3.7.

Since Tp is homeomorphic to Hp,0 by Lemma 3.4.4(3), Hp,0 is per-
fect. Hence, by Lemma 1.3.7, there exists a continuous surjective map
λp: Hp,0 → Bp,0 such that α(λp(∆)) = ϕ(∆) for every ∆ ∈ Hp,0. For
i ∈ Ip, let Tp,i = {t ∈ Tp : λp(Hp,t) = (Bp,i)

bp,i}. Then Tp =
⋃
· i∈Ip Tp,i.

Since λp is surjective, each Tp,i is nonempty. Since λp is continuous, and
the map t 7→ Hp,t is continuous by Lemma 3.4.4(3), Tp,i is open-closed.
Note that if t ∈ Tp,i, then ϕ(Hp,t) = Ap,i.

Since α is rigid, α is injective on each element of Bp,0. Hence, we
can define a morphism β from the sheaf (

⋃
· p∈S Γp × Tp, π,

⋃
· p∈S Tp) to

B by

β|Γp×Tp,i
= (α|(Bp,i)

bp,i )
−1 ◦ ϕ ◦ λ.

The morphism β defines a homomorphism γH : H → B with γH ◦ λ =
β. Since for t ∈ Tp,i, β(Γp × {t}) = (Bp,i)

bp,i , the homomorphism
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γH extends to a homomorphism of group piles γH : H → Bdef . By
Lemma 3.3.5, γH extends to a homomorphism γ: G→ B with γ|G0 =
γ0.

Since each Tp,i is nonempty, γ(Hp,0) = Bp,0, so B = 〈B0,Bp,0〉p∈S im-
plies that γ: G→ B is surjective. Since Bp,0 meets every B-conjugacy
class of Bp, γ(Gp) = Bp for every p ∈ S, so γ: G→ B is an epimorphism
of group piles. If h = λ(x, t) ∈ Hp,t, x ∈ Γp, t ∈ Tp,i, then

α ◦ γH(h) = α ◦ γH ◦ λ(x, t) = α ◦ β(x, t) = ϕ ◦ λ(x, t) = ϕ(h),

so α ◦ γ|H = ϕ|H by the universal property of the free product. Also,
α ◦ γ|G0 = ϕ|G0 , so α ◦ γ = ϕ by the uniqueness in Lemma 3.3.5. �

3.5. S-adic Absolute Galois Group Piles

We now define the S-adic absolute Galois group pile of a field.
For the rest of this chapter, let S be a finite set of local

primes of a field K of characteristic zero.

Lemma 3.5.1. Let G be a profinite group and Γ a finitely generated
profinite group. Then

G = {H ≤ G : H is a quotient of Γ} ⊆ Subgr(G)

is closed.

Proof. We prove that Subgr(G) rG is open. Let H ≤ G such that H
is not a quotient of Γ. Since Γ is finitely generated, by Lemma 1.3.2(2)
there exists an open normal subgroup H0 /H such that H/H0 is not a
quotient of Γ. Let N/G be an open normal subgroup with N∩H ≤ H0.
Since H/H0 is not a quotient of Γ, also H/(N∩H) is not a quotient of Γ.
If H ′ ≤ G and H ′N = HN , then H ′/(N∩H ′) ∼= H ′N/N ∼= H/(N∩H),
hence H ′ is not a quotient of Γ. Therefore, Subgr(G) rG is open. �

Definition 3.5.2. If F ⊇ K is an extension, let

Gp = {Gal(F ′) : F ′ ∈ CC(F, p)},
cf. Definition 2.2.3, and let

GalS(F ) = (Gal(F ),Gp)p∈S

be the S-adic absolute Galois group pile of F . For a Galois exten-
sion E/F , let

GalS(E/F ) = GalS(F )/Gal(E)

be the S-adic Galois group pile of E/F .

The following lemma is similar to [HJP09b, Lemma 10.3(c)-(d)],
which, however, is concerned with fields instead of group piles, and is
restricted to certain subfields of Ktot,S.

Lemma 3.5.3. The S-adic absolute Galois group pile GalS(F ) is a
separated reduced deficient group pile.
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Proof. Let G = (G,Gp)p∈S = GalS(F ).

Part A: G is a group pile. Let GalS(K) = (H,Hp)p∈S and p ∈ S.
We have to show that Gp is closed. Let Γ = Gal(Kp). Since p is local,
Hp = ΓH is closed in Subgr(H). By Proposition 1.4.3 and Lemma 1.6.5,
Γ is finitely generated. Let G0 ≤ G.

We claim that G0 ∈ Gp if and only if G0 is a quotient of Γ and
resF̃ /K̃(G0) ∈ Hp. Indeed, if G0 ∈ Gp, then resF̃ /K̃(G0) ∈ Hp and

G0
∼= resF̃ /K̃(G0) ∼= Γ by Lemma 2.11.2. Conversely, if resF̃ /K̃(G0) ∈

Hp = ΓH , then Γ is quotient of G0. Hence, if also G0 is a quotient of
Γ, then G0

∼= Γ by Lemma 1.3.2(1). Therefore, by Lemma 2.11.1, the
fixed field F ′ of G0 is real closed resp. p-adically closed of the same
type as Kp. In addition, resF̃ /K̃(G0) ∈ Hp implies that F ′ ∈ CC(F, p),
i.e. G0 ∈ Gp.

By Lemma 3.5.1, the set of G0 ≤ G such that G0 is a quotient of Γ
is closed. Since Hp = ΓH is closed, and resF̃ /K̃ : Subgr(G)→ Subgr(H)

is continuous by Lemma 3.1.2, the set of G0 ≤ G with resF̃ /K̃(G0) ∈ Hp

is closed. Therefore, Gp is closed.

Part B: G is separated and reduced. Let p, q ∈ S, Γ ∈ Gp,
Γ1 ∈ Gq, and assume that Γ ⊆ Γ1.

If char(p) = ∞ or char(q) = ∞, then Γ = Γ1, since the absolute
Galois group of a real closed field is finite (Proposition 1.4.3), and
the absolute Galois group of a p-adically closed field is non-trivial and
torsion-free (Lemma 1.6.5). So since the ordering of a real closed field
is unique, p = q.

If char(p) = p 6= ∞ and char(q) = q 6= ∞, let F ′ and F ′1 be the
fixed fields of Γ resp. Γ1, and let K ′ = K̃ ∩F ′ and K ′1 = K̃ ∩F ′1. Then
K ′1 ⊆ K ′, and K ′ ∈ CC(K, p) and K ′1 ∈ CC(K, q) by Lemma 2.11.2.
Thus, since p and q are local, K ′ is Henselian with respect to two rank
one valuations, which must be equivalent by F. K. Schmidt’s theorem,
cf. [EP05, 4.4.1]. In particular, p = q. Thus the restriction of the
unique p-valuation of F ′ to F ′1 is the unique p-valuation of F ′, so p = q.
Therefore, by the maximality of p-adically closed fields (of the same
type), F ′ = F ′1, hence Γ = Γ1. �

Remark 3.5.4. The reader might want to check that in Lemma 3.5.3
we indeed proved what we promised in the proof of Proposition 2.2.11,
and that we did not use Proposition 2.2.11 or any of its consequences
in the proof of Lemma 3.5.3.

Remark 3.5.5. If (Ni)i∈I is a directed family of closed normal sub-
groups of a group pile G with

⋂
i∈I Ni = 1, then G ∼= lim←−i∈I G/Ni. In

particular, GalS(F ) = lim←−E GalS(E/F ), where E ranges over all finite
Galois extensions of F .
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Lemma 3.5.6. Let F ⊇ K be S-quasi-local, let M/F be an extension,
and let

resM̃/F̃ : GalS(M)→ GalS(F )

be the restriction map. Then resM̃/F̃ is a homomorphism of group piles,
and the following are equivalent.

(1) resM̃/F̃ is an epimorphism.

(2) resM̃/F̃ is a rigid epimorphism.

(3) M/F is regular and totally S-adic.

Proof. Let p ∈ S. If M ′ ∈ CC(M, p), then F ′ = M ′ ∩ F̃ ∈ CC(F, p)
by Lemma 2.11.2. Thus, resM̃/F̃ : Gal(M) → Gal(F ) indeed induces a

homomorphism of group piles resM̃/F̃ : GalS(M)→ GalS(F ).

Proof of (1) ⇒ (3). Suppose that resM̃/F̃ : GalS(M) → GalS(F )

is an epimorphism of group piles. Then resM̃/F̃ : Gal(M) → Gal(F )

is surjective, so M/F is regular. Let p ∈ S, P ∈ Sp(F ), and F ′ ∈
CC(F,P). Then there exists M ′ ∈ CC(M, p) with M ′ ∩ F̃ = F ′. Let
Q′ be the unique prime of M ′ lying over p and let Q = Q′|M . Then
tp(Q) = tp(p), so Q ∈ Sp(M), and Q|F = P. Therefore, M/F is
totally S-adic.

Proof of (3) ⇒ (2). Since M/F is regular, resM̃/F̃ : Gal(M) →
Gal(F ) is surjective. Consider p ∈ S, P ∈ Sp(F ), and F ′ ∈ CC(F,P).
Since M/F is totally S-adic, there exists Q ∈ Sp(M) lying over P. If

M ′′ ∈ CC(M,Q), then F ′′ = M ′′ ∩ F̃ ∈ CC(F,P) by Lemma 2.11.2.
Since P is quasi-local, F ′ and F ′′ are conjugate over F . Since resM̃/F̃

is surjective, there exists a conjugate M ′ ∈ CC(M,Q) of M ′′ with
M ′ ∩ F̃ = F ′. Therefore, resM̃/F̃ : GalS(M) → GalS(F ) is an epimor-

phism of group piles. By Lemma 2.11.2, res: Gal(M ′)→ Gal(F ′) is an
isomorphism, so resM̃/F̃ is rigid.

Proof of (2)⇒ (1). This is trivial. �

3.6. e-Free C-Piles

We generalize the ‘Cantor group piles’ of [HJP09b] to e-free C-piles.

Definition 3.6.1. An e-free C-pile is a deficient group pile G that
satisfies the following conditions:

(1) G is e-generated.
(2) Every finite rigid e-generated deficient embedding problem for

G is solvable.

Lemma 3.6.2. If e < ω and G is an e-free C-pile, then Ḡ ∼= F̂e.

Proof. If B is a finite group with rank(B) ≤ e, then (G→ 1, B → 1)
is a finite rigid e-generated deficient embedding problem for G, so it
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has a solution by (2). Therefore, by Lemma 3.1.16, every finite group
B with rank(B) ≤ e is a quotient of Ḡ. Together with (1) this implies

that Ḡ ∼= F̂e, cf. Lemma 1.3.2(1). �

Proposition 3.6.3. Let G be an e-free semi-constant group pile of
non-trivial profinite groups (Γp)p∈S over perfect profinite spaces (Tp)p∈S.
Then the deficient reduct Gdef of G is an e-free C-pile.

Proof. By Lemma 3.4.6(1), G is e-bounded and self-generated. If

e < ω, then Lemma 3.4.4(1) and Lemma 3.3.6 imply that Ḡ ∼= F̂e, so
Gdef satisfies (1). If e = ω, then (1) is trivially satisfied.

Let EP = (ϕ: Gdef → Ã, α: B̃ → Ã) be a finite rigid e-generated
deficient embedding problem for Gdef . By Lemma 3.2.3, EP is lo-
cally solvable. By Lemma 3.3.8 there exist A and B with Adef = Ã
and Bdef = B̃ such that (ϕ: G → A, α: B → A) is a locally solv-
able e-bounded rigid self-generated embedding problem. By Proposi-
tion 3.4.8, this embedding problem has a solution, which in turn induces
a solution of EP . Therefore, Gdef satisfies (2). �

Remark 3.6.4. If G is the e-free semi-constant group pile of (Γp)p∈S
over (Tp)p∈S, then Gp/G is homeomorphic to Tp for every p ∈ S by
Lemma 3.4.4(3) and Lemma 3.3.4(4). Thus, if Tp is perfect, then so
is Gp/G. Conversely, one can prove that if G is an e-free C-pile, then
Gp/G is perfect for each p ∈ S.

Lemma 3.6.5. Every finite locally solvable e-generated deficient em-
bedding problem for an e-free C-pile G is solvable.

Proof. Let EP = (ϕ: G → Ã, α: B̃ → Ã) be a finite locally solv-
able e-generated deficient embedding problem for G. We claim that
there exist a locally solvable e-bounded embedding problem EP1 =
(ϕ: G∗ → A, α: B → A) where G∗ is e-bounded, (G∗)def = G,

Adef = Ã and Bdef = B̃. Once this is shown, EP1 can be dominated by
a finite e-bounded rigid embedding problem EP2 by Proposition 3.2.9.
By property (2) of Definition 3.6.1, the deficient reduct of EP2 has a
solution. It induces a solution of EP .

Proof of the claim. If e = ω, then G and B are e-bounded
(Definition 3.1.17), so (ϕ, α) satisfies the claim. Therefore, assume

that e < ω. By Lemma 3.6.2, Ḡ ∼= F̂e. Let G0 ≤ G be a subgroup of
rank at most e that under the quotient map G→ Ḡ maps onto Ḡ ∼= F̂e.
Since every finite group generated by e elements is a quotient of F̂e, it is
also a quotient of G0, and thus G0

∼= F̂e by Lemma 1.3.2(1). Moreover,
G∗ = (G, (G0)G,Gp)p∈S is e-bounded. By Lemma 3.3.8, there exist A

and B with Adef = Ã and Bdef = B̃ such that EP1 is locally solvable
and e-bounded. �
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3.7. Axiomatization of C-Piles

We prove that the class of PSCC fields whose S-adic absolute Galois
group pile is an e-free C-pile is elementary.

For the rest of this section we drop the usual simplifying assump-
tion that all algebraic extensions of a field F are contained in a fixed
algebraic closure F̃ of F . Note however that for example GalS(E/F )
is still well defined up to isomorphism for any Galois extension E/F ,
since it does not depend on the choice of an embedding of E into F̃ .

Definition 3.7.1. A regular representation of a finite group pile G
of order n (cf. Definition 3.1.6) is a regular permutation representation
of the underlying group G, i.e. an embedding G ↪→ Sn such that G acts
transitively on {1, . . . , n}.

Remark 3.7.2. Note that if α : G ↪→ Sn and β : G ↪→ Sn are regular
representations of G, then α and β are conjugate in Sn, i.e. there exists
τ ∈ Sn such that β(g) = τ−1α(g)τ for each g ∈ G.

Remark 3.7.3. Let F be a field and M/F a finite Galois extension
with Galois group G. We represent the extension M/F and G in ele-
mentary terms.

First we choose an irreducible monic polynomial

f(X) = Xn + an−1X
n−1 + · · ·+ a0 ∈ F [X]

with coefficients in F such that a root of f generates M over F . Then
let

Fa := F [X]/(f(X))

and note that Fa is a field F -isomorphic to M . Every element of Fa

can be uniquely represented as a polynomial in X of degree at most
n − 1 with coefficients in F . Addition and multiplication in Fa are
carried out by adding and multiplying polynomials of degree at most
n− 1 and then reducing modulo f .

In particular, the n distinct roots x1, . . . , xn of f can be represented
by n polynomials h1, . . . , hn ∈ F [X] of degree at most n− 1 such that
x1 = x := X + (f(X)) and xi = hi(x), i = 1, . . . , n. Fixing the roots
of f in this way gives rise to an embedding σ 7→ σ′ of Gal(Fa/F ) into
the symmetric group Sn such that σ(xi) = xj if and only if σ′(i) = j.
Thus,

σ(hi(x)) = hσ′(i)(x).

It follows that by fixing the (n+ 1)-tuple of polynomials (f, h1, . . . , hn)
we represent both the Galois extension Fa of F and a regular repre-
sentation of Gal(Fa/F ). We write this (n+ 1)-tuple of polynomials by
the (n+ 1)-tuple b = (a, a1, . . . , an) of their tuples of coefficients.

Lemma 3.7.4. There exists a recursive map A 7→ θrealize,A(x) from
finite group piles (with regular representations) to Lring(K)-formulas
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with the following property: For each finite deficient group pile A of
order n with a regular representation A ↪→ Sn and each PSCC field
F ⊇ K,

F |= θrealize,A(a)

if and only if a represents a finite Galois extension M = Fa of F and a
regular representation Gal(M/F ) ↪→ Sn that induces an isomorphism

ηa: GalS(M/F )→ A.2

Proof. There are essentially two things to express elementarily: First,
the image of the induced embedding Gal(M/F ) ↪→ Sn coincides with
the image of the regular representation A ↪→ Sn. Second, the induced
isomorphism Gal(M/F )→ A extends to an isomorphism of group piles.
To that end suppose that x is a tuple of variables representing the
coefficients of polynomials f, h1, . . . , hn as in Remark 3.7.3.

Concerning the first part, we assume that the reader knows how to
express that f is an irreducible Galois polynomial and h1(x), . . . , hn(x)
are distinct roots of f , where x is the residue of X modulo f . Any
σ ∈ Gal(M/F ) is determined by its action on x. Indeed, if σ(x) =
hj(x), then σ(hi(x)) = hi(hj(x)). Thus the image of Gal(M/F ) ↪→ Sn
consists of all τ ∈ Sn that satisfy for all i

hτ(i)(X) ≡ hi(hτ(1)(X)) mod f(X).

So by going through all τ ∈ Sn, one can formulate that this image
is exactly the image of A ↪→ Sn, also cf. [FJ08, proof of Proposition
20.4.4].

Now we turn to the second part. Write

G = (G,Gp)p∈S = GalS(M/F )

and let p ∈ S. Note that a subgroup Γ ≤ Gal(M/F ) with fixed field
M ′ belongs to Gp if and only if there exists F ′ ∈ CC(F, p) such that
M ′ = F ′ ∩M . Let M1, . . . ,Mk be all intermediate fields of M/F and
for each i choose a minimal polynomial fi of a primitive element of
Mi/F . Let I be the set of all 1 ≤ i ≤ k such that fi has a zero in M ′.

Then a field L ⊇ F satisfies the sentence θI given by∧
i∈I

(∃x)(fi(x) = 0) ∧
∧
i/∈I

¬(∃x)(fi(x) = 0)

if and only if L ∩M is conjugate to M ′ over F . Indeed, if L satisfies
θI , then for every i, Mi can be F -embedded into M ′ if and only if Mi

can be F -embedded into L ∩M . This implies that M ′ and L ∩M are
F -isomorphic. Conversely, assume that M ′ ∼=F L ∩M . Then each fi
has a zero in M ′ if and only if it has a zero in L, hence L satisfies θI .

By Corollary 2.7.7, F |= ¬(¬̂θI)p,∀, if and only if there exists F ′ ∈
CC(F, p) such that F ′ ∩M is F -conjugate to M ′. Since a conjugate

2That is, the group pile A is realized over F .
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of a classical closure is again a classical closure, this is the case if and
only if Γ ∈ Gp.

The image of Γ in Sn can be described as follows: Assume that
M ′ = Mi and let g ∈ F [X] be such that fi(g(x)) = 0. Then σ ∈
Gal(M/F ) lies in Γ = Gal(M/M ′) if and only if σ(g(x)) = g(x). Thus,
up to conjugation, the image of Γ in Sn consists of all τ in the image
of Gal(M/F ) such that

g(hτ(1)(X)) ≡ g(X) mod f(X).

Combining the above ingredients, we get the formula θrealize,A(x)
with the desired properties. This can be done in a way such that the
map A 7→ θrealize,A(x) is recursive, since the map ϕ 7→ ϕ̂p,∀ of Propo-
sition 2.6.6 is recursive. Note that we do not need to ‘compute’ the
polynomials fi ∈ F [X] and the set I. We rather write down formulas
defining the fi and I. �

Lemma 3.7.5. There exists a recursive map α 7→ θres,α(y,x) from epi-
morphisms of finite deficient group piles (with regular representations)
to Lring(K)-formulas with the following property: For each epimor-
phism α: B→ A of finite deficient group piles with fixed regular repre-
sentations and each PSCC field F ⊇ K,

F |= θres,α(b, a)

if and only if a and b represent finite Galois extensions M/F , N/F ,
and isomorphisms ηa: GalS(M/F ) → A, ηb: GalS(N/F ) → B, such
that there is an F -embedding M ↪→ N with

α ◦ ηb = ηa ◦ resN/M |Gal(N/F ).
3

Proof. Let b be a list of the coefficients of polynomials f, f1, . . . , fm ∈
F [X] and a a list of the coefficients of polynomials g, g1, . . . , gn ∈ F [Y ].
Furthermore, identify A and B with their regular representations A ⊆
Sn, B ⊆ Sm. Also, identify GalS(M/F ) with A via ηa and GalS(N/F )
with B via ηb.

Let x ∈ N be the residue of X modulo f , and y ∈ M the residue
of Y modulo g. The F -embeddings M ↪→ N correspond to maps
y 7→ q(x), where q ∈ F [Z] is a polynomial of degree < m such that
g(q(x)) = 0.

Given σ ∈ Gal(N/F ),

σ(q(x)) = q(σ(x)) = q(fσ(1)(x))

and
σ(q(x)) = resN/M(σ)(y) = gresN/M (σ)(1)(y).

Therefore, since resN/M = α if and only if g(resN/Mσ)(1)(y) = gα(σ)(1)(y)

for all σ ∈ Gal(N/F ), it follows that resN/M = α if and only if
q(fσ(1)(x)) = gα(σ)(1)(q(x)) for all σ ∈ B, c.f. [FJ08, 23.4.1].

3The subscript res stands for restriction.
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Thus there exists an embedding M ↪→ N such that α ◦ ηb = ηa ◦
resN/M if and only if there exists q(Z) ∈ F [Z] of degree < m such that

g(q(X)) ≡ 0 mod f(X)

and
q(fσ(1)(X)) ≡ gα(σ)(1)(q(X)) mod f(X)

for all σ ∈ B.
Using Lemma 3.7.4, one now sees how to construct θres,α(y,x). �

Definition 3.7.6. Let the Lring(K)-theory TC,S,e consist of the follow-
ing sentences.

(1) For each finite deficient group pile A (with regular represen-
tation) which is not e-generated the sentence

¬(∃x)θrealize,A(x).

(2) For each rigid epimorphism α: B→ A of finite e-generated de-
ficient group piles (with regular representations) the sentence

(∀x)[θrealize,A(x)→ ((∃y)θrealize,B(y) ∧ θres,α(y,x))].

Lemma 3.7.7. A PSCC field F ⊇ K is a model of TC,S,e if and only
if GalS(F ) is an e-free C-pile.

Proof. Let G = GalS(F ). By Lemma 3.7.4, F satisfies (1) of Defi-
nition 3.7.6 if and only if all finite quotients of G are e-generated. By
Lemma 3.1.20 this is equivalent to (1) of Definition 3.6.1.

If F satisfies (2) of Definition 3.7.6, then G satisfies (2) of Defini-
tion 3.6.1 by Lemma 3.7.4 and Lemma 3.7.5. Conversely, if every finite
rigid e-generated deficient embedding problem for G is solvable, then
Remark 3.7.2 implies that F satisfies (2) of Definition 3.7.6. �

Remark 3.7.8. A more systematic approach to the elementary class of
fields whose S-adic absolute Galois group pile is an e-free C-pile is pos-
sible by using the ‘inverse systems’ (also called ‘CDM-presentations’)
of [CvdDM81], [CvdDM82], [Cha84], and [Cha98], or rather expan-
sions of inverse systems to group piles, like in [Ers83a] (for so called
‘involutory groups’), [Ers91] (for so called ‘Γ-groups’), and [Ers95] (for
‘∆∗-groups’). The same is true for the proof of Proposition 3.8.1 below.

3.8. Solving Embedding Problems for C-Piles

By definition, a finite rigid e-generated deficient embedding problem
for an e-free C-pile is solvable. We prove that under some conditions,
also certain infinite embedding problems are solvable.

Proposition 3.8.1. Let F ⊇ K be an ℵ1-saturated PSCC field, and
assume that G = GalS(F ) is an e-free C-pile. Let (ϕ: G→ A, α: B→
A) be a rigid e-generated deficient embedding problem for G, where B
is of at most countable rank. Then (ϕ, α) has a solution.
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Proof. Since rank(B) ≤ ℵ0, there is a descending sequence of open
normal subgroups Ni/B, i ∈ N, with

⋂
i∈NNi = 1, cf. [FJ08, 17.1.7(a)].

For each i ∈ N let αi: B/Ni → A/α(Ni) be the epimorphism induced
by α, and for i ≤ j ∈ N let πi: A → A/α(Ni), ρi: B → B/Ni,
ρji: B/Nj → B/Ni be the quotient maps. Then αi ◦ ρi = πi ◦ α.
By Lemma 3.2.3, the rigid deficient embedding problem (ϕ, α) is lo-
cally solvable, hence the induced embedding problem (πi ◦ ϕ, αi) is
locally solvable by Lemma 3.2.7. Since B is e-generated, B/Ni is e-
generated by Lemma 3.1.19. Hence, (πi ◦ ϕ, αi) is a finite locally solv-
able e-generated deficient embedding problem for G. Since G is an
e-free C-pile, this embedding problem has a solution γi: G→ B/Ni by
Lemma 3.6.5.

G

B
α - A

ϕ

?

B/Nj

ρj
?

αj- A/α(Nj)

πj
?

B/Ni

ρji
?

αi-

γi

�..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

A/α(Ni)
?

Part A: Constructing a set of formulas Σ. Once and for
all choose regular representations of the groups B/Ni and the groups
A/α(Ni). For every i, the epimorphism πi ◦ ϕ corresponds to a finite
Galois extension Ei/F with Ei ⊆ F̃ . Choose ai that represents a field
Fai which is F -isomorphic to Ei and an isomorphism

ηi := ηai : GalS(Fai/F )→ A/α(Ni),

such that for a certain identification Ei = Fai (which we fix from now
on), ηi ◦ resF̃ /Ei = πi ◦ ϕ. This last condition implies that the in-

verse systems (GalS(Ei/F ))i∈N and (A/α(Ni))i∈N are isomorphic. In
particular, writing E∞ =

⋃
i∈NEi, there is an isomorphism

η := lim←−
i

ηi: GalS(E∞/F )→ A

with η ◦ resF̃ /E∞ = ϕ.

Let Σ(x1,x2, . . . ) be the set of Lring(F )-formulas that contains for
each k ∈ N the formula∧

i≤k

(θrealize,B/Ni(xi) ∧ θres,αi(xi, ai)) ∧
∧

i≤j≤k

θres,ρji(xj,xi).
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Part B: Σ is finitely satisfiable. We claim that every finite
subset Σ0 of Σ is satisfied in F . Let k be the maximal index that
occurs in Σ0. Let E be the fixed field of Ker(γk) in F̃ . Choose ck that
represents a Galois extension Fck of F which is F -isomorphic to E and
an isomorphism

ηck : GalS(Fck/F )→ B/Nk

such that for a certain identification E = Fck (which we fix from now
on), ηck ◦ resF̃ /E = γk. Then F |= θrealize,B/Nk(ck). Now combine
resE/Ek ◦ resF̃ /E = resF̃ /Ek with αk ◦ γk = πk ◦ ϕ and ηk ◦ resF̃ /Ek =
πk ◦ ϕ to get that ηk ◦ resE/Ek ◦ resF̃ /E = αk ◦ ηck ◦ resF̃ /E, and thus

ηk ◦ resE/Ek = αk ◦ ηck . Therefore, F |= θres,αk(ck, ak).
Since for i ≤ k, B/Ni is a quotient of B/Nk, there exist c1, . . . , ck−1

such that for i < k, F |= θrealize,B/Ni(ci) and F |= θres,αi(ci, ai), and for
i ≤ j ≤ k, F |= θres,ρji(cj, ci). Therefore, c1, . . . , ck satisfy Σ0.

Part C: Using ℵ1-saturation. Since F is ℵ1-saturated, Σ is sat-
isfied in F . This means there are b1,b2, . . . such that for all pairs
i ≤ j,

F |= θrealize,B/Ni(bi) ∧ θres,αi(bi, ai) ∧ θres,ρji(bj,bi).

Since for every i, F |= θrealize,B/Ni(bi), every bi represents a Galois
extension Fi/F and an isomorphism

ζi := ηbi : GalS(Fi/F )→ B/Ni.

Since for all i, F |= θres,ρi+1,i
(bi+1,bi), we see that we can inductively

choose embeddings F1 ↪→ F2 ↪→ . . . such that for all i ≤ j, ρji ◦ ζj =
ζi ◦ resFj/Fi . So the inverse systems (GalS(Fi/F ))i∈N and (B/Ni)i∈N
are isomorphic, and, with F∞ =

⋃
i∈N Fi, there is an isomorphism

ζ = lim←−
i

ζi: GalS(F∞/F )→ B.

Furthermore, since F |= θres,αj(bj, aj), we can choose embeddings
Ej ↪→ Fj such that αj ◦ ζj = ηj ◦ resFj/Ej for every j. If i ≤ j, then the
embedding Ej ↪→ Fj induces an embedding Ei ↪→ Fi (as we already
fixed embeddings Ei ↪→ Ej and Fi ↪→ Fj), and one may check that this
one necessarily satisfies αi ◦ ζi = ηi ◦ resFi/Ei . Thus these embeddings
combine to an embedding E∞ ↪→ F∞ with α ◦ ζ = η ◦ resF∞/E∞ .

Now choose any embedding F∞ ↪→ F̃ that extends the embedding
E∞ ↪→ F̃ , and let γ = ζ ◦ resF̃ /F∞ . Then γ: G→ B is an epimorphism
and α ◦ γ = η ◦ resF∞/E∞ ◦ resF̃ /F∞ = ϕ. Therefore, γ is a solution of

the embedding problem (ϕ, α). �



CHAPTER 4

Decidability of Almost All Ktot,S(σ)

In this chapter, we define the fields Ktot,S(σ), give an axiomatization
of the theory of almost all Ktot,S(σ), and prove that this theory is
decidable.

For the rest of this work, let S be a finite set of local
primes of a field K of characteristic zero, and let 0 ≤ e ≤ ω be
an ordinal number.

4.1. The Fields Ktot,S

We define and characterize the field Ktot,S and give an axiomatization
for the fields that are regular totally S-adic extensions of subfields of
Ktot,S.

Definition 4.1.1. The field of totally S-adic elements over K is
defined as

Ktot,S =
⋂
p∈S

Ktot,p,

where Ktot,p is the maximal Galois extension of K in Kp.

Remark 4.1.2. Note that although Kp ⊆ K̃ is determined only up to

the action of Gal(K), the field Ktot,p ⊆ K̃ is independent of the chosen
embedding.

Lemma 4.1.3. Ktot,S is the largest totally S-adic Galois extension of
K (cf. Definition 2.9.3).

Proof. First of all, Ktot,S/K is totally S-adic. Indeed, if p ∈ S and
P ∈ Sp(Kp), then P|Ktot,S

∈ Sp(Ktot,S).
Now suppose that L/K is a totally S-adic Galois extension. Let

p ∈ S and P ∈ Sp(L). Then Lemma 2.9.9(2) implies that Kp ∈
CC(K, p) = CC(L, p), so L ⊆ Kp. Since L/K is Galois, L ⊆ Ktot,S. �

Lemma 4.1.4. Ktot,S is the largest Galois extension of K in which each
p ∈ S totally splits (cf. Definition 2.1.6).

Proof. Let p ∈ S and let L/K be a finite subextension of Ktot,S/K.
Replace L by the Galois closure of L over K to assume without loss
of generality that L/K is Galois. By Lemma 4.1.3, Ktot,S/K is totally
S-adic, so there exists P ∈ Sp(Ktot,S). Let Q = P|L. If char(p) = ∞,
then the primes of L lying over p correspond to K-embeddings of L

87
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into Kp. Since L ⊆ LQ = Kp is an embedding of this form, and L/K is
Galois, there are [L : K] many such embeddings. If char(p) 6=∞, then
vQ/vp is immediate and vp(K

×) = Z, so the fundamental inequality
(Lemma 1.5.2) implies that there are [L : K] many conjugate extensions
of vp to L. Therefore, p totally splits in L/K, as claimed.

Conversely, let L/K be a Galois extension in which each p ∈ S
totally splits. We claim that L/K is totally S-adic. By Lemma 2.4.5,
we can assume without loss of generality that L/K is finite. Let p ∈ S.
If char(p) = ∞, then Sp(L) 6= ∅, since p totally splits in L/K. If
char(p) 6= ∞, let P be one of the [L : K] many conjugate primes of
L lying over p. By the fundamental inequality (Lemma 1.5.2), vP/vp

is immediate, so P ∈ Sp(L), as claimed. Therefore, L/K is totally
S-adic, and thus L ⊆ Ktot,S by Lemma 4.1.3. �

Lemma 4.1.5. Let p ∈ S and K ⊆ L ⊆ Ktot,p. Then

Rp(L) = L ∩
⋂

τ∈Gal(K)

Rp(Kp)
τ .

In particular, Rp(L) = L ∩Rp(Ktot,p).

Proof. Since p is local, every K ′ ∈ CC(K, p) is K-conjugate to Kp.
By Lemma 2.9.9(2), CC(L, p) = CC(K, p). Thus,

Rp(L) =
⋂

P∈Sp(L)

OP

=
⋂

L′∈CC(L,p)

(Rp(L
′) ∩ L)

=
⋂

K′∈CC(K,p)

(Rp(K
′) ∩ L)

=
⋂

τ∈Gal(K)

Rp(Kp)
τ ∩ L.

�

Definition 4.1.6. If R ⊆ S are rings, let

NR(S) = {f ∈ R[X] : f has no root in S} .

Definition 4.1.7. Let the Lring(K)-theory Talg,S consist of the follow-
ing sentences:

(1) For each f(X) ∈ NK(Ktot,S) the sentence

¬(∃x)(f(x) = 0).

(2) For each p ∈ S and each f(X) ∈ NOp(Rp(Ktot,S)) the sentence

¬(∃x)(ϕholom,p(x) ∧ f(x) = 0),

where ϕholom,p is the formula of Proposition 2.4.2.
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Lemma 4.1.8. A PSCL field F ⊇ K is a model of Talg,S if and only if

F ∩ K̃ ⊆ Ktot,S and F/F ∩ K̃ is totally S-adic.

Proof. Since F is PSCL, ϕholom,p(F ) = Rp(F ) for each p ∈ S by

Proposition 2.4.2. Let L = F ∩ K̃. Since L/K is algebraic, L is S-SAP
by Lemma 2.8.5.

Suppose that F satisfies Talg,S. By (1), L ⊆ Ktot,S. If p ∈ S, then
Rp(L) = Rp(Ktot,S)∩L by Lemma 4.1.5, and (2) implies that Rp(F )∩
K̃ ⊆ Rp(Ktot,S). Therefore, Rp(F ) ∩ L ⊆ Rp(Ktot,S) ∩ L = Rp(L), so
F/L is totally S-adic by Lemma 2.9.6.

Conversely, suppose that L ⊆ Ktot,S and F/L is totally S-adic.
Since L ⊆ Ktot,S, F satisfies (1). By Lemma 2.9.6, Rp(F )∩L = Rp(L).

So since Rp(F ) ∩ L = Rp(F ) ∩ K̃ and Rp(L) = Rp(Ktot,S) ∩ L by
Lemma 4.1.5, F satisfies (2). �

4.2. Subfields of Ktot,S

We summarize some basic results on subfields of Ktot,S and totally
S-adic Galois extensions.

Lemma 4.2.1. Let K ⊆ L ⊆ E ⊆ F .

(1) If F/E and E/L are totally S-adic, then F/L is totally S-adic.
(2) If F/L is totally S-adic, then E/L is totally S-adic.
(3) If F/L is totally S-adic Galois, then F/E is totally S-adic.

Proof. Let p ∈ S.

Proof of (1). If Sp(F )→ Sp(E) and Sp(E)→ Sp(L) are surjective,
then also the composition Sp(F )→ Sp(L).

Proof of (2). Since the composition of Sp(F )→ Sp(E) and Sp(E)→
Sp(L) is surjective, Sp(E)→ Sp(L) is surjective.

Proof of (3). Let P ∈ Sp(E). If char(p) = ∞, then L is p-quasi-
local, so Lemma 2.9.9(3) implies that CC(E, p) = CC(F, p). Hence,
if E ′ ∈ CC(E,P) and Q ∈ Sp(E

′), then Q|F ∈ Sp(F ) lies over P. If
char(p) 6= ∞, let Q be any prime of F with Q|E = P. Since F/L is
totally S-adic, there exists Q′ ∈ Sp(F ) with Q′|L = P|L. Since F/L is
Galois, Q is conjugate to Q′ by Lemma 2.1.11. Hence, Q ∈ Sp(F ), as
claimed. �

The proof of the following lemma corrects an inaccuracy in [GJ02,
Proof of Lemma 1.6 Part B].

Lemma 4.2.2. Let K ⊆ E ⊆ F ⊆ Ktot,S. If E is PSCC, then F is
PSCC.

Proof. Let V be a smooth variety defined over F with V (F ′) 6= ∅ for
all F ′ ∈ CC(F, S). Without loss of generality assume that V is affine.



90 4. DECIDABILITY OF ALMOST ALL Ktot,S(σ)

Since F/E is algebraic, V is defined over a finite subextension F0 of
F/E. Let W = resF0/E(V ) be the Weil restriction of V and let F1 be the
Galois closure of F0/E. Then W is a variety defined over E and there
are σ1, . . . , σn ∈ Gal(E) with σ1 = idẼ such that W is isomorphic over
F1 to

∏n
i=1 σiV , and the projection onto the first factor W → σ1V = V

is defined over F0, cf. [FJ08, 10.6.2]. Since V is smooth, it follows that
W is smooth, see [Lan58, Proposition VIII.6].

Since E ⊆ F ⊆ Ktot,S and E ⊆ F1 ⊆ Ktot,S, Lemma 4.1.3 and
Lemma 2.9.9 imply that CC(E, S) = CC(F, S) = CC(F1, S). In par-
ticular, if E ′ ∈ CC(E, S), then F1 ⊆ E ′.

Let E ′ ∈ CC(E, S). Then σ−1
i (E ′) ∈ CC(E, S) = CC(F, S), so

V (σ−1
i (E ′)) 6= ∅ by assumption. Thus σiV (E ′) 6= ∅ for all i, and

therefore W (E ′) 6= ∅, as F1 ⊆ E ′. Since E is PSCC, W (E) 6= ∅, so in
particular W (F ) 6= ∅. Hence, since F0 ⊆ F , it follows that V (F ) 6= ∅,
as claimed. �

Remark 4.2.3. Note that although every algebraic extension of a PRC
field is PRC, cf. [Pre81], not every algebraic extension of a PpC field
is PpC. For example, Qp is PpC, but Qp(

√
p) is not. Hence, not every

algebraic extension of a PSCC field is PSCC.

Lemma 4.2.4. Let K ⊆ F ⊆ M . If M/F is totally S-adic Galois,
then SS(M) is the set of all primes of M lying over primes in SS(F ).

Proof. By definition, SS(M) is contained in the set of all primes of
M lying over primes in SS(F ). Let P ∈ SS(F ) and let Q be a prime of
M lying over P. Since M/F is totally S-adic, there exists Q′ ∈ SS(M)
with Q′|F = P. Since M/F is Galois, Q and Q′ are conjugate over F
by Lemma 2.1.11, so Q ∈ SS(M), as claimed. �

4.3. The Fields Ktot,S(σ)

The proof of the decidability of the theory of almost all Ktot,S(σ) relies
on two algebraic results, which we present in this section.

First of all recall that a field K is called Hilbertian if it satis-
fies the following property, cf. [FJ08, 13.2.2]. If f(X, Y ) ∈ K[X, Y ]
is irreducible, then there exists a ∈ K such that f(a, Y ) ∈ K[Y ] is
irreducible.

Lemma 4.3.1. Every number field and every function field is Hilber-
tian.

Proof. See [FJ08, 13.4.2]. �

Definition 4.3.2. If

σ = (σ1, . . . , σe) ∈ Gal(K)e,
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we denote by
K̃(σ)

the fixed field of the group 〈σ1, . . . , σe〉 ≤ Gal(K) in K̃, and by

K̃[σ]

the maximal Galois extension of K in K̃(σ). If L is a Galois extension
of K, let L(σ) = L ∩ K̃(σ) and L[σ] = L ∩ K̃[σ]. In particular,

Ktot,S(σ) = Ktot,S ∩ K̃(σ)

and
Ktot,S[σ] = Ktot,S ∩ K̃[σ].

Definition 4.3.3. We say that a statement holds for almost all σ ∈
Gal(K)e if the set of those σ ∈ Gal(K)e for which it holds has Haar
measure 1.

Proposition 4.3.4 (Geyer-Jarden). Let S be a finite set of local
primes of a countable Hilbertian field K of characteristic zero, and
let e ∈ Z≥0. Then for almost all σ ∈ Gal(K)e, the field Ktot,S[σ] is
PSCC.

Proof. By [GJ02, Theorem A], for almost all σ ∈ Gal(K)e, M =
Ktot,S[σ] is PSCL, where S is the set of all primes of M lying over
primes of S. By Lemma 4.1.3 and Lemma 4.2.1(2), M/K is a totally
S-adic Galois extension, so S = SS(M) by Lemma 4.2.4. Hence, since
M is S-quasi-local by Lemma 2.2.10, M is PSCC. �

Corollary 4.3.5. Let S be a finite set of local primes of a countable
Hilbertian field K of characteristic zero, and let e ∈ Z≥0. Then for
almost all σ ∈ Gal(K)e, the field Ktot,S(σ) is PSCC.

Proof. Since K ⊆ Ktot,S[σ] ⊆ Ktot,S(σ) ⊆ Ktot,S, the corollary fol-
lows from the proposition by Lemma 4.2.2. �

Remark 4.3.6. The special case S = ∅ of the corollary was proven
by Jarden, see [Jar69] and [Jar72]. The special case S = ∅ of the
proposition was proven by Jarden in [Jar97]. The special case e = 0
and K a number field was proven by Moret-Bailly [MB89], Pop [Pop92],
and Green-Pop-Roquette [GPR95]. Jarden-Razon proved the corollary
in the case that K is a number field, see [JR98, Remark 8.3].

Proposition 4.3.7 (Haran-Jarden-Pop). Let S be a finite set of local
primes of a countable Hilbertian field K of characteristic zero, and let
e ∈ Z≥0. Then for almost all σ ∈ Gal(K)e, the S-adic absolute Galois
group pile

GalS(Ktot,S(σ))

is isomorphic to the deficient reduct of the e-free semi-constant group
pile of (Gal(Kp))p∈S over Cantor spaces (Cp)p∈S.
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Proof. This is proven in [HJP09b]. Indeed, by [HJP09b, Proposi-
tion 12.3], for almost all σ ∈ Gal(K)e, the field M = Ktot,S(σ) satisfies
condition (1) of Section 10 of that work. In the proof of [HJP09b,
Proposition 11.2] it is proven that in this case

Gal(M,S) := (G,Gal(K̃(σ))G,Gp)p∈S,

where GalS(M) = (G,Gp)p∈S, is a so called ‘Cantor group pile over
(Gal(Kp))p∈S’. By [HJP09b, Corollary 6.2] and [HJP09b, Proposi-
tion 6.3], every Cantor group pile over (Gal(Kp))p∈S is isomorphic
to the group pile GT of [HJP09b, Proposition 5.3], which is exactly
the e-free semi-constant group pile of (Gal(Kp))p∈S over Cantor spaces
(Cp)p∈S. Since the deficient reduct of Gal(M,S) is GalS(M), the claim
follows. �

Remark 4.3.8. The special case S = ∅ was proven by Jarden in
[Jar74]. The special case K = Q, e = 0 and S = {∞} was proven
by Fried-Haran-Völklein, see [FHV93] and [FHV94]. The structure of
the absolute Galois group in the special case where K is a number field
and e = 0 was proven by Pop in [Pop96].

4.4. Axiomatization of the Theory of Almost All Ktot,S(σ)

We axiomatize the theory of almost all Ktot,S(σ) and prove a clas-
sification result for the models of this theory: Two such models are
elementarily equivalent if and only if their K-algebraic parts are iso-
morphic.

For the rest of this chapter, let S be a finite set of lo-
cal primes of a countable Hilbertian field K of characteristic
zero.

Definition 4.4.1. Let the Lring(K)-theory Ttot,S,e consist of the fol-
lowing axioms:

(0) The axioms for fields and the positive diagram of K, cf. [FJ08,
7.3.1].

(1) The theory TPSCC (Definition 2.7.2).
(2) The theory TC,S,e (Definition 3.7.6).
(3) The theory Talg,S (Definition 4.1.7).

Lemma 4.4.2. A field F ⊇ K is a model of Ttot,S,e if and only if it
satisfies the following conditions:

(1) F is PSCC.
(2) GalS(F ) is an e-free C-pile.
(3) F ∩ K̃ ⊆ Ktot,S and F/F ∩ K̃ is totally S-adic.

In that case, F satisfies also the following conditions:

(4) F is S-SAP.
(5) F is S-quasi-local.
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Proof. Suppose that F |= Ttot,S,e. Then F is PSCC by Proposi-
tion 2.7.3. Hence, Lemma 3.7.7 implies that GalS(F ) is an e-free
C-pile, Lemma 4.1.8 implies that F ∩ K̃ ⊆ Ktot,S and F/F ∩ K̃ is
totally S-adic, Proposition 2.8.7 implies that F is S-SAP, and Propo-
sition 2.2.11 implies that F is S-quasi-local.

Conversely, if F satisfies (1)-(3), then F satisfies Definition 4.4.1(1)
by Proposition 2.7.3, Definition 4.4.1(2) by Lemma 3.7.7, and Defini-
tion 4.4.1(3) by Lemma 4.1.8. Since F is a field containing K, it also
satisfies Definition 4.4.1(0). �

Lemma 4.4.3. Let K ⊆ L ⊆ E,F be fields such that the following
conditions are satisfied.

(1) E and F are models of Ttot,S,e.
(2) E/L and F/L are regular and totally S-adic.
(3) E is countable and F is ℵ1-saturated.
(4) L is S-quasi-local.

Then there exists an L-embedding i: E → F such that F/i(E) is regular
and totally S-adic.

Proof. By (1) and Lemma 4.4.2(1), E and F are PSCC fields. Let
G = GalS(F ), B = GalS(E), and A = GalS(L). By (1) and
Lemma 4.4.2(2), G and B are e-free C-piles. By (2) and (4), it
follows from Lemma 3.5.6 that the restriction maps resF̃ /L̃: G →
A and resẼ/L̃: B → A are rigid epimorphisms of group piles. So

(resF̃ /L̃, resẼ/L̃) is a rigid e-generated deficient embedding problem for
G.

By (3), E is countable, and thus B has countable rank, and F is
ℵ1-saturated. Hence, by Proposition 3.8.1 there exists an epimorphism
γ: G→ B such that resẼ/L̃◦γ = resF̃ /L̃. By Proposition 2.11.5, there is

an L-embedding i: E → F such that γ = res
F̃ /ĩ(E)

. By Lemma 4.4.2(5),

E is S-quasi-local. Hence, since γ is an epimorphism of group piles,
F/i(E) is regular and totally S-adic by Lemma 3.5.6. �

The proof of the following proposition follows the proof of [FJ08,
20.3.3].

Proposition 4.4.4 (Elementary equivalence theorem). Let E,F ⊇ K
be models of Ttot,S,e with E ∩ K̃ ∼=K F ∩ K̃. Then E ≡K F .

Proof. Assume without loss of generality that L := E ∩ K̃ = F ∩ K̃.
By Lemma 4.4.2(3), E/L and F/L are regular and totally S-adic. Let
E∗ be an ℵ1-saturated elementary extension of E and let F ∗ be an ℵ1-
saturated elementary extension of F , see for example [Mar02, 4.3.12].
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By (1) and (4) of Lemma 4.4.2, the fields E,F,E∗, F ∗ are PSCC
and S-SAP. By Corollary 2.9.7, E∗/E and F ∗/F are regular and to-
tally S-adic, so also E∗/L and F ∗/L are regular and totally S-adic
(Lemma 4.2.1(1)).

By Löwenheim-Skolem (Lemma 1.2.1), there exists a countable el-
ementary subfield E0 of E∗ that contains L. Then also E0/L is regular
and totally S-adic (Lemma 4.2.1(2)), and E0 is a model of Ttot,S,e.
Since L/K is algebraic, L is S-quasi-local (Lemma 2.2.10). There-
fore, by Lemma 4.4.3, there exists an L-embedding α0: E0 → F ∗ with
F ∗/α0(E0) regular and totally S-adic.

E∗ F ∗

E0
...........
α0
-

≺

L

K

Identify E0 with α0(E0). Let F0 be a countable elementary sub-
field of F ∗ that contains E0. Then F0/E0 is regular and totally S-adic
(Lemma 4.2.1(2)), and F0 is a model of Ttot,S,e. Also E∗/E0 is reg-
ular and totally S-adic by Corollary 2.9.7. By Lemma 4.4.2(5), E0

is S-quasi-local. Hence, by Lemma 4.4.3, there is an E0-embedding
β0: F0 → E∗ with E∗/β0(F0) regular and totally S-adic.

E∗ F ∗

�...........
β0

F0

≺

E0

≺

L

K
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Now iterate this process to construct a tower of countable fields

E0 ⊆ F0 ⊆ E1 ⊆ F1 ⊆ . . .

such that each Ei is an elementary subfield of E∗ and each Fi is an
elementary subfield of F ∗. Then M :=

⋃
i∈NEi =

⋃
i∈N Fi is an ele-

mentary subfield of both E∗ and F ∗, see for example [FJ08, 7.4.1(b)],
so E∗ ≡M F ∗. In particular, E∗ ≡K F ∗, hence E ≡K F . �

Proposition 4.4.5. Let e < ω. Then for almost all σ ∈ Gal(K)e,
Ktot,S(σ) is a model of Ttot,S,e.

Proof. By Corollary 4.3.5, almost all Ktot,S(σ) are PSCC. By Propo-
sition 4.3.7, for almost all σ ∈ Gal(K)e, GalS(Ktot,S(σ)) is isomor-
phic to the deficient reduct of the e-free semi-constant group pile of
(Gal(Kp))p∈S over Cantor spaces (Cp)p∈S. Since a Cantor space is per-
fect, this is an e-free C-pile by Proposition 3.6.3. Therefore, since
Ktot,S(σ) is a field containing K, almost all Ktot,S(σ) are models of
Ttot,S,e by Lemma 4.4.2. �

Lemma 4.4.6. Let e < ω. If F ⊇ K is a model of Ttot,S,e, then L =

F ∩ K̃ ⊆ Ktot,S and rank(Gal(Ktot,S/L)) ≤ e.

Proof. Let G = GalS(F ), and A = GalS(L). By Lemma 4.4.2(3),
L ⊆ Ktot,S and F/L is totally S-adic. Since L/K is algebraic, L
is S-quasi-local by Lemma 2.2.10, so the restriction G → A is an
epimorphism of group piles by Lemma 3.5.6. By Lemma 4.4.2(2),
G is an e-free C-pile. In particular, it is e-generated. Thus, by
Lemma 3.1.19, also A is e-generated. Since Ktot,S/K is totally S-adic
Galois by Lemma 4.1.3, CC(L, S) = CC(Ktot,S, S) by Lemma 2.9.9(3).
Thus, A′ = GalS(Ktot,S)′. But GalS(Ktot,S) is self-generated (this
follows from the definition of Ktot,S, or from Proposition 4.3.7), so
A′ = GalS(Ktot,S). Therefore, Gal(Ktot,S/L) = A/A′ = Ā is generated
by e elements. �

Definition 4.4.7. If e < ω, let

Talmost,S,e

denote the set of all Lring(K)-sentences that are true in almost all fields
Ktot,S(σ), σ ∈ Gal(K)e.

The proof of the following result follows the proof of [FJ08, 20.5.4].

Theorem 4.4.8. If e < ω, then the theory Ttot,S,e is an axiomatization
of Talmost,S,e, i.e. these two theories have the same models.

Proof. First note that every model of Talmost,S,e is a field containing
K. By Definition 4.4.1(0), the same holds for every model of Ttot,S,e.

By Proposition 4.4.5, almost all Ktot,S(σ) satisfy Ttot,S,e, so every
model of Talmost,S,e is a model of Ttot,S,e.
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Conversely, let E be a model of Ttot,S,e and let L = E ∩ K̃. If we

can construct a model F of Talmost,S,e with F ∩ K̃ ∼=K L, then E ≡K F
by Proposition 4.4.4, so E is a model of Talmost,S,e and we are done.

Lemma 4.4.6 implies that L ⊆ Ktot,S and there exist τ1, . . . , τe ∈
Gal(Ktot,S/K) that generate Gal(Ktot,S/L). Let N be the set of finite
Galois extensions of K inside Ktot,S. For each N ∈ N , the set

Σ(N) := {σ ∈ Gal(K)e : resN(σi) = resN(τi), i = 1, . . . , e}
⊆ {σ ∈ Gal(K)e : Ktot,S(σ) ∩N ∼=K L ∩N}

has positive Haar measure. If N1, . . . , Nr ∈ N , then N1 · · ·Nr ∈ N
and Σ(N1)∩ · · ·∩Σ(Nr) = Σ(N1 · · ·Nr). Hence, by [FJ08, 7.6.1], there
exists an ultrafilter D on Gal(K)e which contains each of the sets Σ(N),
N ∈ N , and all sets of measure 1. Let

F =
∏

σ∈Gal(K)e

Ktot,S(σ)/D

be the ultraproduct, and let M = F ∩ K̃. Since D contains all sets
of measure 1, and almost all Ktot,S(σ) are models of Talmost,S,e, F is
a model of Talmost,S,e by Lemma 1.2.2. Furthermore, M ⊆ Ktot,S, and
M ∩ N ∼= L ∩ N for each N ∈ N , since D contains Σ(N). Therefore,
M ∼=K L, see for example [FJ08, 20.6.3], as claimed. �

Remark 4.4.9. Note that the theory Talmost,S,e of almost all Ktot,S(σ),
σ ∈ Gal(K)e, is not complete if e > 0. Therefore, the decidability of
this theory does not immediately follow from the existence of a recursive
axiomatization.

4.5. Recursive Primes

In order to use the axiomatization of Talmost,S,e in the proof of its decid-
ability, we have to show that this axiomatization is recursive. For this
purpose, we make some recursivity assumptions, and show that they
are fulfilled for number fields.

Definition 4.5.1. A prime p of a presented field ρ: K → N is recur-
sive if the set ρ(Op) ⊆ N is recursive.

Definition 4.5.2. Let K/Q be a number field of degree n. For the
rest of this work, we fix a presentation ρ : K → N as follows: Let
K = Q(α), where α is a root of a polynomial f(X) ∈ Z[X] of degree
n. Then K =

∑n
i=1 Qαi, and we present K as

ρ : K = Qn ↪→ N2n ↪→ N

via iterated application of a recursive pairing function N× N→ N.
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Lemma 4.5.3. Every prime of a number field is recursive.

Proof. Let p be a prime of a number field K of degree n, and let f
and α be as in Definition 4.5.2.

Part A: Case char(p) = ∞. The orderings of K correspond to
embedding K ↪→ R, so p is determined by a specific root a of f in R.
Let c, d ∈ Q such that a is the only root of f in the interval [c, d] ⊆ R.
Let ϕ(x1, . . . , xn) be the L≤-formula

(∃x)(f(x) = 0 ∧ c ≤ x ∧ x ≤ d ∧
n∑
i=1

xix
i ≥ 0).

Then for a1, . . . , an ∈ Q,
∑n

i=1 aiα
i ∈ Op if and only if (R,≤) |= ϕ(a).

Note that since a1, . . . , an ∈ Q, ϕ(a) can be seen as an L≤-sentence.
Thus, since (R,≤) is decidable by Proposition 1.4.5, the subset Op ⊆
Qn is recursive, as claimed.

Part B: Case char(p) = p 6= ∞. Each of the n roots α1, . . . , αn of

f in Q̃p defines an embedding σi of K into Q̃p, and thereby induces
a p-valuation on K. Two such embeddings σi, σj induce the same p-

valuation on K if and only if αi and αj are conjugate over Q̂p. This
follows for example from [Lan94, II§1 Theorem 2].

Thus, if f1, . . . , fr ∈ Qp[X] are the irreducible factors of f over
Qp, then these irreducible factors correspond to the p-valuations on
K.1 Since Q is dense in Qp, for every i we can find a good ap-

proximation f̃i ∈ Q[X] of fi. This approximation can be chosen

such that if the coefficients of some f̃j are close enough to the co-

efficients of f̃i, then i = j. Assume without loss of generality that
p corresponds to f1(X) =

∑m
k=0 ciX

i. Using the approximation f̃1

of f1, the coefficients of f1 can be defined in Qp. Therefore, the
field Qp[X]/(f1(X)) ∼= Kp can be interpreted in Qp. More precisely,
the LR(c)-structure M = (Kp,+,−, ·, 0, 1, Rp(Kp), c), where c is the
residue of X in Qp[X]/(f1(X)), can be interpreted in Qp without pa-
rameters. Hence, the complete LR(c)-theory of M is decidable since
the complete LR-theory of Qp is decidable (Proposition 1.6.3). Now let
ϕ(x1, . . . , xn) be the LR(c)-formula

n∑
i=1

xic
i ∈ R.

Then for a1, . . . , an ∈ Q,
∑n

i=1 aiα
i ∈ Op if and only if M |= ϕ(a).

Therefore, Op is recursive, as above. �

1Note that we do not have to prove that this factorization can be effectively
computed. But it would be possible, of course.
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Remark 4.5.4. Note that the statement of Lemma 4.5.3 cannot even
be generalized to local primes of finitely generated fields. For example,
the presentable rational function field Q(X) has 2ℵ0 many archimedean
local primes, corresponding to the embeddings of Q(X) into R, but only
countably many of these primes can be recursive.

Remark 4.5.5. Note that the non-archimedean case of Lemma 4.5.3
immediately follows from the well known fact that if p is a non-archime-
dean prime of a global field K, then Op is Diophantine in K, cf. [Shl07,
4.2.4, 4.3.4]. Indeed, every Diophantine set is recursively enumerable,
and since for x ∈ K×, Op satisfies x ∈ Op or x−1 ∈ Op, this already
implies that Op is recursive. Similarly, if p is an archimedean prime
of a number field K, then Op is Diophantine in K, see for example
[Rum80, p. 212], and this implies that Op is recursive.

For the rest of this chapter, let S be a finite set of recursive
local primes of a presented countable Hilbertian field K of
characteristic zero.

Lemma 4.5.6. Let p ∈ S. Then the following sets of polynomials are
recursive:

(1) {f ∈ K[X] : f completely decomposes over Ktot,S}
(2) {f ∈ Op[X] : f completely decomposes over Rp(Ktot,S)}

Proof.

Proof of (1). A polynomial f ∈ K[X] completely decomposes over
Ktot,S if and only if it completely decomposes over Kp for every p ∈ S.
Let ϕn(x0, . . . , xn) be the Lring-formula

(∃y1, . . . , yn)
n∧
k=0

(xk = sk(y)xn),

where s0, . . . , sn ∈ Z[y] are the elementary symmetric polynomials in
y defined by

n∑
k=0

sk(y)Xk =
n∏
i=1

(X − yi).

A polynomial f(X) =
∑n

k=0 akX
k ∈ K[X] of degree n completely

decomposes over Kp if and only if Kp |= ϕn(a).

Part 1A: Case char(p) = ∞. Since the theory of real closed fields
has quantifier elimination in the language of ordered fields (Proposi-
tion 1.4.5), there exists a quantifier free LR-formula ψn(x) such that

(Kp, Rp(Kp)) |= (∀a)(ϕn(a)↔ ψn(a)).

Since the theory of real closed ordered fields is decidable by Proposi-
tion 1.4.5, this formula ψn can be effectively computed. If a0, . . . , an ∈
K, then (Kp, Rp(Kp)) |= ψn(a) if and only if (K,Op) |= ψn(a). Since



4.5. RECURSIVE PRIMES 99

(K,Op) is recursive by assumption, there is an algorithm to decide
if (K,Op) |= ψn(a). Therefore, there is an algorithm to decide if a
polynomial f ∈ K[X] completely decomposes over Kp.

Part 1B: Case char(p) = p 6= ∞. The theory of p-adically closed
fields of a fixed p-rank d has quantifier elimination in the extended lan-
guage LP,d (Proposition 1.6.3). Thus, arguing as in the case char(p) =
∞, we can decide if a polynomial f completely decomposes over Kp

if we can decide, for a given a ∈ K, whether or not Kp |= Pm(a),
i.e. whether a is an m-th power in Kp. By Lemma 2.6.3, there exist
quantifier free formulas ϕm(x, y) and ψm(x, y) such that a is an m-th
power in Kp if and only if (K,Op) |= (∀y)(ψm(a, y)), if and only if
(K,Op) 6|= (∀y)(ϕm(a, y)). Therefore, the following is an algorithm to
determine whether a is an m-th power in Kp:

List the elements of K as b1, b2, b3, . . . and check for each i whether
(K,Op) |= ϕm(a, bi) and (K,Op) |= ψm(a, bi). Then for some i either
(K,Op) 6|= ϕm(a, bi) or (K,Op) 6|= ψm(a, bi). In the former case, a is an
m-th power, in the second case a is not an m-th power in Kp.

Proof of (2). By Lemma 4.1.5, a polynomial f ∈ K[X] completely
decomposes over Rp(Ktot,S) if and only if it completely decomposes
over Rp(Kp) and over Ktot,S. By (1), we can effectively decide if f
completely decomposes over Ktot,S. If we replace ϕn(x0, . . . , xn) by the
LR-formula

(∃y1, . . . , yn)(
n∧
i=1

R(yi) ∧
n∧
k=0

(xk = sk(y)xn)),

then a polynomial f(X) =
∑n

k=0 akX
k ∈ Op[X] of degree n completely

decomposes over Rp(Kp) if and only if (Kp, Rp(Kp)) |= ϕn(a), and the
proof of (1) carries over to this case. �

We remind the reader that NR(S) denotes the set of all polynomials
f ∈ R[X] without a root in S (Definition 4.1.6).

Lemma 4.5.7. If K has a splitting algorithm, then the sets NK(Ktot,S)
and NOp(Rp(Ktot,S)), p ∈ S, are recursive.

Proof. Let f ∈ K[X] be given. Use the splitting algorithm of K
to recursively decompose f into irreducible factors f1, . . . , fr ∈ K[X].
Since Ktot,S/K is Galois, each of these irreducible polynomials fi has
a root in Ktot,S if and only if it completely decomposes over Ktot,S.
Thus, f ∈ NK(Ktot,S) if and only if none of the factors fi lies in the
recursive set of polynomials of Lemma 4.5.6(1). Therefore, NK(Ktot,S)
is recursive. Similarly, using Lemma 4.5.6(2) and Lemma 4.1.5, one
sees that NOp(Rp(Ktot,S)) is recursive. �
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Lemma 4.5.8. If K has a splitting algorithm, then the theory Ttot,S,e

(Definition 4.4.1) is recursive.

Proof. Since K is a presented field, the positive diagram of K is
recursive.

The theory Tholom,p (Definition 2.4.6) is recursive. Indeed, the ax-
ioms of (1), (3), (4), and (5) consist only of finitely many sentences, so
there is nothing to prove, and the set of formulas ϕholom,p(a), a ∈ Op,
is recursive since Op is recursive by assumption. So, since the map

ψ 7→ ψ̂p,∀ of Proposition 2.6.6 is recursive, the theory TPSCC (Defini-
tion 2.7.2) is recursive.

The theory TC,S,e (Definition 3.7.6) is recursive since the maps A 7→
θrealize,A and α 7→ θres,α are recursive (Lemma 3.7.4 and Lemma 3.7.5),
and one can recursively determine if a given finite group pile is e-
generated or deficient.

Since K has a splitting algorithm, Lemma 4.5.7 implies that the
sets NK(Ktot,S) and NOp(Rp(Ktot,S)) are recursive. Thus, the theory
Talg,S (Definition 4.1.7) is recursive. �

4.6. Decidability of the Theory of Almost All Ktot,S(σ)

Now that we have a recursive axiomatization of the theory of almost
all Ktot,S(σ), we can prove that the theory of almost all Ktot,S(σ) is
decidable. The proof follows closely the proof of Jarden-Kiehne in
[FJ08, Chapter 20.6] that the theory of almost all K̃(σ) is decidable.

Definition 4.6.1. The set of test sentences is the smallest set of
Lring(K)-sentences that contains all of the sentences of the form

(∃X)(f(X) = 0),

where f ∈ K[X] is a polynomial that completely decomposes over
Ktot,S, and is closed under negations, conjunctions, and disjunctions.

Lemma 4.6.2. Let E,F ⊇ K be models of Ttot,S,e. Then E ≡K F if
and only if E and F satisfy the same test sentences.

Proof. Trivially, if E and F are elementarily equivalent over K, then
they satisfy the same test sentences. Conversely, assume that E and F
satisfy the same test sentences, and let E0 = E ∩ K̃ and F0 = F ∩ K̃.
By Lemma 4.4.2(3), E0 ⊆ Ktot,S and F0 ⊆ Ktot,S. Let f ∈ K[X] be an
irreducible polynomial. If f does not completely decompose over Ktot,S,
then it has no root in Ktot,S, so it has no root in E0 and it has no root
in F0. If f completely decomposes over Ktot,S, then (∃X)(f(X) = 0)
is a test sentence. Hence, f has a root in E0 if and only if it has a
root in F0. Therefore, E0

∼=K F0, see for example [FJ08, 20.6.3]. By
Proposition 4.4.4, E ≡K F . �
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Lemma 4.6.3. The set of test sentences is recursive.

Proof. Given a polynomial f ∈ K[X], one can decide if (∃X)(f(X) =
0) is a test sentence or not by Lemma 4.5.6(1). Induction on the struc-
ture of formulas then shows that the set of test sentences is recur-
sive. �

For the rest of this chapter, let S be a finite set of recursive
local primes of a presented countable Hilbertian field K of
characteristic zero with a splitting algorithm, and let e < ω.

Definition 4.6.4. For each Lring(K)-sentence θ let

ΣS,e(θ) = {σ ∈ Gal(K)e : Ktot,S(σ) |= θ}

be the truth set of θ.

Notation 4.6.5. We denote the normalized Haar measure on Gal(K)e

by µ, cf. Section 1.3.

Lemma 4.6.6. Let λ be a test sentence. Then ΣS,e(λ) is open-closed in
Gal(K)e and µ(ΣS,e(λ)) is a rational number. The map λ 7→ µ(ΣS,e(λ))
from test sentences to Q is recursive.

Proof. Let f1, . . . , fn ∈ K[X] be the polynomials occurring in λ.
Their splitting field Lλ is a finite Galois extension of K inside Ktot,S.
Let L/K be a Galois extension with Lλ ⊆ L ⊆ Ktot,S. Then Ktot,S(σ)∩
L = L(resL(σ)) for each σ ∈ Gal(K)e. Let

ΣL,λ = {τ ∈ Gal(L/K)e : L(τ ) |= λ} .

We claim that

ΣS,e(λ) = {σ ∈ Gal(K)e : resL(σ) ∈ ΣL,λ}.

Indeed, if λ is of the form (∃X)(f(X) = 0), where f ∈ K[X] completely
decomposes over Ktot,S, then

ΣL,λ = {τ ∈ Gal(L/K)e : f has a zero in L(τ )}.

Since L contains all roots of f , Ktot,S(σ) |= λ if and only if Ktot,S(σ)∩
L |= λ, so the claim is true in that case. Induction on the structure of
λ shows that the claim holds for all test sentences λ.

Thus, ΣS,e(λ) is open-closed, in particular measurable. Further-
more,

µ(ΣS,e(λ)) =
|ΣLλ,λ|

[Lλ : K]e

is a rational number, and this number is computable since K has a
splitting algorithm, see for example [FJ08, 19.3.2]. �
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Theorem 4.6.7. Let S be a finite set of recursive local primes of a pre-
sented countable Hilbertian field K of characteristic zero with a splitting
algorithm, and let e ∈ Z≥0. Then the following holds:

(1) For every Lring(K)-sentence θ, ΣS,e(θ) is µ-measurable, and
µ(ΣS,e(θ)) is a rational number.

(2) The map θ 7→ µ(ΣS,e(θ)) from Lring(K)-sentences to Q is re-
cursive.

In particular, the theory Talmost,S,e of almost all fields Ktot,S(σ), σ ∈
Gal(K)e, is decidable.

Proof. By Theorem 4.4.8, Ttot,S,e |= Talmost,S,e and Talmost,S,e |= Ttot,S,e.
By Lemma 4.6.2 and [FJ08, 7.8.2], for every Lring(K)-sentence θ there
exists a test sentence λ such that the sentence θ ↔ λ is in Talmost,S,e. In
particular, ΣS,e(θ) and ΣS,e(λ) differ only by a zero set. Lemma 4.6.6
implies that ΣS,e(λ) is µ-measurable and µ(ΣS,e(λ)) ∈ Q, so also ΣS,e(θ)
is µ-measurable and µ(ΣS,e(θ)) = µ(ΣS,e(λ)) ∈ Q. This proves (1).

Since Ttot,S,e |= Talmost,S,e, we have Ttot,S,e |= θ ↔ λ. The set of test
sentences is recursive by Lemma 4.6.3. By Lemma 4.5.8, the theory
Ttot,S,e is recursive, so the set of consequences of Ttot,S,e is recursively
enumerable, cf. [Mar02, 2.1.1, 2.1.2]. Therefore, there is a recursive
map θ 7→ λθ from Lring(K)-sentences to test sentences such that for
every θ, θ ↔ λθ is in Talmost,S,e. In particular, µ(ΣS,e(θ)) = µ(ΣS,e(λθ)).

Since also the map λ 7→ µ(ΣS,e(λ)) from test sentences to Q is
recursive by Lemma 4.6.6, the composition

θ 7→ λθ 7→ µ(ΣS,e(λθ)) = µ(ΣS,e(θ))

is recursive. This proves (2).
Since Talmost,S,e is the set of all θ with µ(ΣS,e(θ)) = 1, it follows that

Talmost,S,e is decidable. �

Remark 4.6.8. Note that the assumption that the primes in S are
recursive is necessary. Indeed, we have shown that Rp(Ktot,S) is K-
definable in Ktot,S for each p ∈ S. An element x ∈ K lies in Op if and
only if x ∈ Rp(Ktot,S), so the decidability of the complete Lring(K)-
theory of Ktot,S implies that Op is recursive.

On the other hand we do not know whether the assumption that
K has a splitting algorithm is necessary.

The theorem does certainly not hold anymore if we allow S to be
an arbitrary (possibly infinite) set of recursive local primes of K. In
fact, although there exist trivial examples of Hilbertian fields K with
an infinite set of local primes S such that Ktot,S is decidable, we do
not know any infinite set of primes S of K = Q for which the theorem
holds. Moreover, [Jar95, Example 10.4] gives an example of an infinite
set of primes S of Q that has Dirichlet density zero, but Qtot,S = Q,
hence Talmost,S,e = Th(Q) is undecidable.
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Corollary 4.6.9. Let S be a finite set of primes of a number field
K, and let e ∈ Z≥0. Then the theory of almost all fields Ktot,S(σ),
σ ∈ Gal(K)e, is decidable.

Proof. Every number field is Hilbertian by Lemma 4.3.1, and count-
able. Moreover, every prime of a number field is local (Remark 2.1.19)
and recursive by Lemma 4.5.3. By [FJ08, 19.1.3(b), 19.2.4], every
number field has a splitting algorithm. Thus, the claim follows from
Theorem 4.6.7. �

This finally proves Theorem I from the introduction.

Remark 4.6.10. As mentioned in the introduction, Theorem I has as
special cases decidability results from [JK75], [FHV94] and [Ers96b].
The following decidability results for algebraic fields are related, but
do not follow from Theorem I: In [HL94], decidability is proven for
theories of fields of the form Ralg(σ), and in [Efr91] for fields of the
form Qp(σ).

In the light of Theorem 4.4.8, Theorem I gives decidability of the
theory of a certain class of PSCC fields. For PRC and PpC fields, many
such theories were proven decidable, see for example [Kün89b] and the
references there. However, the undecidability results of [Har84] and
[Efr92] for the theories of formally real PRC fields and formally p-adic
PpC fields put a bound on such decidability results.





CHAPTER 5

Decidability of Almost All Ktot,S[σ]

In this chapter we show how the proof of the decidability of almost
all Ktot,S(σ) carries over to the fields Ktot,S[σ]. However, we restrict
ourselves to the case that K is a number field.

For the rest of this work, let S be a finite set of primes of
a number field K, and let 0 < e < ω be a positive integer.

Note that every number field is countable Hilbertian and has a
splitting algorithm, and every prime of a number field is local and
recursive, cf. the proof of Corollary 4.6.9.

5.1. Subgroups of Strongly Projective Groups

We will apply a result of Pop on prosolvable subgroups of ‘strongly
G-projective’ groups to our semi-constant group piles. To state this
result, we need the following definitions from [Pop95].

Definition 5.1.1. Let G be a profinite group and G ⊆ Subgr(G) a
G-invariant closed set of subgroups. A finite G-embedding problem
for G is a triple EPG = (ϕ, α,B), where ϕ : G→ A and α : B → A are
epimorphisms of profinite groups, B is finite, B is a set of subgroups
of B, and for every Γ ∈ G there exists ∆ ∈ B and a homomorphism
γΓ : Γ→ ∆ with α ◦ γΓ = ϕ|Γ. A solution of EPG is a homomorphism
γ : G→ B with α ◦ γ = ϕ such that for each Γ ∈ G, there exists ∆ ∈ B
and b ∈ B with γ(Γ) ⊆ ∆b. Finally, G is strongly G-projective if
every finite G-embedding problem for G has a solution.

Proposition 5.1.2 (Pop). Let G be a profinite group, G ⊆ Subgr(G)
a G-invariant closed subset, and Γ0 ≤ G a closed subgroup. If G is
strongly G-projective, then the following holds.

(1) If Γ0 is finite, then there exists Γ1 ∈ G such that Γ0 ⊆ Γ1.
(2) If Γ0 is prosolvable, and there exist prime numbers p 6= q such

that cdp(Γ0), cdq(Γ0) > 1, and Γ0 or all Γ ∈ G do not have
p-torsion, then there exists Γ1 ∈ G such that Γ0 ⊆ Γ1.

Proof. See [Pop95, Theorem 2]. �

105
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Corollary 5.1.3. Let G = (G,Gp)p∈S be the deficient reduct of the
ω-free semi-constant group pile of (Gal(Kp))p∈S over Cantor spaces
(Cp)p∈S. If Γ0 ≤ G is a subgroup with Γ0

∼= Gal(F ) for some classically
closed field F , then there exists Γ1 ∈ G =

⋃
p∈S Gp such that Γ0 ⊆ Γ1.

Proof. We claim thatG is strongly G-projective. LetEPG = (ϕ : G→
A,α : B → A,BEP ) be a finite G-embedding problem, and without loss
of generality assume that BEP is B-invariant and closed under taking
subgroups. For each Γ ∈ G choose a homomorphism γΓ : Γ → B such
that γΓ(Γ) ∈ BEP and α ◦ γΓ = ϕ|Γ. For each p ∈ S, let

Bp =
{
γΓ(Γ)b : Γ ∈ Gp, b ∈ B

}
⊆ BEP

and

Ap = α(Bp) = ϕ(Gp).

Then, with A = (A,Ap)p∈S and B = (B,Bp)p∈S, EP = (ϕ : G →
A, α : B → A) is a finite deficient embedding problem of group piles.
This embedding problem is locally solvable. Indeed, if Γ ∈ Gp, then
∆ = γΓ(Γ) ∈ Bp and γΓ : Γ→ ∆ satisfies α ◦ γΓ = ϕ|Γ. And if ∆ ∈ Bp,
then there exist Γ ∈ Gp and b ∈ B such that ∆ = γΓ(Γ)b. Hence,
if we choose g ∈ G with ϕ(g) = α(b) and define γ̃Γg : Γg → ∆ by

γ̃Γg(x) = γΓ(xg
−1

)b, then α ◦ γ̃Γg = ϕ|Γg . By Proposition 3.6.3, G is
an ω-free C-pile, hence EP has a solution γ : G→ B by Lemma 3.6.5.
Since γ(G) = B ⊆ BEP , it follows that γ : G→ B is a solution of EPG.
Therefore, G is indeed strongly G-projective.

If F is real closed, then Γ0
∼= Z/2Z is finite. If F is p-adically

closed, then Lemma 1.6.5 implies that Γ0 is prosolvable, torsion-free,
and cdl(Γ0) = 2 for all l. Hence, Proposition 5.1.2 implies that there
exists Γ1 ∈ G such that Γ0 ⊆ Γ1. �

5.2. The Fields Ktot,S[σ]

In Proposition 4.3.4 we already presented the result of Geyer-Jarden
that Ktot,S[σ] is PSCC for almost all σ ∈ Gal(K)e. The description of
the absolute Galois group pile of these fields can be derived from the
following result.

Proposition 5.2.1 (Haran-Jarden-Pop). Let S be a finite set of
primes of a number field K, let e ∈ N, and let G = (G,G0,Gp)p∈S be
the ω-free semi-constant group pile of (Gal(Kp))p∈S over Cantor spaces
(Cp)p∈S. Then for almost all σ ∈ Gal(K)e,

Gal(Ktot,S[σ]) ∼= G.

Proof. See [HJP09a, Theorem 3.11], �

Remark 5.2.2. The special case S = ∅ was proven by Jarden in
[Jar97].
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For a different proof of the following topological lemma see [HJP09b,
Lemma 2.1].

Lemma 5.2.3. If G = (G,Gp)p∈S is a reduced deficient group pile, then
for each p ∈ S, a basis for the topology on Gp is given by sets of the
form

Subgr(U) ∩ Gp,

where U is an open subgroup of G.1

Proof. Since the intersection of two sets of the form Subgr(U)∩Gp is
again of that form, and each of these sets is open-closed in Gp (cf. Def-
inition 3.1.1), these sets form the basis for a zero-dimensional compact
topology T on Gp, which is coarser than the profinite topology on Gp.
Since a compact Hausdorff topology is minimal Hausdorff, it suffices to
prove that T is Hausdorff.

Let Γ,Γ′ ∈ Gp be distinct. Since G is reduced, Γ is not contained in
Γ′, and vice versa. So since Γ is the intersection of all open subgroups
of G containing it, there exists an open subgroup U ≤ G such that
Γ ≤ U but Γ′ 6≤ U . That is, T is T1. But any zero-dimensional T1

space is Hausdorff, cf. [SS70, Figure 9], so this proves the claim. �

The following lemma is similar to [HJP09b, Lemma 10.3(e)].

Lemma 5.2.4. Let M/K be an infinite Galois extension contained in
Ktot,S and let GalS(M) = (G,Gp)p∈S. Then Gp/G is nonempty and
perfect for each p ∈ S.

Proof. Let p ∈ S. By Lemma 4.1.3 and Lemma 4.2.1(2), M/K is
totally S-adic, hence Sp(M) 6= ∅. Consequently, Gp 6= ∅, and hence
Gp/G 6= ∅.

Let F ∈ CC(M, p), Γ = Gal(F ), and suppose that the image of
Γ in Gp/G is isolated. Then ΓG = {Γg : g ∈ G} is open in Gp. By
Lemma 3.5.3, (G,Gp)p∈S is reduced, so Lemma 5.2.3 gives an open
subgroup U ≤ G such that Γ ∈ Subgr(U) ∩ Gp ⊆ ΓG. In other words,
there exists a finite extension N/M contained in F such that every
F ′ ∈ CC(M, p) that contains N is conjugate to F over M .

Let N0/K be a finite extension such that MN0 = N , and let M0 =
M ∩N0.

M N F

K M0 N0

Then N/N0 and M/M0 are infinite Galois extensions. Let M1 be a
finite proper Galois extension of M0 in M . Let Q ∈ Sp(N) be the

1In other words, the (strict) topology on Gp coincides with the topology in-
duced by the étale topology of Subgr(G), cf. [HJP07], [HJP05], [HJP09a].
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restriction of the unique prime of F above p, and let P = Q|M ∈
Sp(M), P0 = Q|M0 ∈ Sp(M0), P1 = Q|M1 ∈ Sp(M1). Since p totally
splits in Ktot,S/K by Lemma 4.1.4, there exists P′1 ∈ Sp(M1) lying
over P0, and different from P1. By Lemma 2.1.11, there exists τ ∈
Gal(M1/M0) such that τ(P1) = P′1. Since M/M0 is Galois and M is
linearly disjoint from N0 over M0, there exists σ ∈ Gal(N/N0) with
σ|M1 = τ .

Let Q′ = σ(Q) and P′ = Q′|M . Then Q′ ∈ Sp(N), P′ ∈ Sp(M),
and P′ 6= P since P|M1 = P1 and P′|M1 = τ(P1) = P′1. Choose F ′ ∈
CC(N,Q′). Then F ′ ∈ CC(M,P′) ⊆ CC(M, p) by Lemma 2.9.9(1).
Moreover, N ⊆ F ′ but F ′ is not conjugate to F overM , a contradiction.

�

Theorem 5.2.5. Let S be a finite set of primes of a number field K,
let e ∈ N, and let G = (G,Gp)p∈S be the deficient reduct of the ω-free
semi-constant group pile of (Gal(Kp))p∈S over Cantor spaces (Cp)p∈S.
Then for almost all σ ∈ Gal(K)e,

GalS(Ktot,S[σ]) ∼= G.

Proof. By Proposition 5.2.1, Gal(Ktot,S[σ]) ∼= G for almost all σ ∈
Gal(K)e. By Proposition 4.3.4, almost all Ktot,S[σ] are PSCC. Fix
σ ∈ Gal(K)e such that Gal(Ktot,S[σ]) ∼= G and Ktot,S[σ] is PSCC, and
let M = Ktot,S[σ]. We identify Gal(M) with G and let GalS(M) =
(G,G ′p)p∈S. Let G =

⋃
p∈S Gp and G ′ =

⋃
p∈S G ′p. For p ∈ S let Γp =

Gal(Kp). For each Γ ∈ {Γp : p ∈ S} let SΓ = {q ∈ S : Γq
∼= Γ},

GΓ =
⋃

q∈SΓ
Gq, and G ′Γ =

⋃
q∈SΓ
G ′q. Note that since every Γ ∈ Gp

and every Γ ∈ G ′p is isomorphic to Γp, GΓ = {Γ0 ∈ G : Γ0
∼= Γ} and

G ′Γ = {Γ0 ∈ G ′ : Γ0
∼= Γ}.

Part A. Claim: For each p ∈ S, GΓp = G ′Γp
.

If Γ ∈ GΓp , then Γ ∼= Gal(Kp) and thus the fixed field M ′ of Γ is clas-
sically closed with respect to some classical prime P′ by Lemma 2.11.1.
Let P = P′|M . Without loss of generality assume that MP ⊆ M ′.
Since M is algebraic over Q, P is local. In particular, P is quasi-
local, i.e. MP ∈ CC(M,P). Since M is PSCL, Proposition 2.10.2
implies that q := P|K ∈ S. Since q totally splits in Ktot,S/K by
Lemma 4.1.4 and M ⊆ Ktot,S, Lemma 1.5.2 implies that tp(P) = tp(q),
so P ∈ SS(M). Hence, if we let Γ0 = Gal(MP), then Γ ⊆ Γ0 and
Γ0 ∈ G ′. By Proposition 5.1.3, there exists Γ1 ∈ G such that Γ0 ⊆ Γ1.
Thus, Γ ⊆ Γ0 ⊆ Γ1, and both Γ and Γ1 are contained in G. Since G
is reduced by Lemma 3.4.6(2), Γ = Γ0 = Γ1, so Γ ∈ G ′. Consequently,
Γ ∈ G ′Γp

.

Conversely, let Γ ∈ G ′Γp
, i.e. Γ = Gal(F ′), where F ′ ∈ CC(M, q) for

some q ∈ S with Γq
∼= Γp. Proposition 5.1.3 provides a Γ1 ∈ G with
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Γ ⊆ Γ1. By the first part of the proof of the claim, Γ1 ∈ G ′. Hence,
Γ = Γ1 since GalS(M) is reduced by Lemma 3.5.3. Thus, Γ ∈ GΓp .

Part B. The Cantor spaces Gp/G and G ′p/G. By definition, G =

(F̂ω ∗ H)def , where H = (H,Hp)p∈S is a semi-constant group pile of
(Γp)p∈S over (Cp)p∈S. Let C :=

⋃
· p∈S Cp and let

λ :

(⋃
·

p∈S

Γp × Cp, π, C

)
→ H

be a free product of the sheaf (
⋃
· p∈S Γp × Cp, π, C).

By Lemma 3.4.4(3), the map Cp → Hp/H given by x 7→ λ(π−1(x))H

is a homeomorphism for each p ∈ S. By Lemma 3.3.4(4), the map
Hp/H → Gp/G induced by the inclusionHp → Gp is a homeomorphism,
too. Hence, for each p ∈ S, the composition of these maps gives a
homeomorphism Cp → Gp/G, and we identify Cp and Gp/G via this
homeomorphism.

By Lemma 3.4.6(2) and Lemma 3.5.3, (G,Gp)p∈S and (G,G ′p)p∈S are
separated. Thus, if p ∈ S, then by Part A,⋃

·
q∈SΓp

Cq =
⋃
·

q∈SΓp

Gq/G =
⋃
·

q∈SΓp

G ′q/G. (5.1)

The extension M/K is infinite. This follows for example from Propo-
sition 2.10.2, since M is PSCC and every prime of a number field, and
hence of any finite extension of K, is local. Thus, by Lemma 5.2.4,
G ′p/G is nonempty and perfect for each p ∈ S. Since C is a Can-
tor space, each of the perfect subspaces G ′p/G is a Cantor space. In
particular, Gp/G and G ′p/G are homeomorphic.

Part C. Construction of an automorphism of G. By Part B,
there exists a homeomorphism τ of C onto itself with τ(Gp/G) = G ′p/G
for each p ∈ S. By (5.1), τ maps

⋃
· q∈SΓp

Cq onto itself. Hence, since

Γq
∼= Γp for all q ∈ SΓp , we can define a continuous bijection α from

the sheaf (
⋃
· p∈S Γp × Cp, π, C) onto itself by α((g, x)) = (g, τ(x)). By

the universal property of the free product, the morphism λ ◦α induces
an automorphism β of G with λ ◦ α = β ◦ λ and β|F̂ω = idF̂ω .

Part D. Conclusion of the proof. Since α((g, x)) = (g, τ(x)) for
all (g, x) ∈

⋃
· p∈S Γp × Cp,

α(π−1(x)) = π−1(τ(x))

for each x ∈ C. Since each Γ ∈ G is G-conjugate to λ(π−1(ΓG)),

Gp =
{
λ(π−1(x))g : x ∈ Gp/G, g ∈ G

}
and

G ′p =
{
λ(π−1(x))g : x ∈ G ′p/G, g ∈ G

}
.
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It follows that

β(Gp) =
{
β(λ(π−1(x))g) : x ∈ Gp/G, g ∈ G

}
=

{
λ(α(π−1(x)))β(g) : x ∈ Gp/G, g ∈ G

}
=

{
λ(π−1(τ(x)))g : x ∈ Gp/G, g ∈ β(G)

}
=

{
λ(π−1(x))g : x ∈ G ′p/G, g ∈ G

}
= G ′p

for each p ∈ S. Therefore,

GalS(M) = (G,G ′p)p∈S = (G, β(Gp))p∈S = β(G) ∼= G,

as claimed. �

Remark 5.2.6. I suspect that the same proof shows that one can
deduce the number field case of the main result of [HJP09b] from the
main result of [HJP09a].

5.3. Normally Generated Groups

The Galois group H = Gal(Ktot,S/Ktot,S[σ]) is isomorphic to F̂ω for
almost all σ ∈ Gal(K)e, so the parameter e is not visible in the iso-
morphism type of H. However, e appears when we consider H as a
subgroup of Gal(Ktot,S/K) which is normally generated by e elements.

Definition 5.3.1. Let G be a profinite group. A closed subgroup
H ≤ G is normally generated by e elements in G if there exist
h1, . . . , he ∈ H such that H = 〈hgi : i = 1, . . . , e, g ∈ G〉.

Lemma 5.3.2. Let G be a profinite group, and let H ≤ G. Then H
is normally generated in G by e elements if and only if for every open
normal subgroup N / G, HN/N is normally generated in G/N by e
elements.

Proof. If H = 〈hgi : i = 1, . . . , e, g ∈ G〉, then

HN/N = 〈(hiN/N)g : i = 1, . . . , e, g ∈ G/N〉 .

Conversely, suppose that HN/N is normally generated in G/N by e ele-
ments for every open normal subgroupN/G. Note thatG = lim←−N G/N .
For every N , let

NN = {(h1, . . . , he) ∈ (G/N)e : 〈hgi : 1 ≤ i ≤ e, g ∈ G/N〉 = HN/N} .

By the first paragraph of this proof, theNN form an inverse system. By
our assumption, eachNN is nonempty. Therefore, N := lim←−N NN ⊆ Ge

is nonempty. If (h1, . . . , he) ∈ N , then 〈hgi : i = 1, . . . , e, g ∈ G〉 = H,
so H is normally generated in G by e elements, as claimed. �
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Definition 5.3.3. We construct the Lring(K)-theory Tnormal,S,e as fol-
lows:

Let N be a finite Galois extension of K in Ktot,S, let N1, . . . , Nr(N)

be all subextensions of N/K, and let f1, . . . , fr(N) ∈ K[X] be irre-
ducible polynomials such that Ni

∼=K K[X]/(fi(X)) for each i. Let Ji
be the set of all j such that there exists no K-embedding of Nj into
Ni, and let ψi,f1,...,fr(N)

be the Lring(K)-sentence

(∃x)(fi(x) = 0) ∧
∧
j∈Ji

¬(∃x)(fj(x) = 0).

If L ⊇ K, then L |= ψi,f1,...,fr(N)
if and only if L ∩N ∼=K Ni. Let IN be

the set of all i such that Gal(N/Ni) is normally generated in Gal(N/K)
by e elements, and let ϕN,f1,...,fr(N)

be the Lring(K)-sentence∨
i∈IN

ψi,f1,...,fr(N)
.

Then L |= ϕN,f1,...,fr(N)
if and only if Gal(N/L ∩N) is normally gener-

ated in Gal(N/K) by e elements.
Let Tnormal,S,e consist of all sentences ϕN,f1,...,fr(N)

, where N runs over

all finite Galois extensions of K in Ktot,S, and f1, . . . , fr(N) ∈ K[X] are
suitable irreducible polynomials.

Lemma 5.3.4. A field F ⊇ K is a model of Tnormal,S,e if and only if
Gal(Ktot,S/F ∩ Ktot,S) is normally generated in Gal(Ktot,S/K) by e
elements.

Proof. Let L = F ∩ Ktot,S. By construction, F satisfies Tnormal,S,e

if and only if Gal(N/L ∩ N) is normally generated in Gal(N/K) by e
elements for each finite Galois extension N of K inside Ktot,S. In other
words, Gal(Ktot,S/L)U/U is normally generated in Gal(Ktot,S/K)/U
by e elements for each open normal subgroup U of Gal(Ktot,S/K). By
Lemma 5.3.2, this is the case if and only if Gal(Ktot,S/L) is normally
generated in Gal(Ktot,S/K) by e elements. �

5.4. Axiomatization of the Theory of Almost All Ktot,S[σ]

In this section we axiomatize of the theory of almost all fields Ktot,S[σ].

Definition 5.4.1. Let the Lring(K)-theory T ′tot,S,e consist of the fol-
lowing axioms:

(1) The theory Ttot,S,ω (Definition 4.4.1 for e = ω).
(2) The theory Tnormal,S,e (Definition 5.3.3).
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Lemma 5.4.2. A field F ⊇ K is a model of T ′tot,S,e if and only if it
satisfies the following conditions:

(1) F is PSCC.
(2) GalS(F ) is an ω-free C-pile.
(3) F ∩ K̃ ⊆ Ktot,S and F/F ∩ K̃ is totally S-adic.

(4) Gal(Ktot,S/F ∩ K̃) is normally generated in Gal(Ktot,S/K) by
e elements.

In that case, F satisfies also the following conditions:

(5) F is S-SAP.
(6) F is S-quasi-local.

Proof. By Lemma 4.4.2, F satisfies Ttot,S,ω if and only if (1)-(3) hold.

If (3) holds, then F ∩K̃ = F ∩Ktot,S, hence by Lemma 5.3.4, F satisfies
Tnormal,S,e if and only if (4) holds. Lemma 4.4.2 implies that if F satisfies
Ttot,S,ω, then (5) and (6) hold. �

Lemma 5.4.3. For almost all σ ∈ Gal(K)e, Ktot,S[σ] is a model of
T ′tot,S,e.

Proof. By Proposition 4.3.4, almost all Ktot,S[σ] are PSCC. By The-
orem 5.2.5, GalS(Ktot,S[σ]) is isomorphic for almost all σ to the de-
ficient reduct of the ω-free semi-constant group pile of (Gal(Kp))p∈S
over Cantor spaces (Cp)p∈S. Since each Cp is perfect, this is an ω-free
C-pile by Proposition 3.6.3. By Galois correspondence,

Gal(Ktot,S/Ktot,S[σ]) =
〈
(σi|Ktot,S

)g : i = 1, . . . , e, g ∈ Gal(Ktot,S/K)
〉

is normally generated in Gal(Ktot,S/K) by e elements. Therefore, by
Lemma 5.4.2, Ktot,S[σ] is a model of T ′tot,S,e for almost all σ. �

Definition 5.4.4. Let
T ′almost,S,e

denote the set of all Lring(K)-sentences that are true in almost all fields
Ktot,S[σ], σ ∈ Gal(K)e.

Theorem 5.4.5. The theory T ′tot,S,e is an axiomatization of T ′almost,S,e,
i.e. these two theories have the same models.

Proof. First note that every model of T ′almost,S,e is a field containing
K. By Definition 4.4.1(0), the same holds for every model of T ′tot,S,e.

By Lemma 5.4.3, almost all Ktot,S[σ] satisfy T ′tot,S,e, so every model
of T ′almost,S,e is a model of T ′tot,S,e.

Conversely, let E be a model of T ′tot,S,e and let L = E ∩ K̃. Sup-

pose we can construct a model F of T ′almost,S,e with F ∩ K̃ ∼=K L.
Since F |= T ′tot,S,e by the first paragraph of this proof, E,F |= Ttot,S,ω,
cf. Definition 5.4.1(1). Thus, E ≡K F by Proposition 4.4.4, hence E is
a model of T ′almost,S,e and we are done.
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Conditions (3) and (4) of Lemma 5.4.2 imply that L ⊆ Ktot,S and
give τ1, . . . , τe ∈ Gal(Ktot,S/K) that normally generate Gal(Ktot,S/L)
in Gal(Ktot,S/K). In particular, L/K is Galois. Let N be the set of
finite Galois extensions of K inside Ktot,S. For each N ∈ N , the set

Σ(N) := {σ ∈ Gal(K)e : resN(σi) = resN(τi), i = 1, . . . , e}
⊆ {σ ∈ Gal(K)e : Ktot,S[σ] ∩N = L ∩N}

has positive Haar measure. If N1, . . . , Nr ∈ N , then N1 · · ·Nr ∈ N
and Σ(N1)∩ · · ·∩Σ(Nr) = Σ(N1 · · ·Nr). Hence, by [FJ08, 7.6.1], there
exists an ultrafilter D on Gal(K)e which contains each of the sets Σ(N),
N ∈ N , and all sets of measure 1. Let

F =
∏

σ∈Gal(K)e

Ktot,S[σ]/D

be the ultraproduct, and let M = F ∩ K̃. Since D contains all sets
of measure 1, and almost all Ktot,S[σ] are models of T ′almost,S,e, F is a
model of T ′almost,S,e by Lemma 1.2.2. Furthermore, M ⊆ Ktot,S, and
M ∩ N = L ∩ N for each N ∈ N , since D contains Σ(N). Therefore,
M = L, as claimed. �

5.5. Decidability of the Theory of Almost All Ktot,S[σ]

Using the axiomatization of the theory of almost all Ktot,S[σ], we prove
that this theory is decidable. The proof follows the proof of Section 4.6
almost verbatim.

Lemma 5.5.1. The theory T ′tot,S,e is recursive.

Proof. The theory Ttot,S,ω is recursive by Lemma 4.5.8. The set of
polynomials f ∈ K[X] that completely decompose over Ktot,S is recur-
sive by Lemma 4.5.6, hence one can recursively decide if the splitting
field L of f is contained in Ktot,S. Since K has a splitting algorithm,
one can also recursively decide if f is irreducible, and one can com-
pute the Galois group Gal(L/K), [FJ08, 19.3.2]. Hence, the theory
Tnormal,S,e is recursive. �

Definition 5.5.2. For each Lring(K)-sentence θ let

Σ′S,e(θ) = {σ ∈ Gal(K)e : Ktot,S[σ] |= θ}
be the truth set of θ, and let µ be the normalized Haar measure on
Gal(K)e as in Notation 4.6.5.

Lemma 5.5.3. Let λ be a test sentence (cf. Definition 4.6.1). Then
Σ′S,e(λ) is open-closed in Gal(K)e and µ(Σ′S,e(λ)) is a rational number.
The map λ 7→ µ(Σ′S,e(λ)) from test sentences to Q is recursive.

Proof. Let f1, . . . , fn ∈ K[X] be the polynomials occurring in λ.
Their splitting field Lλ is a finite Galois extension of K inside Ktot,S.
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Let L/K be a Galois extension with Lλ ⊆ L ⊆ Ktot,S. Then Ktot,S[σ]∩
L = L[resL(σ)] for each σ ∈ Gal(K)e. Let

ΣL,λ = {τ ∈ Gal(L/K)e : L[τ ] |= λ} .
We claim that

Σ′S,e(λ) = {σ ∈ Gal(K)e : resL(σ) ∈ ΣL,λ}.
Indeed, if λ is of the form (∃X)(f(X) = 0), where f ∈ K[X] totally
decomposes over Ktot,S, then

ΣL,λ = {τ ∈ Gal(L/K)e : f has a zero in L[τ ]}.
Since L contains all roots of f , Ktot,S[σ] |= λ if and only if Ktot,S[σ] ∩
L |= λ, so the claim is true in that case. Induction on the structure of
λ shows that the claim holds for all test sentences λ.

Hence, Σ′S,e is open-closed, in particular measurable. Furthermore,

µ(Σ′S,e(λ)) =
|ΣLλ,λ|

[Lλ : K]e

is a rational number, and this number is computable since K has a
splitting algorithm, see for example [FJ08, 19.3.2]. �

Theorem 5.5.4. Let S be a finite set of primes of a number field K,
and let e ∈ N. Then the following holds:

(1) For every Lring(K)-sentence θ, Σ′S,e(θ) is µ-measurable and
µ(Σ′S,e(θ)) is a rational number.

(2) The map θ 7→ µ(Σ′S,e(θ)) from Lring(K)-sentences to Q is re-
cursive.

In particular, the theory T ′almost,S,e of almost all fields Ktot,S[σ], σ ∈
Gal(K)e, is decidable.

Proof. By Theorem 5.4.5, T ′tot,S,e |= T ′almost,S,e and T ′almost,S,e |= T ′tot,S,e.
In particular, T ′almost,S,e |= Ttot,S,ω. By Lemma 4.6.2 and [FJ08, 7.8.2],
for every Lring(K)-sentence θ there exists a test sentence λ such that
the sentence θ ↔ λ is in T ′almost,S,e. In particular, Σ′S,e(θ) and Σ′S,e(λ)
differ only by a zero set. By Lemma 5.5.3, Σ′S,e(λ) is µ-measurable
and µ(Σ′S,e(λ)) ∈ Q, so also Σ′S,e(θ) is µ-measurable and µ(Σ′S,e(θ)) =
µ(Σ′S,e(λ)) ∈ Q. This proves (1).

Since T ′tot,S,e |= T ′almost,S,e, we have T ′tot,S,e |= θ ↔ λ. The set of test
sentences is recursive by Lemma 4.6.3. By Lemma 5.5.1, the theory
T ′tot,S,e is recursive, so the set of consequences of T ′tot,S,e is recursively
enumerable, cf. [Mar02, 2.1.1, 2.1.2]. Therefore, there is a recursive
map θ 7→ λθ from Lring(K)-sentences to test sentences such that for
every θ, θ ↔ λθ is in T ′almost,S,e. In particular, µ(Σ′S,e(θ)) = µ(Σ′S,e(λθ)).

Since also the map λ 7→ µ(Σ′S,e(λ)) from test sentences to Q is
recursive by Lemma 5.5.3, the composition

θ 7→ λθ 7→ µ(Σ′S,e(λθ)) = µ(Σ′S,e(θ))



5.5. DECIDABILITY OF THE THEORY OF ALMOST ALL Ktot,S [σ] 115

is recursive. This proves (2).
Since T ′almost,S,e is the set of all θ with µ(Σ′S,e(θ)) = 1, it follows that

T ′almost,S,e is decidable. �

This, in combination with the case e = 0 of Corollary 4.6.9, finally
proves Theorem II from the introduction.
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