
2ND FRENCH-GERMAN SUMMER SCHOOL
GALOIS THEORY AND NUMBER THEORY

–
PROBLEMS

Problem 1 — Show that every finite abelian group G is the Galois group of some field
extension of Q.

Comments: Consider first the special case that G is cyclic: use cyclotomic extensions and
the lemma that for each integer m 6= 0, there are infinitely many integers that are congruent
to 1 modulo m.
(see [Dèb09, §2.1.2]).

Problem 2 — (Hensel’s lemma)

a) Show that X2 + 1 has a root in Z5 = lim←−n Z/5
nZ.

b) Let (A, v) be a complete discrete valuation ring with residue field κ. Let f ∈ A[X] be
a polynomial such that the polynomial f ∈ κ[X] obtained by reducing the coefficients
of f modulo the valuation ideal has a simple root λ ∈ κ. Show that f has a root
x ∈ A.

Comments: see [Dèb09, §1.2.2.7].

Problem 3 — (Krasner’s lemma) Let (k, v) be a complete field for a discrete valuation v,
of characteristic 0. Let P,Q ∈ k[Y ] be two monic polynomials with the same degree d ≥ 1.
Assume that P is irreducible. Denote the roots of P (resp. of Q) counted with multiplicities
by (a1, . . . , ad) (resp. by (b1, . . . , bd)).

Set D =
∏d

i=1Q(ai) =
∏

i,j(ai − bj) and ρ = mini 6=j |ai − aj|.

a) show that if |D| < ρd
2
, then there exist i, j ∈ {1, . . . , d} such that |ai − bj| < ρ.

Deduce that |ai − bj| < |ak − bj| for every k 6= i, and then that ai ∈ k(bj).
b) Show that if P and Q are sufficiently close (coefficient by coefficient, for the valuation

v), then Q is irreducible and has a root in the fields k(ai) (i = 1, . . . , d).

c) Show that if in addition, k(a1)/k is Galois, then k(a1) = k(b1).

Problem 4 — Let G be a finite group and H be a subgroup of G. Denote by U the union
of all conjugate subgroups gHg−1 of H by elements g ∈ G.

a) Show that if {g1, . . . , gn} are representatives of the left cosets of G modulo H, then
U \ {1} =

⋃n
i=1

(
giHg

−1
i \ {1}

)
.

b) Deduce that card(U) ≤ |G| − [G : H] + 1

c) (Jordan’s lemma) Let H be a subgroup of G that contains at least one element from
each conjugacy class of G. Show that H = G.

d) Let G be a transitive subgroup of Sn with n > 1. Show that there exists an element
of G with no fixed point.
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Problem 5 — Let P ∈ Z[Y ] be a polynomial, irreducible in Q[Y ]. Show that there exist
infinitely many primes p such that the polynomial P reduced modulo p has no roots in Fp.
Comments: Use the classical density Tchebotarev theorem.

Problem 6 — Show that a Henselian field (k, v) for a discrete valuation v is not Hilbertian.

Comments: For m in the valuation ideal of v, consider the polynomials P1 = Y 2 −mT − 1
and P2 = Y 2− (mT/T + 1)− 1 (with Y 2 replaced by Y 3 if k is of characteristic 2) and show
that the Hilbert set Hk(P1, P2) is empty. (see [Dèb09, Example 5.0.1]).

Problem 7 — Let d ≥ 1 be an integer, U = U1, . . . , Ud be d indeterminates and
T1(U), . . . , Td(U) be the d elementary symmetric functions in U . Let k be a field.

a) Show that T1(U), . . . , Td(U) are algebraically independent over k.
b) Show that the field extension k(U)/k(T (U)) is Galois with Galois group the symmet-

ric group Sd.

Comments: see [Dèb09, §2.5.1.1]).

Problem 8 — Given a field k and a finite separable extension F/k(T ), show that the
following assertions are equivalent:

(i) F ∩ k = k,

(ii) for every finite extension E/k, [FE : E(T )] = [F : k(T )],

(iii) [Fk : k(T )] = [F : k(T )].

Comments: see [Dèb09, §2.3.1].

Problem 9 — Let F/k(T ) be a degree n extension with F/k regular. Assume that the
Galois closure of Fk/k(T ) is of group Sn. Show that the Galois closure of F/k is regular.
Give an example for which the conclusion fails if the assumption if removed.

Problem 10 — Let n ≥ 1 be an integer and

f(Y ) = Y n + a1Y
n−1 + · · ·+ an

be a polynomial with coefficients ai ∈ Q. Set

P (T, Y ) = f(Y )− T
and denote by Y ∈ Q(T ) a root of the polynomial P (T, Y ) (in Y ).

a) Show that P (T, Y ) is irreducible in Q(T )[Y ].

Set E = Q(T )(Y), denote the Galois closure of the extension E/Q(T ) by Ê/Q(T ) and its
Galois group by G.

b) Recall how G can be viewed as a transitive subgroup of Sn.

From now on, assume that f satisfies the following conditions:

(i) The roots β1, . . . , βn−1 ∈ Q of the derivative f ′(Y ) are simple.

(ii) f(βi) 6= f(βj) for i 6= j.

c) Show that the branch points of the extensionE/Q(T ) are in the set {f(β1), . . . , f(βn−1),∞}.
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d) Show that for i = 1, . . . , n− 1 we have f(Y )− f(βi) = (Y − βi)2gi(Y ) with gi(Y ) ∈
Q[Y ] separable and such that gi(βi) 6= 0.

e) Show that, for i = 1, . . . , n − 1, there are n − 2 unramified points and one ramified
point in the extension E/Q(T ) above f(βi), and that every inertia group is generated
by a 2-cycle.

f) Show that if v1/T is the unique prolongation of the 1/T -adic valuation from Q((1/T ))

to the algebraic closure Q((1/T )), then we have v1/T (Y) = −1/n.

g) Show that, above ∞, there is a totally ramified point in the extension E/Q(T ), and
that every inertia group is generated by a n-cycle.

h) Denote by R the sum of all integers e(P)−1 where P ranges over all the points/places
of E and e(P) is the corresponding ramification index. Check that

−2[E : Q(T )] +R = −2

(that is, via the Riemann-Hurwitz formula, the function field E is of genus 0) and
that

E = Q(Y)

(that is, E a pure transcendental extension of Q).

i) Show that the groupG is generated by the inertia groups above the points f(β1), . . . , f(βn−1).
Conclude that G = Sn (by using that a transitive subgroup of Sn that is generated
by 2-cycles (or, more generally by cycles of prime length) is equal to Sn).

Problem 11 —

a) Deduce from problem 8 and problem 10 that Sn is a regular Galois group over Q.
b) Show that for every finite group G, there exist a number field K such that G is a

Galois group over K.

Problem 12 — Given n ≥ 3, let E be the splitting field of P (T,X) = Xn − Xn−1 − T
over Q(T ).

a) Show that P (T,X) is irreducible over Q(T ).
b) Show that the branch points of E/Q(T ) are 0,∞, Q(1 − (1/n)) with Q(Y ) = Y n −

Y n−1, with inertia groups generated by an n-cycle at ∞, an (n − 1)-cycle at 0, and
a transposition at Q(1− (1/n)). Conclude that E/Q(T ) has Galois group Sn.

c) Show that EAn = Q(U) for some transcendental U . Conclude that An is a regular
Galois group over Q (in particular, a Galois group over Q).

Comments: More details and more general statements can be found in [Ser92, §4.4-5] and
in [FJ08, §16.7]. Compared with Problem 11, one can do things with An. Of course, the
statement of the above exercise should be more detailed.

Problem 13 — Let n ≥ 3.

a) Show that there exist infinitely monic polynomials f ∈ Z[X] of degree n such that f
mod 2 is irreducible, f mod 3 is separable with an irreducible factor of degree n− 1,
and (for some further prime p) f mod p is separable with exactly one quadratic factor
and linear factors otherwise.
Hint: Chinese Remainder.
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b) Use Dedekind’s criterion and Jordan’s theorem to conclude that infinitely many poly-
nomials have Galois group Sn over Q.

Problem 14 — Let P (T ) ∈ Z[T ] be a separable polynomial of degree n. Set P (T ) =

a0 + a1T + · · · + an−1T
n−1 + anT

n and E = Q(T )(
√
P (T )). Denote the roots of P (T ) by

t1, . . . , tn.

a) Show that the integral closure of Q[T ] in EQ is Q[T ] + Q[T ]
√
P (T ). Conclude that

the set t of branch points of E/Q(T ) is {t1, . . . , tn} (resp., {t1, . . . , tn} ∪ {∞}) if n is
even (resp., if n is odd).

b) Let t0 ∈ P1(Q) \ t. Show that Et0 = Q(
√
P (t0)) if t0 ∈ Q and E∞ = Q(

√
an) (if n is

even).
c) Let d be a non-zero integer. Show that d is a square in Z if and only if d is a square

in Fp for all but finitely many prime numbers p.

d) Suppose n = 2. Show that E/Q(T ) is Q-parametric iff a21 − 4a0a2 is a square in Z.

Comments: For (a), use, e.g., [Leg13, Lemma 2.3.5] (and its proof) and the Riemann-
Hurwitz formula. For (b), see, e.g., [KL18, Lemma 8.3]. (c) is a classical consequence of the
Chebotarev density theorem (more elementary proofs exist in the quadratic case, of course).
(d) is [Leg15, Proposition 3.1].

Problem 15 —

a) Let k be an arbitrary field and L/k a finite Galois extension of group S3. Show
that there exists t0 ∈ k such that L is the splitting field over k of the polynomial
X3 + t0X + t0 (that is, X3 + TX + T is generic).

b) Let F be the splitting field over Q of the polynomial P (X) = X3 + 3X2 − 6X − 4.
Show that F/Q has Galois group S3 and F ⊆ R.

c) Let E be the splitting field over Q(T ) of the polynomial X3 + T 2X + T 2. Show
that E/Q(T ) is a regular Galois extension of group S3 and no specialization of it is
contained in R. Conclude that E/Q(T ) cannot be Q-parametric.

Comments: For (1), see [JLY02, page 30]. For (2), P (X) is irreducible modulo p = 5.
Moreover, setting Y = X + 1, one sees that F is the splitting field over Q of Y 3 − 9Y + 4
whose discriminant is a positive non-square. One can also study the derivative of P (X) to
show that F is contained in R. For (3), see [Leg15, Proposition 3.5].

Problem 16 — Let f(T,X) ∈ Q(T )[X] be an irreducible degree-n polynomial with Galois
group G ≤ Sn. Assume that f(0, X) is separable of degree-n and splits completely over Q.
Let p be a prime number.

a) Show that for all t0 ∈ Q which are divisible by p sufficiently often, the polynomial
f(t0, X) splits completely over Qp.

b) Now let S be a finite set of prime numbers. Conclude the existence of infinitely many
G-extensions which are unramified at all primes p ∈ S.
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Problem 17 — Let α1, . . . , αn, β1, . . . , βn and T be independent transcendentals, and let

f(X) =
n∏
i=1

(X − αi)− T
n∏
j=1

(X − βj)

a) Show that Gal(f | Q(α1, . . . , αn, β1, . . . , βn, T )) = Sn.
b) Show that f ′ is separable as a polynomial in T .
c) Conclude that all inertia subgroups (with respect to T ) of the splitting field of f are

generated by transpositions.
d) Use Hilbert’s irreducibility theorem, the specialization inertia theorem and problem

14 to show that there are infinitely many Sn-extensions of Q all of whose inertia
groups are generated by transpositions.

Problem 18 — Let C(X)/C(T ) be a Galois extension of rational function fields, let
n := [C(X) : C(T )], and let (e1, . . . , er) be the tuple of ramification indices at the branch
points of C(X)/C(T ) (sorted with e1 ≤ · · · ≤ er).

a) Use the Riemann-Hurwitz formula to show that (n, (e1, . . . , er)) is one of the following
types:

(n, (n, n)), (n, (2, 2, n/2)), (12, (2, 3, 3)), (24, (2, 3, 4)), (60, (2, 3, 5)).

b) What conclusions can you obtain from this about the finite subgroups of PGL2(C)?

Problem 19 — Let E/C(T ) be a finite Galois extension ramified at r ≥ 2 points. Let
d ∈ N. Show that there exists a degree-d rational function field extension C(S)/C(T ) such
that the rational pullback E(S)/Q(S) has exactly rd branch points, and another one such
that the pullback has at most (r − 2)d+ 2 branch points.

Problem 20 —

a) Let X1, X2 be compact connected Riemann surfaces of genus ≥ 2, and fi : Xi → P1
C

be Galois covers (i = 1, 2) such that f1 is isomorphic to a rational pullback of f2 and
vice versa. Show that the pullback maps must have been “trivial”, i.e., fractional
linear transformations.

b) Now drop the assumption of genus ≥ 2. Can you construct genus-0 Galois covers f1,
f2 which are mutual pullbacks of each other in a non-trivial way? How about genus
1?

Problem 21 — (Invariants and resolvents): Let F = X1X3 +X2X4.

a) Show that F has stabilizer isomorphic to D4 (under the action of S4).
b) One can calculate that this yields the following resolvent for G = D4:

θG(f, F ) = X3 − a2X2 + (a3a1 − 4a0)X + 4a2a0 − a23a0 − a21,
where f is given as f = X4 + a3X

3 + a2X
2 + a1X + a0.

Use this to find irreducible polynomials f of the form f = X4+aX+a ∈ Q[X] whose
Galois group is contained in D4.
Can you show that there are infinitely many such polynomials?
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Problem 22 — (Some truncated series)
Let p be an odd prime and let f = 1 + 2X + 3X2 + · · ·+ pXp−1.

a) Show that f ≡ −(X − 1)p−2 mod p.
b) Using Newton polygons, show that f factors over Qp into irreducible polynomials of

degree 1 and p− 2.
(It might be convenient to argue with f(X + 1).)

c) Show that the Galois group of f is a doubly transitive subgroup of Sp−1.
d) Under the assumption that q := p+1

2
is also a prime, use Newton polygons again to

show Gal(f) contains a q-cycle, and conclude that Gal(f) = Sn or An.

Problem 23 — (A polynomial with group D5)
Let f(X) = X5 − 2X4 + 2X3 −X2 + 1, g(X) = X(X − 1)2, and F (t,X) = f(X)− tg(X).

a) Show that G = Gal(F/Q(t)) is a transitive subgroup of S5 of even order.
b) Use (without proof) the following fact to show that G ∼= D5:

f(X)g(Y )− g(X)f(Y ) = (X−Y )(X2Y −X2 +XY 2−2XY + 2X−Y 2 + 2Y −1)(X2Y 2−X2Y −XY 2 + 1).

(Hint: Show that the point stabilizer in G must have order 2.)

Problem 24 — Let

R2(B) = #{a, b ∈ Z : |a|, |b| ≤ B, X2 + aX + b is reducible}.
Prove that there exists positive constants 0 < c < C such that for every B > 0

c
B

logB
≤ R2(B) ≤ C

B

logB
.

Problem 25 —

a) Prove that if G ≤ Sd is 2-transitive (i.e. acts transitively on the set of pairs (a, b) with
a 6= b, or equivalently, G is transitive and the stabilizer of a point Ga is transitive on
{1, . . . , d}r {a}) and contains a transposition, then G = Sd.

b) Deduce that a subgroup of Sd containing a transposition, a d-cycle, and a (d−1)-cycle
must be Sd.

c) Recall that a subgroup G ≤ Sd is primitive if it is transitive and it preserves no
non-trivial partition of {1, . . . , d} (equivalently G is transitive and a stabilizer Ga is a
maximal subgroup). Show that if a primitive group G ≤ Sd contains a transposition
then G = Sd.

d) Let f ∈ K[X] be a separable polynomial of degree d, let N be a splitting field, let
α, β ∈ N be two distinct roots of f and let G = Gal(N/K) ≤ Sd. Show that
(1) G is primitive if and only if [K(α) : K] = d and K(α)/K is minimal (i.e., there

are no proper subextensions)
(2) G is doubly transitive if and only if [K(α, β) : K] = d(d− 1).
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Problem 26 — Use the large sieve inequality to show that

#{n ≤ x : n, n+ 2 are both prime} � x

(log x)2

and deduce that

B2 :=
∑
p≤x

p+2 prime

1

p
<∞.

(Computation may show that B2 = 1.902160540...).

Problem 27 — Let t = (t1, . . . , tr), let f(t, X) ∈ Q[t, X] be an irreducible polynomial
that is monic in X, let L be a splitting field of f over Q(t), and let R be the integral closure
of Q[t] in L.

a) Show that the specialization t 7→ a may be extended to an epimorphism φ : R→ La.
b) Show that if disc(f(a, X)) 6= 0, then φ induces a bijection between the roots of

f(t, X) and of f(a, X).
c) Show that in the case of the previous question the bijection xi 7→ φ(xi) between the

roots of f(t, X) in R and the roots of f(a, X) in La induces an embedding of Ga into
G.

d) Deduce that if [L : Q(t)] = [La : Q], then f(a, X) is irreducible.
e) Give example in which f(a, X) is irreducible but [L : Q(t)] 6= [La : Q].

Problem 28 —

a) Prove the LYM inequality: Let A be a family of subsets of {1, 2, . . . , n}. If A is an
anti-chain (that is, s * t for any s 6= t ∈ A), then∑

s∈A

1(
n
|s|

) ≤ 1.

(Hint: What can be said about permutations π of {1, 2, . . . , n} such that
{π(1), . . . , π(|s|)} = s for some s ∈ A?)

b) Deduce Sperner’s inequality: Under the same conditions as before, |A| ≤
(
n
bn
2
c

)
.

Problem 29 — Denote by O the set of algebraic integers. Given α ∈ O, we denote by
d(α) the degree of its minimal polynomial.

Fix H ≥ 2, and let An,H be the set of monic integer polynomials with coefficients in
{1, 2, . . . , H}, endowed with the counting measure. Give an explicit upper bound on the
cardinality of

T (`) = {α ∈ O : d(α) ≤ `, ∃f ∈ Z[x] of height at most H s.t. f(α) = 0}.
Use it to construct an explicit function s(n), tending to infinity with n, such that

Pf∈An,h
(f has no divisor of degree ≤ s(n)))→ 1

as n tends to infinity.
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Problem 30 —

a) Let f = xn +
∑n−1

i=0 aix
i ∈ C[x]. Suppose that a0 6= 0 and that |an−1| > 1 + |an−2|+

|an−3|+ . . .+ |a0|. Prove that f has n− 1 roots with absolute value less than 1, and
one root with absolute value greater than 1.

(Hint: Rouché’s Theorem.)
b) (Perron) Let f = xn +

∑n−1
i=0 aix

i ∈ Z[x] be a polynomial satisfying a0 6= 0 and
|an−1| > 1 + |an−2|+ |an−3|+ . . .+ |a0|. Prove that f is irreducible over Q.

c) Let f(x) =
∑n

i=0 aix
i ∈ Z[x]. Suppose that an ≥ 1, an−1 ≥ 0 and that |ai| ≤ H for

i = 0, 1, . . . , n− 2, where H is some fixed positive constant. Then any complex zero
α of f either has non-positive real part or satisfies

|α| < 1 +
√

1 + 4H

2
.

d) Let f(x) = xn +
∑n−1

i=0 aix
i ∈ Z[x] with ai ∈ {0, 1} for every i. If |argα| ≤ π/4, then

|α| < 3/2. Otherwise <α < (1 +
√

5)/(2
√

2).
(Here arg(z) ∈ [−π/2, π/2) is defined via z/|z| = eiarg(z).)

e) (Cohn) Let b ≥ 2 be an integer, and let p be a prime with b-adic expansion

p = anb
n + an−1b

n−1 + a1b+ a0,

i.e. for each i, ai is an integer with 0 ≤ ai < b. Then f(x) =
∑n

i=0 aix
i is irreducible

over Q.

Problem 31 — The divisor function dk(f) for a monic polynomial f ∈ Fq[x] is the number
of k-tuples (a1, · · · , an) ∈ Fq[x]k of monic polynomials so that f = a1 · · · ak. Show that for
Re(s) > 1, ∑

fmonic

dk(f)

|f |s
= ζq(s)

k.

Problem 32 — The Möbius function for Fq[x] is defined as µ(f) = (−1)k if f = cP1 · · ·Pk
is a product of k distinct monic irreducibles, c ∈ F∗q, and µ(f) = 0 otherwise. Show that for
Re(s) > 1, ∑

fmonic

µ(f)

|f |s
=

1

ζq(s)
.

Problem 33 — Show that ∑
d|f

Λ(d) = deg f.

Problem 34 — Show that for k ≥ 2, the mean value of dk(f) over all monic polynomials
f ∈ Fq[x] of degree n is given by the binomial coefficient

1

qn

∑
deg f=n
fmonic

dk(f) =

(
n+ k − 1
k − 1

)
=

(n+ k − 1) · · · (n+ 1)

(k − 1)!
.
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Problem 35 — Show that ∑
deg f=n
fmonic

µ(f) = 0, n ≥ 2.

Problem 36 — Show that ∑
degP≤N

1

|P |
∼ logN, N →∞.

The sum over all prime polynomials (monic irreducibles) and in particular that
∑
P

1

|P |
=∞.

Problem 37 — The cycle structure of a permutation σ of n letters is λ(σ) = (λ1, · · · , λn)
if in the decomposition of σ as a product of disjoint cycle, there are λj cycle of length j. In
particular λ1(σ) is the number of fixed points of σ.

For each partition λ ` n, denote by p(λ) the probability that a random permutation on n
letters has cycle structure λ:

p(λ) =
#{σ ∈ Sn : λ(σ) = λ}

#Sn
.

Show that

p(λ) =
n∏
j=1

1

jλj .λj!
.

In particular, this shows that the proportion of n-cycles in the symmetric group Sn is 1/n.

Problem 38 — For f ∈ Fq[x] of positive degree n, we say its cycle structure is
λ(f) = (λ1, · · · , λn) if in the prime decomposition f =

∏
α Pα (we allow repetition), we have

#{α : degPα = j} = λj. In particular, deg f =
∑

j jλj. Thus we get a partition od deg f ,

which we denote by λ(f). For instance, f is prime if and only if λ(f) = (0, 0, · · · , 0, 1).

Given a partition λ ` n, show that the probability that a random monic polynomial f of
degree n has cycle structure λ is asymptotic, as q → ∞, to the probability that a random
permutation of n letters has that cycle structure:

1

q
#{f monic, deg f = n : λ(f) = λ} = p(λ)

(
1 +On(

1

q
)

)
.

Hint: start with primes, where the statement is just the Prime Polynomial Theorem.
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Problem 39 — Consider the set Ω of n-tuples λ = (λ1, . . . , λn) of non-negative integers
with

∑
i iλi = n. Define two probability measures on Ω. We pick a uniform random f ∈

Fq[T ], and we define P1(λ) to be the probably that f has cycle structure λ. For the second
measure, we pick uniformly at random σ ∈ Sn and we define P2(λ) to be the probability
that σ has cycle structure λ.

a) Show that there exists a constant Cn depending only on n such that

|P1(λ)− P2(λ)| ≤ Cnq
−1.

b) Show that there exists an absolute constant C > 0 such that

|P1(λ)− P2(λ)| ≤ Cq−1.

c) Show that there exists an event E ⊆ Ω such that |P1(E)− P2(E)| > cq−1.
d) Let E be event consisting on some λ-s with λ1 = · · · = λk = 0 for some 1 ≤ k < n

with k tending to infinity with n (e.g. k = log log n). Show that |P1(E)−P2(E)| → 0
as n→∞.
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