2ND FRENCH-GERMAN SUMMER SCHOOL
GALOIS THEORY AND NUMBER THEORY

PROBLEMS

Problem 1 —  Show that every finite abelian group G is the Galois group of some field
extension of Q.

Comments: Consider first the special case that G is cyclic: use cyclotomic extensions and
the lemma that for each integer m # 0, there are infinitely many integers that are congruent

to 1 modulo m.
(see [Deb09, §2.1.2]).

Problem 2 —  (Hensel’s lemma)
a) Show that X* +1 has a root in Zs = Jim Z/5"Z.
b) Let (A, v) be a complete discrete valuation ring with residue field . Let f € A[X] be
a polynomial such that the polynomial f € k[X] obtained by reducing the coefficients

of f modulo the valuation ideal has a simple root A € k. Show that f has a root
x € A

Comments: see [Deb09, §1.2.2.7].

Problem 3 — (Krasner’s lemma) Let (k,v) be a complete field for a discrete valuation v,
of characteristic 0. Let P,@Q € k[Y] be two monic polynomials with the same degree d > 1.
Assume that P is irreducible. Denote the roots of P (resp. of ()) counted with multiplicities

by (a’h s 7ad) (resp. by (bla s 7bd)>‘
Set D = [, Q(a;) = [1i;(a;i = b;) and p = min;z; |a; — a;l.
a) show that if |D| < p®, then there exist i,j € {1,...,d} such that |a; — b;| < p.
Deduce that |a; — b;| < |ag — b;| for every k # i, and then that a; € k(b;).

b) Show that if P and @ are sufficiently close (coefficient by coefficient, for the valuation
v), then @ is irreducible and has a root in the fields k(a;) (1 =1,...,d).

c) Show that if in addition, k(a1)/k is Galois, then k(ay) = k(by).

Problem 4 — Let GG be a finite group and H be a subgroup of G. Denote by U the union
of all conjugate subgroups gHg ! of H by elements g € G.
a) Show that if {g1,..., 9.} are representatives of the left cosets of G modulo H, then
U\ {1} =ULs (9:Hg7 "\ {1}).
b) Deduce that card(U) < |G| — [G: H] + 1
c) (Jordan’s lemma) Let H be a subgroup of G that contains at least one element from
each conjugacy class of G. Show that H = G.

d) Let G be a transitive subgroup of S,, with n > 1. Show that there exists an element

of G with no fixed point.
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Problem 5 — Let P € Z[Y] be a polynomial, irreducible in Q[Y]. Show that there exist
infinitely many primes p such that the polynomial P reduced modulo p has no roots in [F,,.

Comments: Use the classical density Tchebotarev theorem.

Problem 6 —  Show that a Henselian field (k, v) for a discrete valuation v is not Hilbertian.

Comments: For m in the valuation ideal of v, consider the polynomials P, = Y? —mT — 1
and P, = Y? — (mT/T + 1) — 1 (with Y? replaced by Y? if k is of characteristic 2) and show
that the Hilbert set Hy (P, P») is empty. (see [Deb09, Example 5.0.1}).

Problem 7 — Let d > 1 be an integer, U = Ui,...,U; be d indeterminates and
Ty (U),...,T4(U) be the d elementary symmetric functions in U. Let k be a field.

a) Show that T} (U), ..., Ty4(U) are algebraically independent over k.
b) Show that the field extension k(U)/k(T(U)) is Galois with Galois group the symmet-
ric group Sy.

Comments: see [Deb09, §2.5.1.1]).

Problem 8 —  Given a field k and a finite separable extension F'/k(T), show that the
following assertions are equivalent:
(i) FNk =k,

(ii) for every finite extension E/k, [FE : E(T)] = [F : k(T)],
(iii) [Fk : k(T)] = [F : k(T)).
Comments: see [Deb09, §2.3.1].

Problem 9 —  Let F/k(T) be a degree n extension with F//k regular. Assume that the
Galois closure of Fk/E(T) is of group S,,. Show that the Galois closure of F'/k is regular.
Give an example for which the conclusion fails if the assumption if removed.

Problem 10 — Let n > 1 be an integer and
fY)=Y"+aY" ' 4+ +a,
be a polynomial with coefficients a; € Q. Set
PT)Y)=f(Y)-T

and denote by Y € Q(T) a root of the polynomial P(T,Y) (in Y).

a) Show that P(T,Y) is irreducible in Q(T)[Y].
Set E = Q(T)(Y), denote the Galois closure of the extension £/Q(T) by E/@(T) and its
Galois group by G.

b) Recall how G can be viewed as a transitive subgroup of .S,,.
From now on, assume that f satisfies the following conditions:
(i) The roots By, ..., Bn_1 € Q of the derivative f/(Y') are simple.
(i) f(B:) # f(8;) for i # j.

¢) Show that the branch points of the extension E/Q(T) are in the set { f(31), ..., f(Bu_1),00}.
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d) Show that for i = 1,...,n — 1 we have f(Y) — f(3;) = (Y — 3:)%¢:(Y) with ¢;(YV) €
QY] separable and such that g;(;) # 0.

e) Show that, fori =1,..., n — 1, there are n — 2 unramified points and one ramified
point in the extension F/Q(T') above f(f;), and that every inertia group is generated
by a 2-cycle.

f) Show that if vy 7 is the unique prolongation of the 1/T-adic valuation from Q((1/7))
to the algebraic closure Q((1/7)), then we have vy7(Y) = —1/n.

g) Show that, above oo, there is a totally ramified point in the extension £/Q(T), and
that every inertia group is generated by a n-cycle.

h) Denote by R the sum of all integers e(P)—1 where P ranges over all the points/places
of F and e(P) is the corresponding ramification index. Check that

—2[E:Q(T)] + R = -2

(that is, via the Riemann-Hurwitz formula, the function field F is of genus 0) and
that

E=Q()
(that is, E a pure transcendental extension of Q).
i) Show that the group G is generated by the inertia groups above the points f(51), ..., f(5n_1)-

Conclude that G = S,, (by using that a transitive subgroup of S,, that is generated
by 2-cycles (or, more generally by cycles of prime length) is equal to S,,).

Problem 11 —
a) Deduce from problem 8 and problem 10 that S, is a regular Galois group over Q.
b) Show that for every finite group G, there exist a number field K such that G is a
Galois group over K.

Problem 12 —  Given n > 3, let E be the splitting field of P(T, X) = X" — X"l T
over Q(T).
a) Show that P(T, X) is irreducible over Q(T).
b) Show that the branch points of E/Q(T) are 0,00, Q(1 — (1/n)) with Q(Y) =Y —
Y"1 with inertia groups generated by an n-cycle at oo, an (n — 1)-cycle at 0, and
a transposition at Q(1 — (1/n)). Conclude that E/Q(T) has Galois group S,,.
¢) Show that E4" = Q(U) for some transcendental U. Conclude that A, is a regular
Galois group over Q (in particular, a Galois group over Q).

Comments: More details and more general statements can be found in [Ser92, §4.4-5] and
in [FJ08, §16.7]. Compared with Problem 11, one can do things with A,,. Of course, the
statement of the above exercise should be more detailed.

Problem 13 — Let n > 3.

a) Show that there exist infinitely monic polynomials f € Z[X] of degree n such that f
mod 2 is irreducible, f mod 3 is separable with an irreducible factor of degree n — 1,
and (for some further prime p) f mod p is separable with exactly one quadratic factor
and linear factors otherwise.

Hint: Chinese Remainder.



b) Use Dedekind’s criterion and Jordan’s theorem to conclude that infinitely many poly-
nomials have Galois group S,, over Q.

Problem 14 — Let P(T') € Z[T] be a separable polynomial of degree n. Set P(T) =
ap+ a7+ -+ a, 1T" ' +a,T" and E = Q(T)(y/P(T)). Denote the roots of P(T) by
oot
a) Show that the integral closure of Q[T] in EQ is Q[T T)/P(T). Conclude that
the set t of branch points of E/Q(T) is {t1,...,t.} (resp {tl, . }U {o0}) if n is
even (resp., if n is odd).
b) Let to € P1(Q) \ t. Show that E;, = Q(+/P(ty)) if tx € Q and E,, = Q( /a,) (if n is
even).
c¢) Let d be a non-zero integer. Show that d is a square in Z if and only if d is a square
in I, for all but finitely many prime numbers p.

d) Suppose n = 2. Show that E/Q(T) is Q-parametric iff a? — 4agas, is a square in Z.

Comments: For (a), use, e.g., [Legl3, Lemma 2.3.5] (and its proof) and the Riemann-
Hurwitz formula. For (b), see, e.g., [KL18, Lemma 8.3]. (c) is a classical consequence of the
Chebotarev density theorem (more elementary proofs exist in the quadratic case, of course).
(d) is [Leglb, Proposition 3.1].

Problem 15 —

a) Let k be an arbitrary field and L/k a finite Galois extension of group S3. Show
that there exists t{y € k such that L is the splitting field over k of the polynomial
X3 +toX + o (that is, X3 + TX + T is generic).

b) Let F be the splitting field over Q of the polynomial P(X) = X3 + 3X? — 6X — 4.
Show that F'/Q has Galois group S3 and F' C R.

c) Let E be the splitting field over Q(T') of the polynomial X3 + T?X + T2. Show
that E/Q(T) is a regular Galois extension of group S3 and no specialization of it is
contained in R. Conclude that £/Q(T') cannot be Q-parametric.

Comments: For (1), see [JLY02, page 30]. For (2), P(X) is irreducible modulo p = 5.
Moreover, setting Y = X + 1, one sees that I is the splitting field over Q of Y3 — 9Y +4
whose discriminant is a positive non-square. One can also study the derivative of P(X) to
show that F' is contained in R. For (3), see [Leglh, Proposition 3.5].

Problem 16 — Let f(T, X) € Q(T')[X] be an irreducible degree-n polynomial with Galois
group G < S,,. Assume that f(0,X) is separable of degree-n and splits completely over Q.
Let p be a prime number.

a) Show that for all {, € Q which are divisible by p sufficiently often, the polynomial
f(to, X) splits completely over Q,.
b) Now let S be a finite set of prime numbers. Conclude the existence of infinitely many

G-extensions which are unramified at all primes p € S.
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Problem 17 — Let ay,...,a,,B1,..., 0, and T be independent transcendentals, and let
fX) =][(X =) =T [[(X - )
i=1 j=1
a) Show that Gal(f | Q(ay,...,an, B,y fn,T)) = Sy.
b) Show that f’ is separable as a polynomial in 7T
c) Conclude that all inertia subgroups (with respect to T') of the splitting field of f are
generated by transpositions.
d) Use Hilbert’s irreducibility theorem, the specialization inertia theorem and problem
14 to show that there are infinitely many S,-extensions of Q all of whose inertia
groups are generated by transpositions.

Problem 18 — Let C(X)/C(T) be a Galois extension of rational function fields, let
n = [C(X) : C(T)], and let (ey,...,e,) be the tuple of ramification indices at the branch
points of C(X)/C(T) (sorted with e; < --- <e,).
a) Use the Riemann-Hurwitz formula to show that (n, (ey, ..., e,)) is one of the following
types:

(n,(n,n)),(n,(2,2,n/2)),(12,(2,3,3)), (24, (2, 3,4)), (60, (2, 3,5)).
b) What conclusions can you obtain from this about the finite subgroups of PG Ly(C)?

Problem 19 — Let E/C(T) be a finite Galois extension ramified at » > 2 points. Let
d € N. Show that there exists a degree-d rational function field extension C(S)/C(7T’) such
that the rational pullback E(S)/Q(S) has exactly rd branch points, and another one such
that the pullback has at most (r — 2)d + 2 branch points.

Problem 20 —

a) Let X7, X5 be compact connected Riemann surfaces of genus > 2, and f; : X; — P¢
be Galois covers (7 = 1,2) such that f; is isomorphic to a rational pullback of f, and
vice versa. Show that the pullback maps must have been “trivial”, i.e., fractional
linear transformations.

b) Now drop the assumption of genus > 2. Can you construct genus-0 Galois covers fi,

fo which are mutual pullbacks of each other in a non-trivial way? How about genus
17

Problem 21 —  (Invariants and resolvents): Let F' = X; X3 + X5 X}.

a) Show that F' has stabilizer isomorphic to D, (under the action of Sy).
b) One can calculate that this yields the following resolvent for G = Dy:

Qg(f, F) = X3 — (IQX2 + (a3a1 — 4@0)X + 4@2&0 — CL%CLO — a%,

where f is given as f = X* + a3 X3 + a2 X? + a; X + ay.
Use this to find irreducible polynomials f of the form f = X*+aX +a € Q[X] whose
Galois group is contained in Dj.

Can you show that there are infinitely many such polynomials?
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Problem 22 —  (Some truncated series)
Let p be an odd prime and let f =1 +2X +3X2 4 .-+ pXP~L
a) Show that f = —(X — 1)?"2 mod p.
b) Using Newton polygons, show that f factors over Q, into irreducible polynomials of
degree 1 and p — 2.
(It might be convenient to argue with f(X +1).)
c) Show that the Galois group of f is a doubly transitive subgroup of S,_;.

d) Under the assumption that ¢ := jil is also a prime, use Newton polygons again to

show Gal(f) contains a g-cycle, and conclude that Gal(f) = S, or A,.

Problem 23 — (A polynomial with group Dj)

Let f(X)=X%—2X*+2X3—X?+1,g(X)=X(X—-1)% and F(¢,X) = f(X) — tg(X).
a) Show that G = Gal(F/Q(t)) is a transitive subgroup of Sy of even order.

b) Use (without proof) the following fact to show that G = Dj:

(

FX)g(Y)—g(X)f(Y)= (X —Y)(X?Y -~ X2+ XY? - 2XY +2X - Y2 4+2Y - 1)(X?Y? - XY - XV? +1).
(Hint: Show that the point stabilizer in G must have order 2.)

Problem 24 —  Let
Ro(B) = #{a,b € Z: |a|,|b| < B, X*+ aX + b is reducible}.
Prove that there exists positive constants 0 < ¢ < C' such that for every B > 0

< Ry(B) < C

logB - log B

Problem 25 —

a) Prove that if G < S, is 2-transitive (i.e. acts transitively on the set of pairs (a, b) with
a # b, or equivalently, GG is transitive and the stabilizer of a point (G, is transitive on
{1,...,d} ~ {a}) and contains a transposition, then G = Sj.

b) Deduce that a subgroup of S; containing a transposition, a d-cycle, and a (d—1)-cycle
must be Sy.

c) Recall that a subgroup G < Sy is primitive if it is transitive and it preserves no
non-trivial partition of {1, ..., d} (equivalently G is transitive and a stabilizer G, is a
maximal subgroup). Show that if a primitive group G < S, contains a transposition
then G = 9;.

d) Let f € K[X] be a separable polynomial of degree d, let N be a splitting field, let
a, € N be two distinct roots of f and let G = Gal(N/K) < S;. Show that

(1) G is primitive if and only if [K(«) : K] = d and K(«)/K is minimal (i.e., there
are no proper subextensions)

(2) G is doubly transitive if and only if [K(«, ) : K] =d(d —1).



Problem 26 —  Use the large sieve inequality to show that
#{n <z :n,n+ 2 are both prime} <

(log )?
and deduce that ]
By = Z — < 00.
p<x p
p+2 prime

(Computation may show that By = 1.902160540...).
Problem 27 — Let t = (t1,...,t,.), let f(t,X) € Q[t, X] be an irreducible polynomial
that is monic in X, let L be a splitting field of f over Q(t), and let R be the integral closure
of Q[t] in L.

a) Show that the specialization t — a may be extended to an epimorphism ¢: R — L,.

b) Show that if disc(f(a, X)) # 0, then ¢ induces a bijection between the roots of
f(t,X) and of f(a, X).

c¢) Show that in the case of the previous question the bijection z; — ¢(z;) between the
roots of f(t, X) in R and the roots of f(a, X) in L, induces an embedding of G, into
G.

d) Deduce that if [L : Q(t)] = [La : Q], then f(a, X) is irreducible.

e) Give example in which f(a, X) is irreducible but [L : Q(t)] # [La : Q).

Problem 28 —

a) Prove the LYM inequality: Let A be a family of subsets of {1,2,...,n}. If Ais an
anti-chain (that is, s € ¢ for any s # ¢ € A), then

1
SGZA@SL

(Hint: What can be said about permutations 7 of {1,2,... ,n} such that
{m(1),...,7(|]s])} = s for some s € A?)
b) Deduce Sperner’s inequality: Under the same conditions as before, |A| < <LZ J)'

Problem 29 —  Denote by O the set of algebraic integers. Given a € O, we denote by
d(«) the degree of its minimal polynomial.

Fix H > 2, and let A, gy be the set of monic integer polynomials with coefficients in
{1,2,...,H}, endowed with the counting measure. Give an explicit upper bound on the
cardinality of

T() ={a € O:d(a) <!, 3f € Z[z] of height at most H s.t. f(a) = 0}.
Use it to construct an ezplicit function s(n), tending to infinity with n, such that
Prea,, (f has no divisor of degree < s(n))) — 1

as n tends to infinity.



Problem 30 —

a) Let f =" + Y7 a;a’ € Clz]. Suppose that ag # 0 and that [a, 1| > 1+ |a,_o| +
|ap—3| + ...+ |ag|. Prove that f has n — 1 roots with absolute value less than 1, and
one root with absolute value greater than 1.

(Hint: Rouché’s Theorem.)

b) (Perron) Let f = 2" + Y. ) a;z’ € Z[z] be a polynomial satisfying ag # 0 and
|an_1] > 14 |an_o| + |an—3| + ...+ |ag|. Prove that f is irreducible over Q.

¢) Let f(z) = Y1 a;x" € Z[z]. Suppose that a, > 1, a,—; > 0 and that |a;| < H for
1=20,1,...,n— 2, where H is some fixed positive constant. Then any complex zero
a of f either has non-positive real part or satisfies

1++1+4H
|Oé|<f

d) Let f(z) = 2™ + 3.1 a;a’ € Z[z] with a; € {0, 1} for every 4. If |arga| < 7/4, then
la| < 3/2. Otherwise Ra < (1 ++/5)/(2v/2).
(Here arg(z) € [~7/2,7/2) is defined via z/|z| = e®®(2)))
e) (Cohn) Let b > 2 be an integer, and let p be a prime with b-adic expansion
P = apb" + ap_10"" + a1b + ao,

i.e. for each i, a; is an integer with 0 < a; < b. Then f(z) = Y, a;a" is irreducible

over Q.
Problem 31 —  The divisor function d(f) for a monic polynomial f € F [z] is the number
of k-tuples (a1, ,a,) € Fy[z]* of monic polynomials so that f = a; - - -a;. Show that for
Re(s) > 1,
d
Z k(]:) :Cq(5>k-
fmonic ‘fl

Problem 32 —  The Mébius function for F[z] is defined as u(f) = (—=1)*if f =cP,--- Py
is a product of k distinct monic irreducibles, ¢ € F;, and u(f) = 0 otherwise. Show that for

Re(s) > 1,
() _ 1

[fl Gols)

fmonic

Problem 33 — Show that
> A(d) =deg f.
dlf
Problem 34 —  Show that for k£ > 2, the mean value of di(f) over all monic polynomials

f € F,[z] of degree n is given by the binomial coefficient

1 _(n+k-1\_ (m+Ek—-1)---(n+1)
72 dk(f)_( k=1 )_ (k—1)! |

deg f=n
fmonic



Problem 35 —  Show that

deg f=n
fmonic

Problem 36 —  Show that
1
E ? ~ lOg N, N — Q.

deg P<N ’ ’

1
The sum over all prime polynomials (monic irreducibles) and in particular that Z m = 00.
3

Problem 37 —  The cycle structure of a permutation o of n letters is A(g) = (A1, -+, A\n)
if in the decomposition of o as a product of disjoint cycle, there are \; cycle of length j. In
particular (o) is the number of fixed points of o.

For each partition A F n, denote by p(\) the probability that a random permutation on n
letters has cycle structure A\:

 #{oe Sy Mo) = A}
Show that
=1

In particular, this shows that the proportion of n-cycles in the symmetric group S, is 1/n.

Problem 38 — For f € F [z] of positive degree n, we say its cycle structure is

A f) = (A1,- -+, Ay) if in the prime decomposition f =[], Pa (we allow repetition), we have

#{a : deg P, = j} = A;. In particular, deg f = >, jA;. Thus we get a partition od deg f,

which we denote by A(f). For instance, f is prime if and only if A(f) = (0,0,---,0,1).
Given a partition A F n, show that the probability that a random monic polynomial f of

degree n has cycle structure A is asymptotic, as ¢ — oo, to the probability that a random

permutation of n letters has that cycle structure:

3#‘” monic, deg f =1 : A(f) = A} = p(}) (1 i Oné)) .

Hint: start with primes, where the statement is just the Prime Polynomial Theorem.



Problem 39 —  Consider the set Q of n-tuples A = (Aq,...,\,) of non-negative integers
with ) .iA; = n. Define two probability measures on 2. We pick a uniform random f €
F,[T], and we define P;()) to be the probably that f has cycle structure A. For the second
measure, we pick uniformly at random o € S, and we define P,(\) to be the probability
that o has cycle structure \.

a)

b)

c)
d)

[D&b09)

[FJO8]

[JLY02]

[KL1§]
[Legl13]

[Leg15]
[Ser92]

Show that there exists a constant C),, depending only on n such that
IPL(\) — P(\)| < Crg™

Show that there exists an absolute constant C' > 0 such that
P (\) — P,(\)| < Cq .

Show that there exists an event £ C Q such that |P,(E) — P(E)| > cq .

Let E be event consisting on some \-s with A\ = --- =X, =0 forsome 1 < k <n
with & tending to infinity with n (e.g. k = loglogn). Show that |P,(E) — P (E)| — 0
as n — 00.
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