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o Irreducibility in the Large Box Model
@ Elementary Approach
@ Mahler Measure Approach
@ Good bound
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o H(Y, aiX") = max{|ail}
® My(B)={f=X+>% aX : H(f) < B}
#{f € My(B) : f is reducible}
s @ Ry(B) = (2B 1)
i W Objcctive

To find non-trivial bounds on Ry(B)

@ Obviously 1 > Ry(B) > B!
@ After Koukoulopoulos talks we restrict to: B — oo
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P(X? + bX + c reducible) = P(b? — 4c =) < B~'/2

Proof ...
>

|bl,lc|<B
b2 —4c=0

<> X

|bl<B

< > 4B+

|b|<v4B

1

K
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X2 + bX + ¢ reducible iff = (X — a)(X — ), @, 3 € Z. Not
both can be large, so we expect Rx(B) ~ B~

log B log B

< Ry(B) < —2—

V.

Exercise [ ‘
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§
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@ P(E)<B '+ > Y P(E,g(0) = b|f(0)=a)B"
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@ Ry(B) <> [yP(3g|f,degg= k)
o P(E)<B '+ Y > P(E,9g(0) = b|f(0) = a)B~"
0<|al<B b]|a

@ P(Ex, g(0) = b|f(0) = a) < B2
® Ry(B)<d(B'+-B? Y Y1)«

0<a<B b|a

Iog B
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H(hg) # H(h)H(g).
S So no estimate of the heights of g | f in terms of H(f)

Approximate H(f) by another M(f) € R that satisfies

M(fg) = M(f)M(g).
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Let f(X) = ag[1%{(X — a;), a; € C and define
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M(f) = |ag| ] | max{1, o[}

i=1




@O@ Mahler Measure

TELAVIV NU'OIN
UNIVERSITY 'AN'TN

Probabilistic
Galois Theory

LBS

Definition

Let f(X) = ag[1%{(X — a;), a; € C and define
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Good bound

d
M(f) = |ag| ] | max{1, o[}
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Desired multiplicativity
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M(f) vs H(f)

For f = 39 ; a:X' of degree d we have

M(f)
a1

Proof of upper bound

< H(f) < 29" M(f)
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Elementat

M H(f) < 29-TM(f)
Good bound d + 1

Proof of upper bound
Fori={0<i <ip<---<ix <d}putli| = k and recall
@ |ag| - oy, - - aj | < M(f)
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For f = 39 ; a:X' of degree d we have

M(7) < H(f) < 297 M(f)
Good bound d + 1

Proof of upper bound
Fori={0<ii <ib<---<ix<d}put|i| =k and recall
® |ag| - |aj, - - aj | < M(F)

® |a| < |ad] Cjig—k loi - iy < (F)M(F) < 27" M(f)
L]
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Integral Formula

Want: M(f) <4 H(f). Needs: A formula for M(f)

Jensen’s Formula

Let f(z) € Hol(D), f(0) #0, D ={|z| <1} C C and let
Z1,...,2n € D the zeros of f with multiplicities inside D.
Then

1 27 ) n
5= | loalf(e¥)lde = log|0)| ~ > log |z
k=1
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Integral Formula

Want: M(f) <4 H(f). Needs: A formula for M(f)

Jensen’s Formula

Let f(z) € Hol(D), f(0) #0, D ={|z| <1} C C and let
Z1,...,2n € D the zeros of f with multiplicities inside D.
Then

1 27 ) n
5= | loalf(e¥)lde = log|0)| ~ > log |z
k=1

1 .
M(f) = exp / log |£(€2™")|di.
0
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0
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Want: M(f) = exp/ log |f(€®™™)|dt
0

@ Multiplicativity in f; sow.l.o.g. f =X — «
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Proof of the Integral Formula

1 .
Want: M(f) = exp/ log |f(€®™™)|dt
0

@ Multiplicativity in f; sow.l.o.g. f =X — «
@ Evaluate both sides:
@ By Jensen’s formula

1 . 27 .
/ log |f(e2™) ot = - / log |f(e/%)|dip
0 21 Jo
— log|(0)| — clog|a| = (1 — ¢)log|

withe =0if |a| >1ande=1if |a] < 1
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Proof of the Integral Formula

1 .
Want: M(f) = exp/ log |f(€®™™)|dt
0
@ Multiplicativity in f; sow.l.o.g. f =X — «

@ Evaluate both sides:
@ By Jensen’s formula

1 . 27 .
/ log |f(e2™) ot = - / log |f(e/%)|dip
0 21 Jo

= log [f(0)[ — elog|a| = (1 — €) log |a

withe =0if || >1and e =1if |o| < 1
@ By definition: M(f) = |a|'—¢

]




000

TELAVIV NU'OIN
UNIVERSITY 'AN'TN

Probabilistic
Galois Theory

LBS

Elementary
Approach
Mahler Measure
Approach

Good bound

Proof of Lower Bound

Want:

M(f)

vd+1

< H(f) < 297 M(f)
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Put u(t) = 2log |f(e?™™)).
@ By convexity

Apprcacheasme 1 .
2 _ exp / f)dt < / (0t — / (1) 2al
0




@O@ Proof of Lower Bound

TELAVIV NU'OIN
UNIVERSITY 'AN'TN

Probabilstic M ( f ) d—1
Galois Theory Want: < H f <2 M f
Ve = O <2

Put u(t) = 2log |f(e?™™)).
@ By convexity

Apprcacheasme 1 .
2 _ exp / f)dt < / (0t — / (1) 2al
0

@ By Parserval equality

1 ) d
/ H(e2 )2t = 3 (a2 < (d + 1)H(F?
0 k=0
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Probabilstic M ( f ) d—1
Galois Theory Want: < H f <2 M f
Ve = O <2

Put u(t) = 2log |f(e?™™)).
@ By convexity

Apprcacheasme 1 .
2 _ exp / f)dt < / (0t — / (1) 2al
0

@ By Parserval equality

1 ) d
/ H(e2 )2t = 3 (a2 < (d + 1)H(F?
0 k=0

@ Thus M(f) < v/d + TH(f) O
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Proof of upper bound
Trivial
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Bounds on Heights of Products

e “H(g)H(h) < H(gh) < dH(g)H(h), d = deg(gh)

Proof of upper bound
Trivial

Proof of lower bound

@ Approximate by Mahler measure:
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e “H(g)H(h) < H(gh) < dH(g)H(h), d = deg(gh)

Proof of upper bound
Trivial

Good bound

Proof of lower bound

Approact

Open Porblems

@ Approximate by Mahler measure:

o H(gh) > Y&

o M(g)M(h) > H(g)H(h)2~ 7+
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e “H(g)H(h) < H(gh) < dH(g)H(h), d = deg(gh)

Proof of upper bound
Trivial

Proof of lower bound
@ Approximate by Mahler measure:
o H(gh) > Y&
o M(g)M(h) > H(g)H(h)2—+?

@ Multiplicativity: M(gh) = M(g)M(h).
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e “H(g)H(h) < H(gh) < dH(g)H(h), d = deg(gh)

Proof of upper bound
e Trivial

Proof of lower bound
e @ Approximate by Mahler measure:
o H(gh) > Y&
M(g)M(h) > H(g)H(h)2~+2
° Multiplicativity' M(gh) = M(g)M(h).

@ Conclude: H(gh) > ;79N > e~H(g)H(h)

2d—2
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Kuba’s Theorem: Best Bound for Large Height

Theorem (Kuba 2009)
Ry(B) < C4B™"  (d>3)

(recall: e-?H(g)H(h) < H(gh) < dH(g)H(h))

Proof — Step 1: A reduction

® Ry(B)< > P(f=ghdegg=k)
1<k<d/2
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Kuba’s Theorem: Best Bound for Large Height

Theorem (Kuba 2009)
Ry(B) < C4B™"  (d>3)

(recall: e-?H(g)H(h) < H(gh) < dH(g)H(h))

Proof — Step 1: A reduction

@ Ry(B) < Z P(f = gh,deg g = k)
1<k<d/2
@ P(f =gh,degg = k)
= P(f = gh,deg g = k, H(g)H(h) < €?B)
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Ry(B) < C4B™"  (d>3)
(recall: e~@H(g)H(h) < H(gh) < dH(g)H(h))

Epers Proof — Step 1: A reduction

Elmenary @ Ay(B) < Z P(f = gh,deg g = k)
1<k<d/2
@ P(f =gh,degg = k)

= P(f = gh,deg g = k, H(g)H(h) < €?B)
@ It suffices for prove: #Qy <4 B4,

Q= {(h,9) € ZIX]?:
degg = k,degh = d — k, H(g)H(h) < e?B}
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= o T=¢e%B
® D(T)={(x,y) eR®: x,y>1and xy < T}

@ #Qy = > > 1

(x,y)eD(T)nz? degg=k,H(g)=x
deg h=d—k,H(h)=y

Good bound
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Continuation of The Proof: Counting by Height

Need: #Q) <4 B!

e T=¢B
® D(T)={(x,y) eR®: x,y>1and xy < T}

° #Q= > > 1

(x,y)eD(T)nZ2 degg=k,H(g)=x
deg h=d—k,H(h)=y

< S 2(k +1)(@x + 1)< 12(d — k+ 1)(2y + 1)F K
(x.y)
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e T=¢B
® D(T)={(x,y) eR®: x,y>1and xy < T}

@ #Qy = > > 1

(x,y)eD(T)NZ2 deg g=k,H(g)=x
Good bound deg h:d_kaH(h):y

< Y 2(k+1)@x+ 1) 12(d — k+1)(2y +1)T T

(x.y)
@ Bound by integral:

T a>b>0
b

axd

// et {T1+a|ogr a=b.
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e T=¢B
® D(T)={(x,y) eR®: x,y>1and xy < T}

° #Q= > > 1

(x,y)eD(T)NZ2 deg g=k,H(g)=x
Good bound deg h:d_kaH(h):y

< Y 2(k+1)@x+ 1) 12(d — k+1)(2y +1)T T

(x.y)
@ Bound by integral:

T a>b>0
b

axd

// e = {T1+a|ogr a=b.

@ #0 <4 T 1 <4 B (since d > 2)
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@ We got the best bound in terms of B

B~' < Ry4(B) <4 B~"
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@ We got the best bound in terms of B
B~' < Ry4(B) <4 B~"
- @ Dependence of the bounds on d is bad (super

exponential in Kuba'’s and linear in Rivin’s)
@ To have good bounds in terms of d, recall Dimitris
Koukoulopoulos talk
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Good bound

@ We got the best bound in terms of B
B~' < Ry4(B) <4 B~"

@ Dependence of the bounds on d is bad (super
exponential in Kuba’s and linear in Rivin’s)

@ To have good bounds in terms of d, recall Dimitris
Koukoulopoulos talk

@ What about Galois groups?
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°f_XdWLZIOal H/1( O‘/)
@ Ly =Q(ey,...,aq) the splitting field of f
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o f=XI+ 37 aX =L (X - a)
@ Ly =Q(ey,...,aq) the splitting field of f
@ Gy := Gal(Ls/Q) < Sy (via action on the roots of f)

@ firreducible iff Gy transitive
@ Q(a1)/Q minimal and of degree d iff G primitive

@ firreducible and f(X) irreducible in Q(«4)[X] iff Gf
doubly transitive
@ For large d,
£ IX) f(X)
P X—ay? U TR (X—ay)
# are irreducible (over the respective fields)
(uses the classification of finite simple groups)

are irreducible iff 0, .,

o’
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Most Polynomials Have Full Galois group

Let f be a uniformly chosen from My(B). Then

lim P(Gy = Sy) = 1
B—oo

Preliminary reduction

@ Af modp = (M, ..., Ag), Aj is the number of irreducible
factors of degree i of f mod p

@ If there exist p1, po, p3 such that
At modpy = (0,-..,0,1), Af mod p, = (d —2,1,0,...,0),
and A\t mod p, = (1,0...,0,1,0), then Gy = Sy

@ It suffices to prove that

p =P\ modp#A2<p<a)—0
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@ Take uniform f € My(B):
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Proof

p =P modp Z N2 < p<a)

@ Take uniform f € My(B):
o lfp|2B+1
P()\f mod p) <c
olf2B+1= [] pxe”
2<p<a
p<c”
e For general B, (Black Board)
p<c*+0(e*B1)
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@ Take uniform f € My(B):
o lfp|2B+1

- P(Af mod p) < C.
Elementary e If2B+1 = H p = ev

?:’:"?Tj‘”w' 2<,D<O¢
p<c”
o For general B,
p<c*+0(e*B™)

p< B9 —0.
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Sharper Bounds

P(Gr # Sg) < B-°

Open Problem
How big can 4 be?
@ Obviously § < 1

@ Results:

@ 1936 Van der Waerden § = 1/6

e 1972 Gallagher § = 1/2

@ 2013 Dietmann § =2 — 2

@ 2017 Rivin P(Gt # A4, Sg) < B 1+e

@ Common belief P(G; # Sy) ~ P(f reducible) < B~
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Very Hard Open Problems

@ P(G; # Sy transitive) < B~
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@ What is the next probable transitive group?

@ How improbable that Gr = Aq (bound disc(f) = O)?
pen Porims @ How improbable the event that Gy is primitive?
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@ P(G; # Sy transitive) < B~

@ What is the next probable transitive group?

@ How improbable that Gr = Aq (bound disc(f) = O)?
@ How improbable the event that Gy is primitive?

@ How improbable the event the Gy regular (aka f
Galois)?
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