

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

Probabilistic Galois Theory

Lior Bary-Soroker Tel Aviv University

2nd French-German Summer School GALOIS THEORY AND NUMBER THEORY Dresden, July 2019

LBS

Irreducibility ir the Large Box Model

Elementary Approach Mahler Measu Approach

Galois group

Elementary Approach

Irreducibility in the Large Box Model

- Elementary Approach
- Mahler Measure Approach
- Good bound

Galois group

- Elementary Approach
- Open Porblems

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measu Approach

Galois group

Elementary Approach Open Porblem

Irreducibility in the Large Box Model

- Elementary Approach
- Mahler Measure Approach
- Good bound

Galois group

- Elementary Approach
- Open Porblems

Notation

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

•
$$H(\sum_{i} a_{i}X^{i}) = \max\{|a_{i}|\}$$

• $M_{d}(B) = \{f = X^{d} + \sum_{i=0}^{d-1} a_{i}X^{i} : H(f) \le B\}$
• $R_{d}(B) = \frac{\#\{f \in M_{d}(B) : f \text{ is reducible}\}}{(2B+1)^{d}}$

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

•
$$H(\sum_{i} a_{i}X^{i}) = \max\{|a_{i}|\}$$

• $M_{d}(B) = \{f = X^{d} + \sum_{i=0}^{d-1} a_{i}X^{i} : H(f) \le B\}$
• $R_{d}(B) = \frac{\#\{f \in M_{d}(B) : f \text{ is reducible}\}}{(2B+1)^{d}}$

Objective

Notation

To find non-trivial bounds on $R_d(B)$

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

•
$$H(\sum_{i} a_{i}X^{i}) = \max\{|a_{i}|\}$$

• $M_{d}(B) = \{f = X^{d} + \sum_{i=0}^{d-1} a_{i}X^{i} : H(f) \le B\}$
• $R_{d}(B) = \frac{\#\{f \in M_{d}(B) : f \text{ is reducible}\}}{(2B+1)^{d}}$

Objective

Notation

To find non-trivial bounds on $R_d(B)$

Remarks

- Obviously $1 \ge R_d(B) \gg B^{-1}$
- After Koukoulopoulos talks we restrict to: $B
 ightarrow \infty$

Probabilistic Galois Theory

LBS

First bound

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

$\mathbb{P}(X^2 + bX + c \text{ reducible}) = \mathbb{P}(b^2 - 4c = \Box) \ll B^{-1/2}$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

First bound

$$\mathbb{P}(X^2 + bX + c \text{ reducible}) = \mathbb{P}(b^2 - 4c = \Box) \ll B^{-1/2}$$

Proof

b

$$\sum_{\substack{b|,|c|\leq B\\ 2^{2}-4c=\square}} 1 \leq \sum_{|b|\leq B} \sum_{\substack{k\\ |b^{2}-k^{2}|\leq 4B}} 1$$

.

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

First bound $\mathbb{P}(X^2 + bX + c \text{ roducible}) = \mathbb{P}(b^2)$

.

$$\mathbb{P}(X^2 + bX + c \text{ reducible}) = \mathbb{P}(b^2 - 4c = \Box) \ll B^{-1/2}$$

Proof

$$\sum_{\substack{|b|,|c| \le B \\ b^2 - 4c = \Box}} 1 \le \sum_{\substack{|b| \le B \\ |b^2 - k^2| \le 4B}} 1$$
$$\le \sum_{\substack{|b| < \sqrt{4B}}} 4B + \sum_{\sqrt{4B} \le |b| \le B} \#\{b^2 - 4B \le \Box \le b^2 + 4B\}$$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

First bound $\mathbb{P}(X^2 + bX + a reducible) = \mathbb{P}(b^2)$

$$\mathbb{P}(X^2 + bX + c ext{ reducible}) = \mathbb{P}(b^2 - 4c = \Box) \ll B^{-1/2}$$

$$\sum_{\substack{|b|,|c| \le B \ b^2 - 4c = \Box}} 1 \le \sum_{\substack{|b| \le B \ |b^2 - k^2| \le 4B}} 1 \\ \le \sum_{\substack{|b| < \sqrt{4B} \ 4B}} 4B + \sum_{\sqrt{4B} \le |b| \le B} \#\{b^2 - 4B \le \Box \le b^2 + 4B\} \\ \ll B^{3/2}.$$

Quadratic Polynomials: Roots Approach

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Heuristic

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems $X^2 + bX + c$ reducible iff $= (X - \alpha)(X - \beta), \alpha, \beta \in \mathbb{Z}$. Not both can be large, so we expect $R_2(B) \approx B^{-1}$

Quadratic Polynomials: Roots Approach

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

$X^2 + bX + c$ reducible iff $= (X - \alpha)(X - \beta), \alpha, \beta \in \mathbb{Z}$. Not both can be large, so we expect $R_2(B) \approx B^{-1}$

Proposition

Heuristic

$$\frac{\log B}{B} \ll R_2(B) \ll \frac{\log B}{B}$$

Quadratic Polynomials: Roots Approach

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

$X^2 + bX + c$ reducible iff $= (X - \alpha)(X - \beta), \alpha, \beta \in \mathbb{Z}$. Not both can be large, so we expect $R_2(B) \approx B^{-1}$

Proposition

Heuristic

$$\frac{\log B}{B} \ll R_2(B) \ll \frac{\log B}{B}$$

Proof.

Exercise

Probabilistic Galois Theory

LBS

Elementary Approach

Theorem

Proof

$$R_d(B) \ll d \cdot \frac{\log B}{B}$$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

$$R_d(B) \ll d \cdot \frac{\log B}{B}$$

•
$$R_d(B) \leq \sum_{k=1}^{d/2} \mathbb{P}(\overbrace{\exists g \mid f, \deg g = k}^{E_k})$$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

$$R_d(B) \ll d \cdot \frac{\log B}{B}$$

•
$$R_d(B) \leq \sum_{k=1}^{d/2} \mathbb{P}(\overline{\exists g \mid f, \deg g = k})$$

• $\mathbb{P}(E_k) \leq B^{-1} + \sum_{0 < |a| \leq B} \sum_{|b||a} \mathbb{P}(E_k, g(0) = b|f(0) = a)B^{-1}$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

$$R_d(B) \ll d \cdot \frac{\log B}{B}$$

•
$$R_d(B) \le \sum_{k=1}^{d/2} \mathbb{P}(\exists g \mid f, \deg g = k)$$

• $\mathbb{P}(E_k) \le B^{-1} + \sum_{0 < |a| \le B} \sum_{|b||a} \mathbb{P}(E_k, g(0) = b|f(0) = a)B^{-1}$
• $\mathbb{P}(E_k, g(0) = b|f(0) = a) \ll B^{-2}$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

$$R_d(B) \ll d \cdot \frac{\log B}{B}$$

•
$$R_d(B) \le \sum_{k=1}^{d/2} \mathbb{P}(\exists g \mid f, \deg g = k)$$

• $\mathbb{P}(E_k) \le B^{-1} + \sum_{0 < |a| \le B} \sum_{|b||a} \mathbb{P}(E_k, g(0) = b|f(0) = a)B^{-1}$
• $\mathbb{P}(E_k, g(0) = b|f(0) = a) \ll B^{-2}$
• $R_d(B) \ll d(B^{-1} + B^{-2} \sum_{0 < a \le B} \sum_{b|a} 1) \ll d \cdot \frac{\log B}{B}$

What's Wrong with Height?

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

Problem

$$H(hg) \neq H(h)H(g).$$

So no estimate of the heights of $g \mid f$ in terms of H(f)

What's Wrong with Height?

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

Problem

$$H(hg) \neq H(h)H(g).$$

So no estimate of the heights of $g \mid f$ in terms of H(f)

Solution

Approximate H(f) by another $M(f) \in \mathbb{R}_{>0}$ that satisfies

M(fg) = M(f)M(g).

Mahler Measure

Probabilistic Galois Theory

LBS

ucibility in .arge Box

Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

Let $f(X) = a_d \prod_{i=1}^{d} (X - \alpha_i), \alpha_i \in \mathbb{C}$ and define

$$M(f) = |a_d| \prod_{i=1}^d \max\{1, |\alpha_i|\}$$

Mahler Measure

Probabilistic Galois Theory

LBS

rreducibility in he Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

Definition Let $f(X) = a_d \prod_{i=1}^{d} (X - \alpha_i), \alpha_i \in \mathbb{C}$ and define

$$M(f) = |a_d| \prod_{i=1}^d \max\{1, |\alpha_i|\}$$

Desired multiplicativity

$$M(gh) = M(g)M(h)$$

M(f) vs H(f)

LBS

Proposition

the Large Bo Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

For
$$f = \sum_{i=0}^{d} a_i X^i$$
 of degree *d* we have

$$\frac{M(f)}{\sqrt{d+1}} \le H(f) \le 2^{d-1}M(f)$$

Proof of upper bound

M(f) vs H(f)

F

Probabilistic Galois Theory

LBS

Mahler Measure Approach

Proposition
For
$$f = \sum_{i=0}^{d} a_i X^i$$
 of degree d we have
$$\frac{M(f)}{\sqrt{d+1}} \le H(f) \le 2^{d-1} M(f)$$

Proof of upper bound

For $\mathbf{i} = \{ 0 \le i_1 < i_2 < \dots < i_k \le d \}$ put $|\mathbf{i}| = k$ and recall • $|\mathbf{a}_d| \cdot |\alpha_{i_1} \cdots \alpha_{i_k}| \leq M(f)$

M(f) vs H(f)

F

Probabilistic Galois Theory

LBS

Mahler Measure Approach

Proposition
For
$$f = \sum_{i=0}^{d} a_i X^i$$
 of degree d we have
$$\frac{M(f)}{\sqrt{d+1}} \le H(f) \le 2^{d-1} M(f)$$

Proof of upper bound

For
$$\mathbf{i} = \{0 \le i_1 < i_2 < \cdots < i_k \le d\}$$
 put $|\mathbf{i}| = k$ and recall
• $|\mathbf{a}_d| \cdot |\alpha_{i_1} \cdots \alpha_{i_k}| \le M(f)$
• $|\mathbf{a}_k| \le |\mathbf{a}_d| \sum_{|\mathbf{i}|=d-k} |\alpha_{i_1} \cdots \alpha_{i_{d-k}}| \le {d \choose k} M(f) \le 2^{d-1} M(f)$

Integral Formula

Probabilistic Galois Theory

LBS

Irreducibility ir the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

Want: $M(f) \ll_d H(f)$. Needs: A formula for M(f)

Integral Formula

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois grou

Elementary Approach Open Porblems

Want: $M(f) \ll_d H(f)$. Needs: A formula for M(f)

Jensen's Formula

Let $f(z) \in Hol(D)$, $f(0) \neq 0$, $D = \{|z| \leq 1\} \subseteq \mathbb{C}$ and let $z_1, \ldots, z_n \in D$ the zeros of f with multiplicities inside D. Then

$$\frac{1}{2\pi}\int_0^{2\pi} \log |f(e^{i\varphi})|d\varphi = \log |f(0)| - \sum_{k=1}^n \log |z_k|.$$

Integral Formula

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois grou

Elementary Approach Open Porblems

Want: $M(f) \ll_d H(f)$. Needs: A formula for M(f)

Jensen's Formula

Let $f(z) \in Hol(D)$, $f(0) \neq 0$, $D = \{|z| \leq 1\} \subseteq \mathbb{C}$ and let $z_1, \ldots, z_n \in D$ the zeros of f with multiplicities inside D. Then

$$\frac{1}{2\pi}\int_0^{2\pi} \log |f(e^{i\varphi})|d\varphi = \log |f(0)| - \sum_{k=1}^n \log |z_k|.$$

Corollary

$$M(f) = \exp \int_0^1 \log |f(e^{2\pi i t})| dt.$$

Probabilistic Galois Theory

LBS

Want:
$$M(t) = \exp \int_0^1 \log |f(e^{2\pi i t})| dt$$

the Large B Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

Want:
$$M(f) = \exp \int_0^1 \log |f(e^{2\pi i t})| dt$$

• Multiplicativity in *f*; so w.l.o.g. $f = X - \alpha$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

Want:
$$M(f) = \exp \int_0^1 \log |f(e^{2\pi i t})| dt$$

Multiplicativity in *f*; so w.l.o.g. *f* = *X* - α
Evaluate both sides:

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems Want: $M(f) = \exp \int_0^1 \log |f(e^{2\pi i t})| dt$

- Multiplicativity in *f*; so w.l.o.g. $f = X \alpha$
- Evaluate both sides:
- By Jensen's formula

$$\int_0^1 \log |f(e^{2\pi it})| dt = \frac{1}{2\pi} \int_0^{2\pi} \log |f(e^{i\varphi})| d\varphi$$
$$= \log |f(0)| - \epsilon \log |\alpha| = (1 - \epsilon) \log |\alpha|$$

with $\epsilon = 0$ if $|\alpha| \ge 1$ and $\epsilon = 1$ if $|\alpha| < 1$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems Want: $M(f) = \exp \int_0^1 \log |f(e^{2\pi i t})| dt$

- Multiplicativity in *f*; so w.l.o.g. $f = X \alpha$
- Evaluate both sides:
- By Jensen's formula

$$\int_0^1 \log |f(e^{2\pi it})| dt = \frac{1}{2\pi} \int_0^{2\pi} \log |f(e^{i\varphi})| d\varphi$$
$$= \log |f(0)| - \epsilon \log |\alpha| = (1 - \epsilon) \log |\alpha|$$

with $\epsilon = 0$ if $|\alpha| \ge 1$ and $\epsilon = 1$ if $|\alpha| < 1$

• By definition: $M(f) = |\alpha|^{1-\epsilon}$

Proof of Lower Bound

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois grou

Elementary Approach Open Porblem:

Want: $\frac{M(f)}{\sqrt{d+1}} \le H(f) \le 2^{d-1}M(f)$

Proof of Lower Bound

Put $u(t) = 2 \log |f(e^{2\pi i t})|$.

Probabilistic Galois Theory

LBS

Want: $\frac{M(f)}{\sqrt{d+1}} \le H(f) \le 2^{d-1}M(f)$

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems • By convexity $M(t)^{2} = \exp \int_{0}^{1} u(t) dt < \int_{0}^{1} e^{u(t)} dt = \int_{0}^{1} |u(t)|^{2} dt$

$$M(f)^2 = \exp \int_0^1 u(t) dt \le \int_0^1 e^{u(t)} dt = \int_0^1 |f(e^{2\pi i t})|^2 dt$$

Proof of Lower Bound

Put $u(t) = 2 \log |f(e^{2\pi i t})|$.

Probabilistic Galois Theory

LBS

Want: $\frac{M(f)}{\sqrt{d+1}} \le H(f) \le 2^{d-1}M(f)$

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems • By convexity $M(f)^2 = \exp \int_0^1 u(t) dt \le \int_0^1 e^{u(t)} dt = \int_0^1 |f(e^{2\pi i t})|^2 dt$

By Parserval equality

$$\int_0^1 |f(e^{2\pi it})|^2 dt = \sum_{k=0}^d |a_k|^2 \le (d+1)H(f)^2$$

Proof of Lower Bound

Put $u(t) = 2 \log |f(e^{2\pi i t})|$.

By convexity

Probabilistic Galois Theory

LBS

Want: $\frac{M(f)}{\sqrt{d+1}} \le H(f) \le 2^{d-1}M(f)$

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems $M(f)^{2} = \exp \int_{0}^{1} u(t) dt \leq \int_{0}^{1} e^{u(t)} dt = \int_{0}^{1} |f(e^{2\pi i t})|^{2} dt$

By Parserval equality

$$\int_0^1 |f(e^{2\pi it})|^2 dt = \sum_{k=0}^d |a_k|^2 \le (d+1)H(f)^2$$

• Thus
$$M(f) \leq \sqrt{d+1}H(f)$$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

$e^{-d}H(g)H(h) \leq H(gh) \leq dH(g)H(h), \quad d = \deg(gh)$

Proof of upper bound

Corollary

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

$e^{-d}H(g)H(h) \le H(gh) \le dH(g)H(h), \quad d = \deg(gh)$

Proof of upper bound

Trivial

Corollary

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

$e^{-d}H(g)H(h) \leq H(gh) \leq dH(g)H(h), \quad d = \deg(gh)$

Proof of upper bound

Trivial

Corollary

Proof of lower bound

• Approximate by Mahler measure:

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

$e^{-d}H(g)H(h) \leq H(gh) \leq dH(g)H(h), \quad d = \deg(gh)$

Proof of upper bound

Trivial

Corollary

Proof of lower bound

• Approximate by Mahler measure:

•
$$H(gh) \geq \frac{M(gh)}{\sqrt{d+1}}$$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

$e^{-d}H(g)H(h) \leq H(gh) \leq dH(g)H(h), \quad d = \deg(gh)$

Proof of upper bound

Trivial

Corollary

Proof of lower bound

- Approximate by Mahler measure:
 - $H(gh) \geq \frac{M(gh)}{\sqrt{d+1}}$
 - $M(g)M(h) \ge H(g)H(h)2^{-d+2}$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

$e^{-d}H(g)H(h) \le H(gh) \le dH(g)H(h), \quad d = \deg(gh)$

Proof of upper bound

Trivial

Corollary

Proof of lower bound

- Approximate by Mahler measure:
 - $H(gh) \geq \frac{M(gh)}{\sqrt{d+1}}$
 - $M(g)M(h) \ge H(g)H(h)2^{-d+2}$
- Multiplicativity: M(gh) = M(g)M(h).

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measure Approach

Galois group

Elementary Approach Open Porblems

$e^{-d}H(g)H(h) \leq H(gh) \leq dH(g)H(h), \quad d = \deg(gh)$

Proof of upper bound

Trivial

Corollary

Proof of lower bound

- Approximate by Mahler measure:
 - $H(gh) \geq \frac{M(gh)}{\sqrt{d+1}}$
 - $M(g)M(h) \ge H(g)H(h)2^{-d+2}$
- Multiplicativity: M(gh) = M(g)M(h).
- Conclude: $H(gh) \geq \frac{H(g)H(h)}{2^{d-2}\sqrt{d+1}} \geq e^{-d}H(g)H(h)$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Meas

Approach

Good bound

Galois group

Elementary Approach Open Porblems

Theorem (Kuba 2009)

 $R_d(B) \ll C_d B^{-1}$ $(d \ge 3)$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems

Theorem (Kuba 2009)

$$R_d(B) \ll C_d B^{-1} \qquad (d \ge 3)$$

(recall: $e^{-d}H(g)H(h) \le H(gh) \le dH(g)H(h)$)

Proof – Step 1: A reduction

•
$$R_d(B) \leq \sum_{1 \leq k \leq d/2} \mathbb{P}(f = gh, \deg g = k)$$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems $R_d(B) \ll C_d B^{-1} \qquad (d \ge 3)$

(recall: $e^{-d}H(g)H(h) \le H(gh) \le dH(g)H(h)$)

Proof – Step 1: A reduction

Theorem (Kuba 2009)

•
$$R_d(B) \leq \sum_{1 \leq k \leq d/2} \mathbb{P}(f = gh, \deg g = k)$$

•
$$\mathbb{P}(f = gh, \deg g = k)$$

= $\mathbb{P}(f = gh, \deg g = k, H(g)H(h) \le e^d B)$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach Open Porblems $R_d(B) \ll C_d B^{-1}$ $(d \ge 3)$

(recall: $e^{-d}H(g)H(h) \le H(gh) \le dH(g)H(h)$)

Proof – Step 1: A reduction

Theorem (Kuba 2009)

•
$$R_d(B) \leq \sum_{1 \leq k \leq d/2} \mathbb{P}(f = gh, \deg g = k)$$

- $\mathbb{P}(f = gh, \deg g = k)$ = $\mathbb{P}(f = gh, \deg g = k, H(g)H(h) \le e^dB)$
- It suffices for prove: $\#\Omega_k \ll_d B^{d-1}$, $\Omega_k = \{(h,g) \in \mathbb{Z}[X]^2 :$ $\deg g = k, \deg h = d - k, \ H(g)H(h) \le e^d B\}$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach

Mahler Measu

Good bound

Galois group

Elementary Approach Need: $\#\Omega_k \ll_d B^{d-1}$

• $T = e^d B$

• $D(T) = \{(x, y) \in \mathbb{R}^2 : x, y \ge 1 \text{ and } xy \le T\}$

Need: $\#\Omega_k \ll_d B^{d-1}$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Meas

Good bound

Galois group

Elementary Approach Open Porblems • $T = e^d B$ • $D(T) = \{(x, y) \in \mathbb{R}^2 : x, y \ge 1 \text{ and } xy \le T\}$ • $\#\Omega_k = \sum_{\substack{(x,y) \in D(T) \cap \mathbb{Z}^2 \\ \deg h = d-k, H(h) = y}} \sum_{\substack{1 \\ deg h = d-k, H(h) = y}} 1$

Need: $\#\Omega_k \ll_d B^{d-1}$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measu Approach

Good bound

Galois group

Elementary Approach Open Porblem: • $T = e^{d}B$ • $D(T) = \{(x, y) \in \mathbb{R}^{2} : x, y \ge 1 \text{ and } xy \le T\}$ • $\#\Omega_{k} = \sum_{\substack{(x, y) \in D(T) \cap \mathbb{Z}^{2} \\ \deg y = d = d - k, H(y) = x \\ \deg y = d = d - k, H(h) = y}} 1$ $\ll \sum_{(x, y)} 2(k+1)(2x+1)^{k-1}2(d-k+1)(2y+1)^{d-k-1}$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measu Approach Good bound

Galois grou

Elementary Approach Open Porblem: • $T = e^{d}B$ • $D(T) = \{(x, y) \in \mathbb{R}^{2} : x, y \ge 1 \text{ and } xy \le T\}$ • $\#\Omega_{k} = \sum_{\substack{(x, y) \in D(T) \cap \mathbb{Z}^{2} \\ \deg y = k, H(y) = x \\ \deg y = d = k, H(h) = y}} 1$ $\ll \sum_{\substack{(x, y) \in D(T) \cap \mathbb{Z}^{2} \\ \deg y = k, H(y) = k} 2(k+1)(2x+1)^{k-1}2(d-k+1)(2y+1)^{d-k-1}$

Bound by integral:

Need: $\#\Omega_k \ll_d B^{d-1}$

$$\iint_{D(T)} x^a y^b dx dy \asymp \begin{cases} T^{1+a}, & a > b \ge 0\\ T^{1+a} \log T, & a = b. \end{cases}$$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measu Approach

Galois group

Elementary Approach Open Porblems • $T = e^{d}B$ • $D(T) = \{(x, y) \in \mathbb{R}^{2} : x, y \ge 1 \text{ and } xy \le T\}$ • $\#\Omega_{k} = \sum_{\substack{(x, y) \in D(T) \cap \mathbb{Z}^{2} \\ \deg g = k, H(g) = x \\ \deg h = d - k, H(h) = y}} 1$ $\ll \sum_{\substack{(x, y) \\ (x, y)}} 2(k+1)(2x+1)^{k-1}2(d-k+1)(2y+1)^{d-k-1}$ • Pound by integral:

Bound by integral:

Need: $\#\Omega_k \ll_d B^{d-1}$

$$\iint_{D(T)} x^a y^b dx dy \asymp \begin{cases} T^{1+a}, & a > b \ge 0\\ T^{1+a} \log T, & a = b. \end{cases}$$

• $\#\Omega_k \ll_d T^{d-1} \ll_d B^{d-1}$ (since d > 2)

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach

Good bound

Galois group

Elementary Approach Open Porblems • We got the best bound in terms of *B*

$$B^{-1} \ll R_d(B) \ll_d B^{-1}$$

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measur Approach

Galois group

Elementary Approach Open Porblems • We got the best bound in terms of B $B^{-1} \ll R_d(B) \ll_d B^{-1}$

• Dependence of the bounds on *d* is bad (super exponential in Kuba's and linear in Rivin's)

LBS

- Irreducibility in the Large Box Model
- Elementary Approach Mahler Measur Approach

Galois group

Elementary Approach Open Porblems • We got the best bound in terms of B $B^{-1} \ll R_d(B) \ll_d B^{-1}$

- Dependence of the bounds on *d* is bad (super exponential in Kuba's and linear in Rivin's)
- To have good bounds in terms of *d*, recall Dimitris Koukoulopoulos talk

LBS

- Irreducibility in the Large Box Model
- Elementary Approach Mahler Measur Approach

Galois group

Elementary Approach Open Porblems

- We got the best bound in terms of B $B^{-1} \ll R_d(B) \ll_d B^{-1}$
- Dependence of the bounds on *d* is bad (super exponential in Kuba's and linear in Rivin's)
- To have good bounds in terms of *d*, recall Dimitris Koukoulopoulos talk
- What about Galois groups?

LBS

Irreducibility ir the Large Box Model

Elementary Approach Mahler Measu Approach

Galois group

Elementary Approach Open Porblem

Irreducibility in the Large Box Model

- Elementary Approach
- Mahler Measure Approach
- Good bound

Galois group

- Elementary Approach
- Open Porblems

Probabilistic Galois Theory

LBS

Irreducibility ir the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Open Porblems

• $f = X^d + \sum_{i=0}^{d-1} a_i X^i = \prod_{i=1}^{d} (X - \alpha_i)$

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Open Porblems

•
$$f = X^d + \sum_{i=0}^{d-1} a_i X^i = \prod_{i=1}^d (X - \alpha_i)$$

• $L_f = \mathbb{Q}(\alpha_1, \dots, \alpha_d)$ the splitting field of f

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measu Approach

Galois group

Elementary Approach

Open Porblems

• $f = X^d + \sum_{i=0}^{d-1} a_i X^i = \prod_{i=1}^{d} (X - \alpha_i)$

• $L_f = \mathbb{Q}(\alpha_1, \ldots, \alpha_d)$ the splitting field of f

• $G_f := \operatorname{Gal}(L_f/\mathbb{Q}) \leq S_d$ (via action on the roots of f)

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measur Approach Good bound

Galois group

Elementary Approach

Open Porblems

•
$$f = X^d + \sum_{i=0}^{d-1} a_i X^i = \prod_{i=1}^d (X - \alpha_i)$$

•
$$L_f = \mathbb{Q}(\alpha_1, \ldots, \alpha_d)$$
 the splitting field of f

- $G_f := \operatorname{Gal}(L_f/\mathbb{Q}) \leq S_d$ (via action on the roots of f)
- f irreducible iff G_f transitive

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measur Approach Good bound

Galois group

Elementary Approach • $f = X^d + \sum_{i=0}^{d-1} a_i X^i = \prod_{i=1}^d (X - \alpha_i)$

- $L_f = \mathbb{Q}(\alpha_1, \ldots, \alpha_d)$ the splitting field of f
- $G_f := \operatorname{Gal}(L_f/\mathbb{Q}) \leq S_d$ (via action on the roots of f)
- f irreducible iff G_f transitive
- $\mathbb{Q}(\alpha_1)/\mathbb{Q}$ minimal and of degree *d* iff G_f primitive

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measur Approach Good bound

Galois group

Elementary Approach

- $f = X^d + \sum_{i=0}^{d-1} a_i X^i = \prod_{i=1}^{d} (X \alpha_i)$
- $L_f = \mathbb{Q}(\alpha_1, \ldots, \alpha_d)$ the splitting field of f
- $G_f := \operatorname{Gal}(L_f/\mathbb{Q}) \leq S_d$ (via action on the roots of f)
- f irreducible iff G_f transitive
- $\mathbb{Q}(\alpha_1)/\mathbb{Q}$ minimal and of degree *d* iff *G*_f primitive
- *f* irreducible and ^{*f*(X)}/_{*X*-α₁} irreducible in Q(α₁)[*X*] iff *G_f* doubly transitive

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measur Approach Good bound

Galois group

Elementary Approach

Open Porblems

- $f = X^d + \sum_{i=0}^{d-1} a_i X^i = \prod_{i=1}^{d} (X \alpha_i)$
- $L_f = \mathbb{Q}(\alpha_1, \dots, \alpha_d)$ the splitting field of f
- $G_f := \operatorname{Gal}(L_f/\mathbb{Q}) \leq S_d$ (via action on the roots of f)
- f irreducible iff G_f transitive
- $\mathbb{Q}(\alpha_1)/\mathbb{Q}$ minimal and of degree *d* iff *G*_f primitive
- *f* irreducible and ^{*f*(X)}/_{*X*-α₁} irreducible in Q(α₁)[*X*] iff *G_f* doubly transitive
- For large *d*, $f, \frac{f(X)}{X-\alpha_1}, \dots, \frac{f(X)}{\prod_{i=1}^5 (X-\alpha_i)}$ are irreducible iff $\frac{f(X)}{X-\alpha_1}, \dots, \frac{f(X)}{\prod_{i=1}^{d-2} (X-\alpha_i)}$ are irreducible (over the respective fields) (uses the classification of finite simple groups)

Most Polynomials Have Full Galois group

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box

Elementary Approach Mahler Measur Approach Good bound

Galois group

Elementary Approach

Open Porblems

Theorem

Let *f* be a uniformly chosen from $M_d(B)$. Then

$$\lim_{B\to\infty}\mathbb{P}(G_f=S_d)=1$$

Most Polynomials Have Full Galois group

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Theorem

Let *f* be a uniformly chosen from $M_d(B)$. Then

$$\lim_{B\to\infty}\mathbb{P}(G_f=S_d)=1$$

Preliminary reduction

- λ_{f mod p} := (λ₁,..., λ_d), λ_i is the number of irreducible factors of degree *i* of *f* mod *p*
- If there exist p_1, p_2, p_3 such that $\lambda_{f \mod p_1} = (0, \dots, 0, 1), \lambda_{f \mod p_2} = (d - 2, 1, 0, \dots, 0),$ and $\lambda_{f \mod p_3} = (1, 0, \dots, 0, 1, 0)$, then $G_f = S_d$
- It suffices to prove that

$$ho := \mathbb{P}(\lambda_{f \mod p}
eq \lambda, \mathbf{2} < oldsymbol{
ho} < lpha)
ightarrow \mathbf{0}$$

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Open Porblems

$$\rho := \mathbb{P}(\lambda_f \mod p \neq \lambda, \mathbf{2} < \mathbf{p} < \alpha)$$

• Take uniform $f \in M_d(B)$:

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Open Porblems

$$\rho := \mathbb{P}(\lambda_f \mod p \neq \lambda, \mathbf{2} < \mathbf{p} < \alpha)$$

Take uniform *f* ∈ *M_d*(*B*):
 If *p* | 2*B* + 1

 $\mathbb{P}(\lambda_f \mod p) \leq \boldsymbol{C}.$

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Open Porblems

$$ho := \mathbb{P}(\lambda_{f \mod p}
eq \lambda, \mathbf{2} < oldsymbol{p} < lpha)$$

• Take uniform
$$f \in M_d(B)$$
:
• If $p \mid 2B + 1$
• If $2B + 1 = \prod_{2
 $\rho \le c^{\alpha}$$

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Open Porblems

$$ho := \mathbb{P}(\lambda_f \mod p \neq \lambda, \mathbf{2} < \boldsymbol{p} < lpha)$$

• Take uniform $f \in M_d(B)$: • If $p \mid 2B + 1$ • If $2B + 1 = \prod_{2$ • For general*B*, (Black Board) $<math>\rho \le c^{\alpha} + O(e^{\alpha}B^{-1})$

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach $\rho := \mathbb{P}(\lambda_{f \mod p} \neq \lambda, \mathbf{2} < \mathbf{p} < \alpha)$

• Take uniform $f \in M_d(B)$: • If *p* | 2*B* + 1 $\mathbb{P}(\lambda_{f \mod p}) \leq C.$ • If $2B + 1 = \prod p \approx e^{\alpha}$ 2 $\rho \leq \mathbf{C}^{\alpha}$ • For general B, $\rho < c^{\alpha} + O(e^{\alpha}B^{-1})$ • Take $\alpha = \frac{\log B}{2}$, $\rho \ll B^{-\delta} \to 0.$

Sharper Bounds

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Open Porblems

 $\mathbb{P}(G_{f}
eq S_{d}) \ll B^{-\delta}$

Open Problem

How big can δ be?

Sharper Bounds

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measure Approach Good bound

Galois group

Elementary Approach

Open Porblems

 $\mathbb{P}(G_f \neq S_d) \ll B^{-\delta}$

Open Problem

How big can δ be?

Remarks

- Obviously $\delta \leq 1$
- Results:
 - 1936 Van der Waerden $\delta = 1/6$
 - 1972 Gallagher $\delta = 1/2$
 - 2013 Dietmann $\delta = 2 \sqrt{2}$
 - 2017 Rivin $\mathbb{P}(G_f
 eq A_d, S_d) \leq B^{-1+\epsilon}$
- Common belief $\mathbb{P}(G_f \neq S_d) \sim \mathbb{P}(f \text{ reducible}) \asymp B^{-1}$

Other Groups

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measu Approach Good bound

Galois group

Elementary Approach

Open Porblems

Very Hard Open Problems

• $\mathbb{P}(G_f \neq S_d \text{ transitive}) \ll B^{-???}$

Other Groups

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measu Approach Good bound

Galois group

Elementary Approach

Open Porblems

Very Hard Open Problems

- $\mathbb{P}(G_f \neq S_d \text{ transitive}) \ll B^{-???}$
- What is the next probable transitive group?

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measur Approach Good bound

Galois group

Elementary Approach

Open Porblems

Very Hard Open Problems

Other Groups

- $\mathbb{P}(G_f \neq S_d \text{ transitive}) \ll B^{-???}$
- What is the next probable transitive group?
- How improbable that $G_f = A_d$ (bound disc $(f) = \Box$)?

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measur Approach Good bound

Galois group

Elementary Approach

Open Porblems

Very Hard Open Problems

Other Groups

- $\mathbb{P}(G_f \neq S_d \text{ transitive}) \ll B^{-???}$
- What is the next probable transitive group?
- How improbable that $G_f = A_d$ (bound disc $(f) = \Box$)?
- How improbable the event that G_f is primitive?

Probabilistic Galois Theory

LBS

Irreducibility in the Large Box Model

Elementary Approach Mahler Measur Approach Good bound

Galois group

Elementary Approach

Open Porblems

Very Hard Open Problems

Other Groups

- $\mathbb{P}(G_f \neq S_d \text{ transitive}) \ll B^{-???}$
- What is the next probable transitive group?
- How improbable that $G_f = A_d$ (bound disc $(f) = \Box$)?
- How improbable the event that G_f is primitive?
- How improbable the event the *G*_f regular (aka *f* Galois)?