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Setting

Notation

H(
∑

i aiX i) = max{|ai |}
Md (B) = {f = X d +

∑d−1
i=0 aiX i : H(f ) ≤ B}

Rd (B) =
#{f ∈ Md (B) : f is reducible}

(2B + 1)d

Objective
To find non-trivial bounds on Rd (B)

Remarks

Obviously 1 ≥ Rd (B)� B−1

After Koukoulopoulos talks we restrict to: B →∞
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Quadratic Polynomials: Discriminant Approach

First bound

P(X 2 + bX + c reducible) = P(b2 − 4c = �)� B−1/2

Proof

∑
|b|,|c|≤B
b2−4c=�

1 ≤
∑
|b|≤B

∑
k

|b2−k2|≤4B

1

≤
∑

|b|<
√

4B

4B +
∑

√
4B≤|b|≤B

#{b2 − 4B ≤ � ≤ b2 + 4B}

� B3/2

.
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Quadratic Polynomials: Roots Approach

Heuristic

X 2 + bX + c reducible iff = (X − α)(X − β), α, β ∈ Z. Not
both can be large, so we expect R2(B) ≈ B−1

Proposition
log B

B
� R2(B)� log B

B

Proof.
Exercise
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Rivin’s Approach: Nearly The Optimal bound

Theorem

Rd (B)� d · log B
B

Proof

Rd (B) ≤
∑d/2

k=1 P(

Ek︷ ︸︸ ︷
∃g | f ,deg g = k)

P(Ek ) ≤ B−1 +
∑

0<|a|≤B

∑
|b||a

P(Ek ,g(0) = b|f (0) = a)B−1

P(Ek ,g(0) = b|f (0) = a)� B−2

Rd (B)� d(B−1 + ·B−2
∑

0<a≤B

∑
b|a

1)� d · log B
B
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What’s Wrong with Height?

Problem

H(hg) 6= H(h)H(g).

So no estimate of the heights of g | f in terms of H(f )

Solution
Approximate H(f ) by another M(f ) ∈ R>0 that satisfies

M(fg) = M(f )M(g).
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Mahler Measure

Definition

Let f (X ) = ad
∏d

i=1(X − αi), αi ∈ C and define

M(f ) = |ad |
d∏

i=1

max{1, |αi |}

Desired multiplicativity

M(gh) = M(g)M(h)



Probabilistic
Galois Theory

LBS

Irreducibility in
the Large Box
Model
Elementary
Approach

Mahler Measure
Approach

Good bound

Galois group
Elementary
Approach

Open Porblems

9/23

Mahler Measure

Definition

Let f (X ) = ad
∏d

i=1(X − αi), αi ∈ C and define

M(f ) = |ad |
d∏

i=1

max{1, |αi |}

Desired multiplicativity

M(gh) = M(g)M(h)



Probabilistic
Galois Theory

LBS

Irreducibility in
the Large Box
Model
Elementary
Approach

Mahler Measure
Approach

Good bound

Galois group
Elementary
Approach

Open Porblems

10/23

M(f ) vs H(f )

Proposition

For f =
∑d

i=0 aiX i of degree d we have

M(f )√
d + 1

≤ H(f ) ≤ 2d−1M(f )

Proof of upper bound

For i = {0 ≤ i1 < i2 < · · · < ik ≤ d} put |i| = k and recall

|ad | · |αi1 · · ·αik | ≤ M(f )

|ak | ≤ |ad |
∑
|i|=d−k |αi1 · · ·αid−k | ≤

(d
k

)
M(f ) ≤ 2d−1M(f )
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Integral Formula

Want: M(f )�d H(f ). Needs: A formula for M(f )

Jensen’s Formula
Let f (z) ∈ Hol(D), f (0) 6= 0, D = {|z| ≤ 1} ⊆ C and let
z1, . . . , zn ∈ D the zeros of f with multiplicities inside D.
Then

1
2π

∫ 2π

0
log |f (eiϕ)|dϕ = log |f (0)| −

n∑
k=1

log |zk |.

Corollary

M(f ) = exp
∫ 1

0
log |f (e2πit )|dt .
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Proof of the Integral Formula

Want: M(f ) = exp
∫ 1

0
log |f (e2πit )|dt

Multiplicativity in f ; so w.l.o.g. f = X − α
Evaluate both sides:
By Jensen’s formula∫ 1

0
log |f (e2πit )|dt =

1
2π

∫ 2π

0
log |f (eiϕ)|dϕ

= log |f (0)| − ε log |α| = (1− ε) log |α|

with ε = 0 if |α| ≥ 1 and ε = 1 if |α| < 1
By definition: M(f ) = |α|1−ε
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Proof of Lower Bound

Want:
M(f )√
d + 1

≤ H(f ) ≤ 2d−1M(f )

Put u(t) = 2 log |f (e2πit )|.

By convexity

M(f )2 = exp
∫ 1

0
u(t)dt ≤

∫ 1

0
eu(t)dt =

∫ 1

0
|f (e2πit )|2dt

By Parserval equality∫ 1

0
|f (e2πit )|2dt =

d∑
k=0

|ak |2 ≤ (d + 1)H(f )2

Thus M(f ) ≤
√

d + 1H(f )
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Bounds on Heights of Products

Corollary

e−dH(g)H(h) ≤ H(gh) ≤ dH(g)H(h), d = deg(gh)

Proof of upper bound

Trivial

Proof of lower bound

Approximate by Mahler measure:

H(gh) ≥ M(gh)√
d+1

M(g)M(h) ≥ H(g)H(h)2−d+2

Multiplicativity: M(gh) = M(g)M(h).

Conclude: H(gh) ≥ H(g)H(h)
2d−2

√
d+1
≥ e−dH(g)H(h)
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Kuba’s Theorem: Best Bound for Large Height

Theorem (Kuba 2009)

Rd (B)� CdB−1 (d ≥ 3)

(recall: e−dH(g)H(h) ≤ H(gh) ≤ dH(g)H(h))

Proof – Step 1: A reduction

Rd (B) ≤
∑

1≤k≤d/2

P(f = gh,deg g = k)

P(f = gh,deg g = k)
= P(f = gh,deg g = k ,H(g)H(h) ≤ edB)

It suffices for prove: #Ωk �d Bd−1,
Ωk = {(h,g) ∈ Z[X ]2 :

deg g = k ,deg h = d − k , H(g)H(h) ≤ edB}
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Continuation of The Proof: Counting by Height

Need: #Ωk �d Bd−1

T = edB
D(T ) = {(x , y) ∈ R2 : x , y ≥ 1 and xy ≤ T}

#Ωk =
∑

(x ,y)∈D(T )∩Z2

∑
deg g=k ,H(g)=x

deg h=d−k ,H(h)=y

1

�
∑
(x ,y)

2(k + 1)(2x + 1)k−12(d − k + 1)(2y + 1)d−k−1

Bound by integral:∫∫
D(T )

xaybdxdy �

{
T 1+a, a > b ≥ 0
T 1+a log T , a = b.

#Ωk �d T d−1 �d Bd−1 (since d > 2)
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Summary

We got the best bound in terms of B

B−1 � Rd (B)�d B−1

Dependence of the bounds on d is bad (super
exponential in Kuba’s and linear in Rivin’s)
To have good bounds in terms of d , recall Dimitris
Koukoulopoulos talk
What about Galois groups?
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Outline

1 Irreducibility in the Large Box Model
Elementary Approach
Mahler Measure Approach
Good bound

2 Galois group
Elementary Approach
Open Porblems
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Why Galois groups for irreducibility lovers?

f = X d +
∑d−1

i=0 aiX i =
∏d

i=1(X − αi)

Lf = Q(α1, . . . , αd ) the splitting field of f
Gf := Gal(Lf/Q) ≤ Sd (via action on the roots of f )

f irreducible iff Gf transitive
Q(α1)/Q minimal and of degree d iff Gf primitive

f irreducible and f (X)
X−α1

irreducible in Q(α1)[X ] iff Gf
doubly transitive
For large d ,
f , f (X)

X−α1
, . . ., f (X)∏5

i=1(X−αi )
are irreducible iff f (X)

X−α1
, . . .,

f (X)∏d−2
i=1 (X−αi )

are irreducible (over the respective fields)

(uses the classification of finite simple groups)
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Most Polynomials Have Full Galois group

Theorem
Let f be a uniformly chosen from Md (B). Then

lim
B→∞

P(Gf = Sd ) = 1

Preliminary reduction
λf mod p := (λ1, . . . , λd ), λi is the number of irreducible
factors of degree i of f mod p
If there exist p1,p2,p3 such that
λf mod p1 = (0, . . . ,0,1), λf mod p2 = (d − 2,1,0, . . . ,0),
and λf mod p3 = (1,0 . . . ,0,1,0), then Gf = Sd

It suffices to prove that

ρ := P(λf mod p 6= λ,2 < p < α)→ 0
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Proof

ρ := P(λf mod p 6= λ,2 < p < α)

Take uniform f ∈ Md (B):

If p | 2B + 1
P(λf mod p) ≤ c.

If 2B + 1 =
∏

2<p<α

p � eα

ρ ≤ cα

For general B,

(Black Board)

ρ ≤ cα + O(eαB−1)

Take α = log B
2 ,

ρ� B−δ → 0.
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Sharper Bounds

P(Gf 6= Sd )� B−δ

Open Problem
How big can δ be?

Remarks
Obviously δ ≤ 1
Results:

1936 Van der Waerden δ = 1/6
1972 Gallagher δ = 1/2
2013 Dietmann δ = 2−

√
2

2017 Rivin P(Gf 6= Ad ,Sd ) ≤ B−1+ε

Common belief P(Gf 6= Sd ) ∼ P(f reducible) � B−1
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Other Groups

Very Hard Open Problems

P(Gf 6= Sd transitive)� B−???

What is the next probable transitive group?
How improbable that Gf = Ad (bound disc(f ) = �)?
How improbable the event that Gf is primitive?
How improbable the event the Gf regular (aka f
Galois)?
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