
2ND FRENCH-GERMAN SUMMER SCHOOL
GALOIS THEORY AND NUMBER THEORY

–
PROBLEMS AND SOME SOLUTIONS

Problem 1 — Show that every finite abelian group G is the Galois group of some field
extension of Q.

Comments: Consider first the special case that G is cyclic: use cyclotomic extensions and
the lemma that for each integer m 6= 0, there are infinitely many integers that are congruent
to 1 modulo m.
(see [Dèb09, §2.1.2]).

Problem 2 — (Hensel’s lemma)

a) Show that X2 + 1 has a root in Z5 = lim←−n Z/5
nZ.

b) Let (A, v) be a complete discrete valuation ring with residue field κ. Let f ∈ A[X] be
a polynomial such that the polynomial f ∈ κ[X] obtained by reducing the coefficients
of f modulo the valuation ideal has a simple root λ ∈ κ. Show that f has a root
x ∈ A.

Comments: see [Dèb09, §1.2.2.7].

Problem 3 — (Krasner’s lemma) Let (k, v) be a complete field for a discrete valuation v,
of characteristic 0. Let P,Q ∈ k[Y ] be two monic polynomials with the same degree d ≥ 1.
Assume that P is irreducible. Denote the roots of P (resp. of Q) counted with multiplicities
by (a1, . . . , ad) (resp. by (b1, . . . , bd)).

Set D =
∏d

i=1Q(ai) =
∏

i,j(ai − bj) and ρ = mini 6=j |ai − aj|.

a) show that if |D| < ρd
2
, then there exist i, j ∈ {1, . . . , d} such that |ai − bj| < ρ.

Deduce that |ai − bj| < |ak − bj| for every k 6= i, and then that ai ∈ k(bj).
b) Show that if P and Q are sufficiently close (coefficient by coefficient, for the valuation

v), then Q is irreducible and has a root in the fields k(ai) (i = 1, . . . , d).

c) Show that if in addition, k(a1)/k is Galois, then k(a1) = k(b1).

Solution:

a) Assume |D| < ρd
2
.

– Clearly, there exists (i, j) s.t. |ai − bj| < ρ (∗).
– Let k 6= i. Then ρ ≤ |ak − ai| ≤ max(|ak − bj|, |ai − bj|). From (∗), conclude

that |ai − bj| < |ak − bj|.
– assume ai /∈ k(bj). Then ai has a k(bj)-conjugate ak with ak 6= ai; there exists

a k-homomorphism k(ai, bj) → k s.t. σ(bj) = bj and σ(ai) = ak. The unique
prolongation of v to k(ai, bj) satisfies v = v ◦ σ so we have |ai − bj| = |ak − bj|.
Contradiction. So ai ∈ k(bj).
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b) D = Res(P,Q). Consider the application Q → Res(P,Q). It is continuous for the
v-adic topology (written as a Sylvester determinant, Res(P,Q) is a polynomial in the
coefficients of P ). Furthermore Res(P, P ) = 0. It follows that of P,Q are sufficiently

close, |Res(P,Q)| < ρd
2
. From a), there is an ai, in some field k(bj). Whence

deg(P ) = d ≤ [k(bj) : k] ≤ deg(Q) = d.

Q is then the minimal polynomial of bj. Conclude that Q is irreducible and k(ai) =
k(bj)

c) Assume in addition that k(a1)/k is Galois. Then k(a1) = k(ai) for all i, and from b),
there exists bj s.t. k(bj) = k(ai). But this extension being Galois over k, it is also
equal to k(b1).

Problem 4 — Let G be a finite group and H be a subgroup of G. Denote by U the union
of all conjugate subgroups gHg−1 of H by elements g ∈ G.

a) Show that if {g1, . . . , gn} are representatives of the left cosets of G modulo H, then
U \ {1} =

⋃n
i=1

(
giHg

−1
i \ {1}

)
.

b) Deduce that card(U) ≤ |G| − [G : H] + 1

c) (Jordan’s lemma) Let H be a subgroup of G that contains at least one element from
each conjugacy class of G. Show that H = G.

d) Let G be a transitive subgroup of Sn with n > 1. Show that there exists an element
of G with no fixed point.

Solution:

a) (⊃) is clear
(⊂) Let g ∈ G. We have gH = giH for some i = 1, · · · , n. It follows that gHg−1 ==
gH(gH)−1 = (giH)(giH)−1 = giHg

−1
i .

b) From a), card(U)− 1 ≤ [G : H](|H| − 1). So card(U) ≤ |G| − [G : H] + 1.
c) By assumption U = G. From b), we obtain [G : H] ≤ 1. So G = H.
d) Take H = stab(1) = {g ∈ G | g(1) = 1}. For g ∈ Gn gHg−1 = stab(g(1)). If the

requested conclusion does not holds, then G = U . From c), we obtain |G| ≤ |G|−n+1
so n ≤ 1.

Problem 5 — Let P ∈ Z[Y ] be a polynomial, irreducible in Q[Y ]. Show that there exist
infinitely many primes p such that the polynomial P reduced modulo p has no roots in Fp.
Comments: Use the classical density Tchebotarev theorem.

Problem 6 — Show that a Henselian field (k, v) for a discrete valuation v is not Hilbertian.

Comments: For m in the valuation ideal of v, consider the polynomials P1 = Y 2 −mT − 1
and P2 = Y 2− (mT/T + 1)− 1 (with Y 2 replaced by Y 3 if k is of characteristic 2) and show
that the Hilbert set Hk(P1, P2) is empty. (see [Dèb09, Example 5.0.1]).

Problem 7 — Let d ≥ 1 be an integer, U = U1, . . . , Ud be d indeterminates and
T1(U), . . . , Td(U) be the d elementary symmetric functions in U . Let k be a field.

a) Show that T1(U), . . . , Td(U) are algebraically independent over k.
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b) Show that the field extension k(U)/k(T (U)) is Galois with Galois group the symmet-
ric group Sd.

Comments: see [Dèb09, §2.5.1.1]).

Problem 8 — Given a field k and a finite separable extension F/k(T ), show that the
following assertions are equivalent:

(i) F ∩ k = k,

(ii) for every finite extension E/k, [FE : E(T )] = [F : k(T )],

(iii) [Fk : k(T )] = [F : k(T )].

Comments: see [Dèb09, §2.3.1].

Problem 9 — Let F/k(T ) be a degree n extension with F/k regular. Assume that the
Galois closure of Fk/k(T ) is of group Sn. Show that the Galois closure of F/k is regular.
Give an example for which the conclusion fails if the assumption if removed.

Problem 10 — (Sn has a regular Galois group over Q). Let n ≥ 1 be an integer and

f(Y ) = Y n + a1Y
n−1 + · · ·+ an

be a polynomial with coefficients ai ∈ Q. Set

P (T, Y ) = f(Y )− T

and denote by Y ∈ Q(T ) a root of the polynomial P (T, Y ) (in Y ).

a) Show that P (T, Y ) is irreducible in Q(T )[Y ].

Set E = Q(T )(Y), denote the Galois closure of the extension E/Q(T ) by Ê/Q(T ) and its
Galois group by G.

b) Recall how G can be viewed as a transitive subgroup of Sn.

From now on, assume that f satisfies the following conditions:

(i) The roots β1, . . . , βn−1 ∈ Q of the derivative f ′(Y ) are simple.

(ii) f(βi) 6= f(βj) for i 6= j.

c) Show that the branch points of the extensionE/Q(T ) are in the set {f(β1), . . . , f(βn−1),∞}.

d) Show that for i = 1, . . . , n− 1 we have f(Y )− f(βi) = (Y − βi)2gi(Y ) with gi(Y ) ∈
Q[Y ] separable and such that gi(βi) 6= 0.

e) Show that, for i = 1, . . . , n − 1, there are n − 2 unramified points and one ramified
point in the extension E/Q(T ) above f(βi), and that every inertia group is generated
by a 2-cycle.

f) Show that if v1/T is the unique prolongation of the 1/T -adic valuation from Q((1/T ))

to the algebraic closure Q((1/T )), then we have v1/T (Y) = −1/n.

g) Show that, above ∞, there is a totally ramified point in the extension E/Q(T ), and
that every inertia group is generated by a n-cycle.
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h) Denote by R the sum of all integers e(P)−1 where P ranges over all the points/places
of E and e(P) is the corresponding ramification index. Check that

−2[E : Q(T )] +R = −2

(that is, via the Riemann-Hurwitz formula, the function field E is of genus 0) and
that

E = Q(Y)

(that is, E a pure transcendental extension of Q).

i) Show that the groupG is generated by the inertia groups above the points f(β1), . . . , f(βn−1).
Conclude that G = Sn (by using that a transitive subgroup of Sn that is generated
by 2-cycles (or, more generally by cycles of prime length) is equal to Sn).

Solution:

a) and b) are standard.
c) finite branch points are among t such that P (t, Y ) and P (t, Y )′ have a common root
y ∈ Q.

Problem 11 —

a) Deduce from problem 8 and problem 10 that Sn is a regular Galois group over Q.
b) Show that for every finite group G, there exist a number field K such that G is a

Galois group over K.

Problem 12 — Given n ≥ 3, let E be the splitting field of P (T,X) = Xn − Xn−1 − T
over Q(T ).

a) Show that P (T,X) is irreducible over Q(T ).
b) Show that the branch points of E/Q(T ) are 0,∞, Q(1 − (1/n)) with Q(Y ) = Y n −

Y n−1, with inertia groups generated by an n-cycle at ∞, an (n − 1)-cycle at 0, and
a transposition at Q(1− (1/n)). Conclude that E/Q(T ) has Galois group Sn.

c) Show that EAn = Q(U) for some transcendental U . Conclude that An is a regular
Galois group over Q (in particular, a Galois group over Q).

Comments: More details and more general statements can be found in [Ser92, §4.4-5] and
in [FJ08, §16.7]. Compared with Problem 11, one can do things with An. Of course, the
statement of the above exercise should be more detailed.

Problem 13 — Let n ≥ 3.

a) Show that there exist infinitely monic polynomials f ∈ Z[X] of degree n such that f
mod 2 is irreducible, f mod 3 is separable with an irreducible factor of degree n− 1,
and (for some further prime p) f mod p is separable with exactly one quadratic factor
and linear factors otherwise.
Hint: Chinese Remainder.

b) Use Dedekind’s criterion and Jordan’s theorem to conclude that infinitely many poly-
nomials have Galois group Sn over Q.

Problem 14 — Let P (T ) ∈ Z[T ] be a separable polynomial of degree n. Set P (T ) =

a0 + a1T + · · · + an−1T
n−1 + anT

n and E = Q(T )(
√
P (T )). Denote the roots of P (T ) by

t1, . . . , tn.
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a) Show that the integral closure of Q[T ] in EQ is Q[T ] + Q[T ]
√
P (T ). Conclude that

the set t of branch points of E/Q(T ) is {t1, . . . , tn} (resp., {t1, . . . , tn} ∪ {∞}) if n is
even (resp., if n is odd).

b) Let t0 ∈ P1(Q) \ t. Show that Et0 = Q(
√
P (t0)) if t0 ∈ Q and E∞ = Q(

√
an) (if n is

even).
c) Let d be a non-zero integer. Show that d is a square in Z if and only if d is a square

in Fp for all but finitely many prime numbers p.

d) Suppose n = 2. Show that E/Q(T ) is Q-parametric iff a21 − 4a0a2 is a square in Z.

Comments: For (a), use, e.g., [Leg13, Lemma 2.3.5] (and its proof) and the Riemann-
Hurwitz formula. For (b), see, e.g., [KL18, Lemma 8.3]. (c) is a classical consequence of the
Chebotarev density theorem (more elementary proofs exist in the quadratic case, of course).
(d) is [Leg15, Proposition 3.1].

Problem 15 —

a) Let k be an arbitrary field and L/k a finite Galois extension of group S3. Show
that there exists t0 ∈ k such that L is the splitting field over k of the polynomial
X3 + t0X + t0 (that is, X3 + TX + T is generic).

b) Let F be the splitting field over Q of the polynomial P (X) = X3 + 3X2 − 6X − 4.
Show that F/Q has Galois group S3 and F ⊆ R.

c) Let E be the splitting field over Q(T ) of the polynomial X3 + T 2X + T 2. Show
that E/Q(T ) is a regular Galois extension of group S3 and no specialization of it is
contained in R. Conclude that E/Q(T ) cannot be Q-parametric.

Comments: For (1), see [JLY02, page 30]. For (2), P (X) is irreducible modulo p = 5.
Moreover, setting Y = X + 1, one sees that F is the splitting field over Q of Y 3 − 9Y + 4
whose discriminant is a positive non-square. One can also study the derivative of P (X) to
show that F is contained in R. For (3), see [Leg15, Proposition 3.5].

Problem 16 — Let f(T,X) ∈ Q(T )[X] be an irreducible degree-n polynomial with Galois
group G ≤ Sn. Assume that f(0, X) is separable of degree-n and splits completely over Q.
Let p be a prime number.

a) Show that for all t0 ∈ Q which are divisible by p sufficiently often, the polynomial
f(t0, X) splits completely over Qp.

b) Now let S be a finite set of prime numbers. Conclude the existence of infinitely many
G-extensions which are unramified at all primes p ∈ S.

Problem 17 — Let α1, . . . , αn, β1, . . . , βn and T be independent transcendentals, and let

f(X) =
n∏
i=1

(X − αi)− T
n∏
j=1

(X − βj)

a) Show that Gal(f | Q(α1, . . . , αn, β1, . . . , βn, T )) = Sn.
b) Show that f ′ is separable as a polynomial in T .
c) Conclude that all inertia subgroups (with respect to T ) of the splitting field of f are

generated by transpositions.
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d) Use Hilbert’s irreducibility theorem, the specialization inertia theorem and problem
14 to show that there are infinitely many Sn-extensions of Q all of whose inertia
groups are generated by transpositions.

Problem 18 — Let C(X)/C(T ) be a Galois extension of rational function fields, let
n := [C(X) : C(T )], and let (e1, . . . , er) be the tuple of ramification indices at the branch
points of C(X)/C(T ) (sorted with e1 ≤ · · · ≤ er).

a) Use the Riemann-Hurwitz formula to show that (n, (e1, . . . , er)) is one of the following
types:

(n, (n, n)), (n, (2, 2, n/2)), (12, (2, 3, 3)), (24, (2, 3, 4)), (60, (2, 3, 5)).

b) What conclusions can you obtain from this about the finite subgroups of PGL2(C)?

Solution:

a) Riemann-Hurwitz implies

2(n− 2) =
r∑
j=1

(n− o(σj)),

where o(σj) denotes the number of orbits of an inertia group generator σj. Since
the extension is Galois (i.e., regular permutation action), this number of orbits is

n · ej−1
ej

(≥ n/2). Now consider the different cases.

If r ≥ 4, then the right side is at least 4 · n/2 = 2n, making equality impossible.
If n ≥ 3, consider first e1 = e2 = 2. Then σ3 needs to have exactly 2 cycles (of the

same length), i.e., be of order n/2.
Consider next e1 = 2 and e2 = 3. Then one has the condition n · e3−1

e3
= 5n

6
− 2,

implying e3 < 6, and trying out e3 = 3, 4, 5 respectively leads to the values of n given
above.
Now, consider e2, e3 ≥ 4. Then the right side is at least n/2 + 2 · 3n/4 = 2n, so again
equality is impossible.

Finally, if n = 2, then, since a monodromy tuple needs to have product 1 and
generate G, one necessarily has a tuple of the form (x, x−1), and G = 〈x〉 = Cn.

b) What conclusions exactly students will be able to make depends somewhat on their
group-theoretical background.
In a), we argued already why the first case means group G = Cn. Similarly, a
group generated by two involutions is always a dihedral group, so the second case
corresponds to the dihedral group of (even) order n. In particular, one has that any
finite subgroup of PGL2(C) must be cyclic, dihedral, or of order in {12, 24, 60}.
The full answer would be that the last three cases correspond to groups A4, S4 and
A5. One can in theory get there by looking at all groups of the respective order and
show that only those three groups have a generating tuple of product 1 and of the
given element orders. Without any extra arguments, this will be very exhausting
(so a full solution should maybe not be expected), although certain tricks make the
argumentation easier.
E.g., in the case of order 60, if G were solvable, it would necessarily have a normal
subgroup of prime index 2, 3 or 5. The subfield fixed by that normal subgroup
would then also be a Galois extension of Q(t) of genus 0, and therefore would have
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ramification somewhere in the rest of the list! But the ramification indices in a
subextension are divisors of the indices in the full extension (and also of the group
order, of course), leaving only the possibilities (2, 1, 1), (1, 3, 1) or (1, 1, 5); all of those
are a contradiction, since there would then be only one branch point. Hence G is
non-solvable of order 60, i.e., isomorphic to A5.

Problem 19 — Let E/C(T ) be a finite Galois extension ramified at r ≥ 2 points. Let
d ∈ N. Show that there exists a degree-d rational function field extension C(S)/C(T ) such
that the rational pullback E(S)/Q(S) has exactly rd branch points, and another one such
that the pullback has at most (r − 2)d+ 2 branch points.

Solution:
rd branch points can be generated very easily. Namely if the rational function field exten-
sion C(S)/C(T ) has all branch points disjoint from the branch point set of E/C(T ), then
E(S)/Q(S) will be ramified exactly over the preimages of the r branch points of E/C(T ),
and there will be d distinct preimages for every branch point.
To get (r − 2)d + 2 branch points, take a rational function totally ramified at exactly two
points, both branch points of E/C(T ) (that’s easily done: e.g., T (S) = Sd is totally ramified
exactly at T = 0 and T = ∞, and via composition with a fractional linear transformation,
one can map these two points to any two points). The total number of preimages of the
branch point set of E/C(T ) in Q(S) is then at most (r−2)d+2, so the branch point number
of the pullback is bounded by that.

Problem 20 —

a) Let X1, X2 be compact connected Riemann surfaces of genus ≥ 2, and fi : Xi → P1
C

be Galois covers (i = 1, 2) such that f1 is isomorphic to a rational pullback of f2 and
vice versa. Show that the pullback maps must have been “trivial”, i.e., fractional
linear transformations.

b) Now drop the assumption of genus ≥ 2. Can you construct genus-0 Galois covers f1,
f2 which are mutual pullbacks of each other in a non-trivial way? How about genus
1?

Solution:

a) The pullback of Xi is always a cover of Xi (since the function field extension goes
up). But if g(Xi) ≥ 2, then Riemann-Hurwitz formula shows that the genus of any
proper extension is strictly larger. But that means that f1 and f2 can only be mutual
pullbacks of each other if the degree of the pullback map is 1 (i.e., fractional linear
transformation, as claimed).

b) For genus 0: One might use the list of genus-0 Galois covers in a previous exercise
(and the fact that the branch point number upon taking pullback cannot go down)
to convince oneself that f1 and f2 actually should have the same ramification type.
An easy example would be f1 given by X2 = T (i.e., branch point set {0,∞} and
pullback by a degree-2 rational function with branch point set {1,∞}.
One can then experiment at will to find examples with other, more complicated
ramification types for f1.
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For genus 1:
Let’s take degree-2 pullback of the elliptic cover given by X2 = T (T −1)(T −λ) (with
branch points 0, 1, ∞, λ). Just for example, T (S) = S2 would be ramified at 0 and
∞, so the pullback of f by C(S)/C(T ) would lose the branch points 0 and ∞, and

only be ramified over the preimages of 1 and λ, i.e., over ±1 and ±
√
λ. That would

mean a defining equation X2 = (T 2 − 1)(T 2 − λ) for that pullback curve, and that
genus would again be 1.
What we want in the next step is to construct another pullback of X2 = (T 2−1)(T 2−
λ) such that the branch points becomes 0, 1,∞ and λ again!
(One could argue professionally now that due to the construction, the two elliptic
curve must be isogenous, so there must be an inverse isogeny. One can also go by
foot in this case, although this might be rather tedious).

Problem 21 — (Invariants and resolvents): Let F = X1X3 +X2X4.

a) Show that F has stabilizer isomorphic to D4 (under the action of S4).
b) One can calculate that this yields the following resolvent for G = D4:

θG(f, F ) = X3 − a2X2 + (a3a1 − 4a0)X + 4a2a0 − a23a0 − a21,
where f is given as f = X4 + a3X

3 + a2X
2 + a1X + a0.

Use this to find irreducible polynomials f of the form f = X4+aX+a ∈ Q[X] whose
Galois group is contained in D4.
Can you show that there are infinitely many such polynomials?

Solution:
a) Clearly, F is invariant under the permutations (1, 2, 3, 4) and (1, 3), which generate D4,
so invariant under D4. If the stabilizer were any larger, then it would have to be all of
S4, but clearly (1, 2) does not leave F invariant. b) Need an integer solution of p(a,X) =
X3−4Xa−a2 = 0. We may set b = 1/a, Y := X/a, to obtain equivalently Y 3−4bY −b = 0.

But this clearly has infinitely many solutions, namely for all b = y3

4y+1
. In particular, all

a = 4y+1
y3

give a solution.

8



Problem 22 — (Some truncated series)
Let p be an odd prime and let f = 1 + 2X + 3X2 + · · ·+ pXp−1.

a) Show that f ≡ −(X − 1)p−2 mod p.
b) Using Newton polygons, show that f factors over Qp into irreducible polynomials of

degree 1 and p− 2.
(It might be convenient to argue with f(X + 1).)

c) Show that the Galois group of f is a doubly transitive subgroup of Sp−1.
d) Under the assumption that q := p+1

2
is also a prime, use Newton polygons again to

show Gal(f) contains a q-cycle, and conclude that Gal(f) = Sn or An.

Solution:

a) First claim: Modulo p, we have (−1)k−1k ≡
(
p− 2
k − 1

)
for all k = 1, . . . , p − 1. This

is true because

(
p− 2
k − 1

)
= (p−2)···(p−k)

1···(k−1) ≡ (−1)k−1 2···k
1···(k−1) = (−1)k−1k. From this and

binomial theorem, we therefore get f ≡ (1−X)p−2 mod p.
b) From a), we have f(X + 1) = −Xp−2 mod p. Therefore, p-adic valuation of the

coefficients give vertices (k, ak) with ak ≥ 1 for all k ∈ {0, . . . , p−3}, then a vertex (p−2, 0),
and finally (p − 1, 1) (since leading coefficient p has valuation 1). We only need to find

out more about the constant coefficient of f(X + 1), and we find f(1) =
∑p

k=1 k = p(p+1)
2

,
which has valuation 1. Therefore the vertices of the Newton polygon are (0, 1), (p − 2, 0)
and (p− 1, 1).
The slope of the first segment of length p−2 is− 1

p−2 , so this must correspond to an irreducible

factor over Qp.
c) From b), f is either irreducible over Q, or factors into degrees p−2 and 1. But the latter

would mean f has a rational root, which would have to be of the form 1
a
, where a ∈ Z divides

p. The latter can easily be ruled out. So f is irreducible, and from b), its Galois group G
has a subgroup (decomposition group at p) which has orbits of lengths 1 and p− 2. Group-
theoretically, that means that the point stabilizer is transitive on the remaining elements.
This is the definition of 2-transitivity.

d) Similarly as in a), we may factor f(X) ≡ −(Xq + 1)(X−1)q−2 = −(X+ 1)q(X−1)q−2.
Let’s now observe f(X−1) = −Xq(X−2)q−2. We see as in b) that the Newton polygon has
vertices at (0, 1) and (q, 0), directly connected by a line. This gives slope −1

q
, so the inertia

group has an orbit of length q. A suitable power of some element in that inertia group is
then a q-cycle. Since q > deg(f)/2, Jordan’s theorem implies Gal(f) ∈ {An, Sn}.

Problem 23 — (A polynomial with group D5)
Let f(X) = X5 − 2X4 + 2X3 −X2 + 1, g(X) = X(X − 1)2, and F (t,X) = f(X)− tg(X).

a) Show that G = Gal(F/Q(t)) is a transitive subgroup of S5 of even order.
b) Use (without proof) the following fact to show that G ∼= D5:

f(X)g(Y )− g(X)f(Y ) = (X−Y )(X2Y −X2 +XY 2−2XY + 2X−Y 2 + 2Y −1)(X2Y 2−X2Y −XY 2 + 1).

(Hint: Show that the point stabilizer in G must have order 2.)

Solution:
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a) Irreducibility of F is immediate e.g. from Gauss lemma. The fact that there is an
element of order 2 in G can be seen in different ways. Firstly, the factorization of g shows
that there is an inertia group of order 2 (but this criterion may not be known to students at
this point). Alternatively, Gal(f(X)/Q) is a subgroup of G. That polynomial has only one
real root, so complex conjugation is an element of order 2.

b) The factorization shows that the point stabilizer in G has orbits of length 1, 2 and
2. Without loss, it is then either generated by (1, 2)(3, 4), or by (1, 2) and (3, 4). In the
first case, G ≤ S5 has order 10, which forces G ∼= D5. But in the second case, G would be
a transitive subgroup of S5 containing a transposition, i.e., G = S5. This would certainly
contradict the above orbit lengths of the stabilizer.

Problem 24 — Let

R2(B) = #{a, b ∈ Z : |a|, |b| ≤ B, X2 + aX + b is reducible}.

Prove that there exists positive constants 0 < c < C such that for every B > 0

c
B

logB
≤ R2(B) ≤ C

B

logB
.

Problem 25 —

a) Prove that if G ≤ Sd is 2-transitive (i.e. acts transitively on the set of pairs (a, b) with
a 6= b, or equivalently, G is transitive and the stabilizer of a point Ga is transitive on
{1, . . . , d}r {a}) and contains a transposition, then G = Sd.

b) Deduce that a subgroup of Sd containing a transposition, a d-cycle, and a (d−1)-cycle
must be Sd.

c) Recall that a subgroup G ≤ Sd is primitive if it is transitive and it preserves no
non-trivial partition of {1, . . . , d} (equivalently G is transitive and a stabilizer Ga is a
maximal subgroup). Show that if a primitive group G ≤ Sd contains a transposition
then G = Sd.

d) Let f ∈ K[X] be a separable polynomial of degree d, let N be a splitting field, let
α, β ∈ N be two distinct roots of f and let G = Gal(N/K) ≤ Sd. Show that
(1) G is primitive if and only if [K(α) : K] = d and K(α)/K is minimal (i.e., there

are no proper subextensions)
(2) G is doubly transitive if and only if [K(α, β) : K] = d(d− 1).

Problem 26 — Use the large sieve inequality to show that

#{n ≤ x : n, n+ 2 are both prime} � x

(log x)2

and deduce that

B2 :=
∑
p≤x

p+2 prime

1

p
<∞.

(Computation may show that B2 = 1.902160540...).
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Problem 27 — Let t = (t1, . . . , tr), let f(t, X) ∈ Q[t, X] be an irreducible polynomial
that is monic in X, let L be a splitting field of f over Q(t), and let R be the integral closure
of Q[t] in L.

a) Show that the specialization t 7→ a may be extended to an epimorphism φ : R→ La.
b) Show that if disc(f(a, X)) 6= 0, then φ induces a bijection between the roots of

f(t, X) and of f(a, X).
c) Show that in the case of the previous question the bijection xi 7→ φ(xi) between the

roots of f(t, X) in R and the roots of f(a, X) in La induces an embedding of Ga into
G.

d) Deduce that if [L : Q(t)] = [La : Q], then f(a, X) is irreducible.
e) Give example in which f(a, X) is irreducible but [L : Q(t)] 6= [La : Q].

Problem 28 —

a) Prove the LYM inequality: Let A be a family of subsets of {1, 2, . . . , n}. If A is an
anti-chain (that is, s * t for any s 6= t ∈ A), then∑

s∈A

1(
n
|s|

) ≤ 1.

(Hint: What can be said about permutations π of {1, 2, . . . , n} such that
{π(1), . . . , π(|s|)} = s for some s ∈ A?)

b) Deduce Sperner’s inequality: Under the same conditions as before, |A| ≤
(
n
bn
2
c

)
.

Problem 29 — Denote by O the set of algebraic integers. Given α ∈ O, we denote by
d(α) the degree of its minimal polynomial.

Fix H ≥ 2, and let An,H be the set of monic integer polynomials with coefficients in
{1, 2, . . . , H}, endowed with the counting measure. Give an explicit upper bound on the
cardinality of

T (`) = {α ∈ O : d(α) ≤ `, ∃f ∈ Z[x] of height at most H s.t. f(α) = 0}.
Use it to construct an explicit function s(n), tending to infinity with n, such that

Pf∈An,h
(f has no divisor of degree ≤ s(n)))→ 1

as n tends to infinity.
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Problem 30 —

a) Let f = xn +
∑n−1

i=0 aix
i ∈ C[x]. Suppose that a0 6= 0 and that |an−1| > 1 + |an−2|+

|an−3|+ . . .+ |a0|. Prove that f has n− 1 roots with absolute value less than 1, and
one root with absolute value greater than 1.

(Hint: Rouché’s Theorem.)
b) (Perron) Let f = xn +

∑n−1
i=0 aix

i ∈ Z[x] be a polynomial satisfying a0 6= 0 and
|an−1| > 1 + |an−2|+ |an−3|+ . . .+ |a0|. Prove that f is irreducible over Q.

c) Let f(x) =
∑n

i=0 aix
i ∈ Z[x]. Suppose that an ≥ 1, an−1 ≥ 0 and that |ai| ≤ H for

i = 0, 1, . . . , n− 2, where H is some fixed positive constant. Then any complex zero
α of f either has non-positive real part or satisfies

|α| < 1 +
√

1 + 4H

2
.

d) Let f(x) = xn +
∑n−1

i=0 aix
i ∈ Z[x] with ai ∈ {0, 1} for every i. If |argα| ≤ π/4, then

|α| < 3/2. Otherwise <α < (1 +
√

5)/(2
√

2).
(Here arg(z) ∈ [−π/2, π/2) is defined via z/|z| = eiarg(z).)

e) (Cohn) Let b ≥ 2 be an integer, and let p be a prime with b-adic expansion

p = anb
n + an−1b

n−1 + a1b+ a0,

i.e. for each i, ai is an integer with 0 ≤ ai < b. Then f(x) =
∑n

i=0 aix
i is irreducible

over Q.

Problem 31 — The divisor function dk(f) for a monic polynomial f ∈ Fq[x] is the number
of k-tuples (a1, · · · , an) ∈ Fq[x]k of monic polynomials so that f = a1 · · · ak. Show that for
Re(s) > 1, ∑

fmonic

dk(f)

|f |s
= ζq(s)

k.

Problem 32 — The Möbius function for Fq[x] is defined as µ(f) = (−1)k if f = cP1 · · ·Pk
is a product of k distinct monic irreducibles, c ∈ F∗q, and µ(f) = 0 otherwise. Show that for
Re(s) > 1, ∑

fmonic

µ(f)

|f |s
=

1

ζq(s)
.

Problem 33 — Show that ∑
d|f

Λ(d) = deg f.

Problem 34 — Show that for k ≥ 2, the mean value of dk(f) over all monic polynomials
f ∈ Fq[x] of degree n is given by the binomial coefficient

1

qn

∑
deg f=n
fmonic

dk(f) =

(
n+ k − 1
k − 1

)
=

(n+ k − 1) · · · (n+ 1)

(k − 1)!
.
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Problem 35 — Show that ∑
deg f=n
fmonic

µ(f) = 0, n ≥ 2.

Problem 36 — Show that ∑
degP≤N

1

|P |
∼ logN, N →∞.

The sum over all prime polynomials (monic irreducibles) and in particular that
∑
P

1

|P |
=∞.

Problem 37 — The cycle structure of a permutation σ of n letters is λ(σ) = (λ1, · · · , λn)
if in the decomposition of σ as a product of disjoint cycle, there are λj cycle of length j. In
particular λ1(σ) is the number of fixed points of σ.

For each partition λ ` n, denote by p(λ) the probability that a random permutation on n
letters has cycle structure λ:

p(λ) =
#{σ ∈ Sn : λ(σ) = λ}

#Sn
.

Show that

p(λ) =
n∏
j=1

1

jλj .λj!
.

In particular, this shows that the proportion of n-cycles in the symmsetric group Sn is 1/n.

Problem 38 — For f ∈ Fq[x] of positive degree n, we say its cycle structure is
λ(f) = (λ1, · · · , λn) if in the prime decomposition f =

∏
α Pα (we allow repetition), we have

#{α : degPα = j} = λj. In particular, deg f =
∑

j jλj. Thus we get a partition od deg f ,

which we denote by λ(f). For instance, f is prime if and only if λ(f) = (0, 0, · · · , 0, 1).

Given a partition λ ` n, show that the probability that a random monic polynomial f of
degree n has cycle structure λ is asymptotic, as q → ∞, to the probability that a random
permutation of n letters has that cycle structure:

1

q
#{f monic, deg f = n : λ(f) = λ} = p(λ)

(
1 +On(

1

q
)

)
.

Hint: start with primes, where the statement is just the Prime Polynomial Theorem.

13



Problem 39 — Consider the set Ω of n-tuples λ = (λ1, . . . , λn) of non-negative integers
with

∑
i iλi = n. Define two probability measures on Ω. We pick a uniform random f ∈

Fq[T ], and we define P1(λ) to be the probably that f has cycle structure λ. For the second
measure, we pick uniformly at random σ ∈ Sn and we define P2(λ) to be the probability
that σ has cycle structure λ.

a) Show that there exists a constant Cn depending only on n such that

|P1(λ)− P2(λ)| ≤ Cnq
−1.

b) Show that there exists an absolute constant C > 0 such that

|P1(λ)− P2(λ)| ≤ Cq−1.

c) Show that there exists an event E ⊆ Ω such that |P1(E)− P2(E)| > cq−1.
d) Let E be event consisting on some λ-s with λ1 = · · · = λk = 0 for some 1 ≤ k < n

with k tending to infinity with n (e.g. k = log log n). Show that |P1(E)−P2(E)| → 0
as n→∞.
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Lille 1, France, 2013.

[Leg15] François Legrand. Parametric Galois extensions. J. Algebra, 422:187–222, 2015.
[Ser92] Jean-Pierre Serre. Topics in Galois Theory, volume 1 of Research Notes in Mathematics. Jones and

Bartlett Publishers, Boston, MA, 1992. Lecture notes prepared by Henri Darmon [Henri Darmon].
With a foreword by Darmon and the author. xvi+117 pp.

14


