Gathering extensions into families

DANNY NEFTIN Joint with P. Dèbes, J. König, D. Krashen, F. Legrand

Department of Mathematics Technion - Israel Institute of Technology Haifa, Israel

Summer school - Galois theory and number theory, "Specializations in Inverse Galois Theory" minicourse, Dresden, 2019

< ロ > < 同 > < 回 > < 回 > < 回 > <

K = number field; M/K finitely generated field extension; G = finite group.

Versal G-extensions

A *G*-extension N/M is versal if every *G*-extension of a field K_0 containing *K* is a specialization of N/M over K_0 .

Example

K = number field; M/K finitely generated field extension; G = finite group.

Versal G-extensions

A *G*-extension N/M is versal if every *G*-extension of a field K_0 containing *K* is a specialization of N/M over K_0 .

Example

• $K(x_1,\ldots,x_n)/K(x_1,\ldots,x_n)^G$ is a versal *G*-extension if $G \leq S_n$;

K = number field; M/K finitely generated field extension; G = finite group.

Versal G-extensions

A *G*-extension N/M is versal if every *G*-extension of a field K_0 containing *K* is a specialization of N/M over K_0 .

Example

- $K(x_1,...,x_n)/K(x_1,...,x_n)^G$ is a versal *G*-extension if $G \leq S_n$;
- $K(\sqrt[n]{t})/K(t)$ is a versal C_n -extension if K contains the *n*-th roots of 1;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

K = number field; M/K finitely generated field extension; G = finite group.

Versal G-extensions

A *G*-extension N/M is versal if every *G*-extension of a field K_0 containing *K* is a specialization of N/M over K_0 .

Example

- $K(x_1,\ldots,x_n)/K(x_1,\ldots,x_n)^G$ is a versal *G*-extension if $G \leq S_n$;
- $K(\sqrt[n]{t})/K(t)$ is a versal C_n -extension if K contains the *n*-th roots of 1;
- Let *N* be the splitting field of $f(t, x) := x^3 + tx + t \in \mathbb{Q}(t)[x]$ over $\mathbb{Q}(t)$. Then $N/\mathbb{Q}(t)$ is parametric for S_3 .

K = number field; M/K finitely generated field extension; G = finite group.

Versal G-extensions

A *G*-extension N/M is versal if every *G*-extension of a field K_0 containing *K* is a specialization of N/M over K_0 .

Example

- $K(x_1,\ldots,x_n)/K(x_1,\ldots,x_n)^G$ is a versal *G*-extension if $G \leq S_n$;
- $K(\sqrt[n]{t})/K(t)$ is a versal C_n -extension if K contains the *n*-th roots of 1;
- Let *N* be the splitting field of $f(t, x) := x^3 + tx + t \in \mathbb{Q}(t)[x]$ over $\mathbb{Q}(t)$. Then $N/\mathbb{Q}(t)$ is parametric for S_3 .

<ロト < 団 > < 臣 > < 臣 >

General setup

Let $\mathcal{F} = \{L_i/K_i\}_{i \in I}$ be *G*-extensions of $K_i \supseteq K$. What is the minimal dimension of a *G*-extension N/M containing *K* such that L_i/K_i is a specialization of N/M over K_i for every $i \in I$?

Example

General setup

Let $\mathcal{F} = \{L_i/K_i\}_{i \in I}$ be *G*-extensions of $K_i \supseteq K$. What is the minimal dimension of a *G*-extension N/M containing *K* such that L_i/K_i is a specialization of N/M over K_i for every $i \in I$?

Example

• Essential dimension: \mathcal{F} is the set of all *G* extensions of fields K_0 containing *K*;

General setup

Let $\mathcal{F} = \{L_i/K_i\}_{i \in I}$ be *G*-extensions of $K_i \supseteq K$. What is the minimal dimension of a *G*-extension N/M containing *K* such that L_i/K_i is a specialization of N/M over K_i for every $i \in I$?

Example

- Essential dimension: \mathcal{F} is the set of all *G* extensions of fields K_0 containing *K*;
- Parametric dimension: \mathcal{F} is the set of all *G*-extensions of *K*;

General setup

Let $\mathcal{F} = \{L_i/K_i\}_{i \in I}$ be *G*-extensions of $K_i \supseteq K$. What is the minimal dimension of a *G*-extension N/M containing *K* such that L_i/K_i is a specialization of N/M over K_i for every $i \in I$?

Example

- Essential dimension: \mathcal{F} is the set of all *G* extensions of fields K_0 containing *K*;
- Parametric dimension: \mathcal{F} is the set of all *G*-extensions of *K*;
- Local dimension: \mathcal{F} is the set of all *G*-extensions of K_v , over all places *v* of *K*;

<ロト < 四ト < 三ト < 三ト

General setup

Let $\mathcal{F} = \{L_i/K_i\}_{i \in I}$ be *G*-extensions of $K_i \supseteq K$. What is the minimal dimension of a *G*-extension N/M containing *K* such that L_i/K_i is a specialization of N/M over K_i for every $i \in I$?

Example

- Essential dimension: \mathcal{F} is the set of all *G* extensions of fields K_0 containing *K*;
- Parametric dimension: \mathcal{F} is the set of all *G*-extensions of *K*;
- Local dimension: \mathcal{F} is the set of all *G*-extensions of K_v , over all places v of K;

• Lifting dimension: \mathcal{F} a set of finitely many *G*-extensions of *K*.

General setup

Let $\mathcal{F} = \{L_i/K_i\}_{i \in I}$ be *G*-extensions of $K_i \supseteq K$. What is the minimal dimension of a *G*-extension N/M containing *K* such that L_i/K_i is a specialization of N/M over K_i for every $i \in I$?

Example

- Essential dimension: \mathcal{F} is the set of all *G* extensions of fields K_0 containing *K*;
- Parametric dimension: \mathcal{F} is the set of all *G*-extensions of *K*;
- Local dimension: \mathcal{F} is the set of all *G*-extensions of K_v , over all places v of K;
- Lifting dimension: \mathcal{F} a set of finitely many *G*-extensions of *K*.

The Beckmann-Black problem

1BB (The Beckmann–Black conjecture) Every G-extension L/K is the specialization of a regular G-ext N/K(t)?

The Beckmann–Black problem

1BB (The Beckmann–Black conjecture) Every G-extension L/K is the specialization of a regular G-ext N/K(t)?

nBB Given G-extensions L_i/K , i = 1, ..., n, is there a regular G-extension N/K(t) which specializes to L_i/K for all i?

The Beckmann–Black problem

- 1BB (The Beckmann–Black conjecture) Every G-extension L/K is the specialization of a regular G-ext N/K(t)?
- nBB Given G-extensions L_i/K , i = 1, ..., n, is there a regular G-extension N/K(t) which specializes to L_i/K for all i?

Example (1BB for abelian groups – Beckmann)

Let G be abelian, and L/K a G-extension.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Beckmann–Black problem

- 1BB (The Beckmann–Black conjecture) Every G-extension L/K is the specialization of a regular G-ext N/K(t)?
- nBB Given G-extensions L_i/K , i = 1, ..., n, is there a regular G-extension N/K(t) which specializes to L_i/K for all i?

Example (1BB for abelian groups – Beckmann)

Let G be abelian, and L/K a G-extension.

• Form a regular G-extension N/K(t) where 0 is not a branch point;

The Beckmann–Black problem

- 1BB (The Beckmann–Black conjecture) Every G-extension L/K is the specialization of a regular G-ext N/K(t)?
- nBB Given G-extensions L_i/K , i = 1, ..., n, is there a regular G-extension N/K(t) which specializes to L_i/K for all i?

Example (1BB for abelian groups – Beckmann)

Let G be abelian, and L/K a G-extension.

- Form a regular *G*-extension N/K(t) where 0 is not a branch point;
- Twist it so that the specialization at 0 is L.

The Beckmann–Black problem

- 1BB (The Beckmann–Black conjecture) Every G-extension L/K is the specialization of a regular G-ext N/K(t)?
- nBB Given G-extensions L_i/K , i = 1, ..., n, is there a regular G-extension N/K(t) which specializes to L_i/K for all i?

Example (1BB for abelian groups – Beckmann)

Let G be abelian, and L/K a G-extension.

- Form a regular G-extension N/K(t) where 0 is not a branch point;
- Twist it so that the specialization at 0 is L.

S_m -example + generalization

Given S_m -extensions L_i/K , we may pick monic polynomials $p_i(x) \in K[x]$ of degree *m* whose splitting field is L_i , for i = 1, ..., n. Let $p(t,x) \in K(t)[x]$ be a polynomial for which $p(i,x) = p_i$ for all *i*. Then the splitting field N/K(t) of p(t,x) is an S_m -extension that specializes to L_i , for all *i*.

S_m -example + generalization

- Given S_m -extensions L_i/K , we may pick monic polynomials $p_i(x) \in K[x]$ of degree *m* whose splitting field is L_i , for i = 1, ..., n. Let $p(t, x) \in K(t)[x]$ be a polynomial for which $p(i, x) = p_i$ for all *i*. Then the splitting field N/K(t) of p(t, x) is an S_m -extension that specializes to L_i , for all *i*.
- Similarly, $k(x_1, \ldots, x_m)^G$ rational implies nBB for all *n*.

S_m -example + generalization

- Given S_m -extensions L_i/K , we may pick monic polynomials $p_i(x) \in K[x]$ of degree *m* whose splitting field is L_i , for i = 1, ..., n. Let $p(t, x) \in K(t)[x]$ be a polynomial for which $p(i, x) = p_i$ for all *i*. Then the splitting field N/K(t) of p(t, x) is an S_m -extension that specializes to L_i , for all *i*.
- Similarly, $k(x_1, \ldots, x_m)^G$ rational implies nBB for all *n*.

Example

nBB therefore holds for:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

S_m -example + generalization

- Given S_m -extensions L_i/K , we may pick monic polynomials $p_i(x) \in K[x]$ of degree *m* whose splitting field is L_i , for i = 1, ..., n. Let $p(t, x) \in K(t)[x]$ be a polynomial for which $p(i, x) = p_i$ for all *i*. Then the splitting field N/K(t) of p(t, x) is an S_m -extension that specializes to L_i , for all *i*.
- Similarly, $k(x_1, \ldots, x_m)^G$ rational implies nBB for all *n*.

Example

nBB therefore holds for:

 "Small": cyclic groups of order not divisible by 8, dihedral groups of odd degree, Heizenberg groups, etc.

S_m -example + generalization

- Given S_m -extensions L_i/K , we may pick monic polynomials $p_i(x) \in K[x]$ of degree *m* whose splitting field is L_i , for i = 1, ..., n. Let $p(t, x) \in K(t)[x]$ be a polynomial for which $p(i, x) = p_i$ for all *i*. Then the splitting field N/K(t) of p(t, x) is an S_m -extension that specializes to L_i , for all *i*.
- Similarly, $k(x_1, \ldots, x_m)^G$ rational implies nBB for all *n*.

Example

nBB therefore holds for:

- "Small": cyclic groups of order not divisible by 8, dihedral groups of odd degree, Heizenberg groups, etc.
- Reflection groups.

S_m -example + generalization

- Given S_m -extensions L_i/K , we may pick monic polynomials $p_i(x) \in K[x]$ of degree *m* whose splitting field is L_i , for i = 1, ..., n. Let $p(t, x) \in K(t)[x]$ be a polynomial for which $p(i, x) = p_i$ for all *i*. Then the splitting field N/K(t) of p(t, x) is an S_m -extension that specializes to L_i , for all *i*.
- Similarly, $k(x_1, \ldots, x_m)^G$ rational implies nBB for all *n*.

Example

nBB therefore holds for:

- "Small": cyclic groups of order not divisible by 8, dihedral groups of odd degree, Heizenberg groups, etc.
- Reflection groups.

Other fields

Theorem (Dèbes, Colliot-Thélène, Moret-Bailley)

• nBB holds over PAC fields;

<ロト < 回 > < 回 > < 回 > < 回 >

DQC

Other fields

Theorem (Dèbes, Colliot-Thélène, Moret-Bailley)

- nBB holds over PAC fields;
- **(a)** *nBB* holds over \mathbb{Q}_p where (p, #G) = 1;

Other fields

Theorem (Dèbes, Colliot-Thélène, Moret-Bailley)

- nBB holds over PAC fields;
- **2** *nBB* holds over \mathbb{Q}_p where (p, #G) = 1;

In nBB for R-equivalent extensions over an ample field K.

Other fields

Theorem (Dèbes, Colliot-Thélène, Moret-Bailley)

- nBB holds over PAC fields;
- *nBB* holds over \mathbb{Q}_p where (p, #G) = 1;
- **1** *nBB for R-equivalent extensions over an ample field K.*

Example (PAC and ample)

Other fields

Theorem (Dèbes, Colliot-Thélène, Moret-Bailley)

- nBB holds over PAC fields;
- **2** *nBB* holds over \mathbb{Q}_p where (p, #G) = 1;
- **o** *nBB* for *R*-equivalent extensions over an ample field K.

Example (PAC and ample)

• PAC fields: $\mathbb{Q}^{tr}(\sqrt{-1}); \overline{\mathbb{Q}}^{\sigma};$

Other fields

Theorem (Dèbes, Colliot-Thélène, Moret-Bailley)

- nBB holds over PAC fields;
- **2** *nBB* holds over \mathbb{Q}_p where (p, #G) = 1;
- **6** *nBB* for *R*-equivalent extensions over an ample field K.

Example (PAC and ample)

• PAC fields: $\mathbb{Q}^{tr}(\sqrt{-1}); \overline{\mathbb{Q}}^{\sigma};$

• Ample fields: PAC fields; Complete fields $(\mathbb{Q}_p, \mathbb{R}, k((x))); \mathbb{Q}^{tot, p}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Other fields

Theorem (Dèbes, Colliot-Thélène, Moret-Bailley)

- nBB holds over PAC fields;
- **2** *nBB* holds over \mathbb{Q}_p where (p, #G) = 1;
- **6** *nBB* for *R*-equivalent extensions over an ample field K.

Example (PAC and ample)

- PAC fields: $\mathbb{Q}^{tr}(\sqrt{-1}); \overline{\mathbb{Q}}^{\sigma};$
- Ample fields: PAC fields; Complete fields $(\mathbb{Q}_p, \mathbb{R}, k((x))); \mathbb{Q}^{tot, p}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Recent advancements (work in progress)

Example

2BB fails for $G = C_8$ over $K = \mathbb{Q}(\sqrt{17})$.

Question/Conjecture

There exists a finite number $b = b_{G,K}$ such that for every (arbitrary) finitely many *G*-extensions L_i/K , i = 1, ..., m the following holds:

<ロト < 団 > < 臣 > < 臣 > 二 臣

Recent advancements (work in progress)

Example

2BB fails for $G = C_8$ over $K = \mathbb{Q}(\sqrt{17})$.

Question/Conjecture

There exists a finite number $b = b_{G,K}$ such that for every (arbitrary) finitely many *G*-extensions L_i/K , i = 1, ..., m the following holds:

BBb There exist *b* regular *G*-extensions $N_j/K(t)$, j = 1, ..., b such that every L_i , $i \in \{1, ..., m\}$ is a specialization of some $N_{j(i)}$ for $j(i) \le b$.

Recent advancements (work in progress)

Example

2BB fails for $G = C_8$ over $K = \mathbb{Q}(\sqrt{17})$.

Question/Conjecture

There exists a finite number $b = b_{G,K}$ such that for every (arbitrary) finitely many *G*-extensions L_i/K , i = 1, ..., m the following holds:

BBb There exist *b* regular *G*-extensions $N_j/K(t)$, j = 1, ..., b such that every L_i , $i \in \{1, ..., m\}$ is a specialization of some $N_{j(i)}$ for $j(i) \le b$.

Main evidence

BBb holds if:

Recent advancements (work in progress)

Example

2BB fails for $G = C_8$ over $K = \mathbb{Q}(\sqrt{17})$.

Question/Conjecture

There exists a finite number $b = b_{G,K}$ such that for every (arbitrary) finitely many *G*-extensions L_i/K , i = 1, ..., m the following holds:

BBb There exist *b* regular *G*-extensions $N_j/K(t)$, j = 1, ..., b such that every L_i , $i \in \{1, ..., m\}$ is a specialization of some $N_{j(i)}$ for $j(i) \le b$.

Main evidence BBb holds if: • $K(x_1,...,x_n)^G$ is rational, with b = 1;

Recent advancements (work in progress)

Example

2BB fails for $G = C_8$ over $K = \mathbb{Q}(\sqrt{17})$.

Question/Conjecture

There exists a finite number $b = b_{G,K}$ such that for every (arbitrary) finitely many *G*-extensions L_i/K , i = 1, ..., m the following holds:

BBb There exist *b* regular *G*-extensions $N_j/K(t)$, j = 1, ..., b such that every L_i , $i \in \{1, ..., m\}$ is a specialization of some $N_{j(i)}$ for $j(i) \le b$.

Main evidence

BBb holds if:

- $K(x_1,\ldots,x_n)^G$ is rational, with b=1;
- G is a abelian; Note b > 1 is needed, e.g. for $G = C_8$!
Lifting problems

Recent advancements (work in progress)

Example

2BB fails for $G = C_8$ over $K = \mathbb{Q}(\sqrt{17})$.

Question/Conjecture

There exists a finite number $b = b_{G,K}$ such that for every (arbitrary) finitely many *G*-extensions L_i/K , i = 1, ..., m the following holds:

BBb There exist *b* regular *G*-extensions $N_j/K(t)$, j = 1, ..., b such that every L_i , $i \in \{1, ..., m\}$ is a specialization of some $N_{j(i)}$ for $j(i) \le b$.

Main evidence

BBb holds if:

- $K(x_1, \ldots, x_n)^G$ is rational, with b = 1;
- G is a abelian; Note b > 1 is needed, e.g. for $G = C_8$!

• G is of nilpotency class 2, and K contains the exp(G) roots of unity.

Lifting problems

Recent advancements (work in progress)

Example

2BB fails for $G = C_8$ over $K = \mathbb{Q}(\sqrt{17})$.

Question/Conjecture

There exists a finite number $b = b_{G,K}$ such that for every (arbitrary) finitely many *G*-extensions L_i/K , i = 1, ..., m the following holds:

BBb There exist *b* regular *G*-extensions $N_j/K(t)$, j = 1, ..., b such that every L_i , $i \in \{1, ..., m\}$ is a specialization of some $N_{j(i)}$ for $j(i) \le b$.

Main evidence

BBb holds if:

- $K(x_1, \ldots, x_n)^G$ is rational, with b = 1;
- G is a abelian; Note b > 1 is needed, e.g. for $G = C_8$!
- G is of nilpotency class 2, and K contains the $\exp(G)$ roots of unity.

Parametrization problems

A parametric extension

A *G*-extension N/M of $M \supseteq K$ is (strongly) parametric if every *G*-extension of *K* is a specialization of N/M.

Basic examples

イロト イポト イヨト イヨ

A parametric extension

A *G*-extension N/M of $M \supseteq K$ is (strongly) parametric if every *G*-extension of *K* is a specialization of N/M.

Basic examples

• $K(x_1, \ldots, x_n)/K(x_1, \ldots, x_n)^G$ is always parametric.

• • • • • • • • • • • • •

A parametric extension

A *G*-extension N/M of $M \supseteq K$ is (strongly) parametric if every *G*-extension of *K* is a specialization of N/M.

Basic examples

• $K(x_1, \ldots, x_n)/K(x_1, \ldots, x_n)^G$ is always parametric.

• $K(\sqrt[n]{t})/K(t)$ is parametric for C_n when K contains the *n*-th roots of unity.

A parametric extension

A *G*-extension N/M of $M \supseteq K$ is (strongly) parametric if every *G*-extension of *K* is a specialization of N/M.

Basic examples

- $K(x_1,\ldots,x_n)/K(x_1,\ldots,x_n)^G$ is always parametric.
- $K(\sqrt[n]{t})/K(t)$ is parametric for C_n when K contains the *n*-th roots of unity.
- Let *N* be the splitting field of $f(t, x) := x^3 + tx + t \in \mathbb{Q}(t)[x]$ over $\mathbb{Q}(t)$. Then $N/\mathbb{Q}(t)$ is parametric for S_3 .

イロト イピト イヨト イヨ

A parametric extension

A *G*-extension N/M of $M \supseteq K$ is (strongly) parametric if every *G*-extension of *K* is a specialization of N/M.

Basic examples

- $K(x_1,\ldots,x_n)/K(x_1,\ldots,x_n)^G$ is always parametric.
- $K(\sqrt[n]{t})/K(t)$ is parametric for C_n when K contains the *n*-th roots of unity.
- Let *N* be the splitting field of $f(t, x) := x^3 + tx + t \in \mathbb{Q}(t)[x]$ over $\mathbb{Q}(t)$. Then $N/\mathbb{Q}(t)$ is parametric for S_3 .

イロト イピト イヨト イヨ

Example

The extension $\mathbb{Q}(t, \sqrt{t^2 + 1})$ is not C_2 -parametric.

590

<ロト < 四ト < 三ト < 三ト

Example

The extension $\mathbb{Q}(t, \sqrt{t^2 + 1})$ is not C_2 -parametric.

Groups with no parametric extension

In the following cases, no *G*-extension $N/\mathbb{Q}(t)$ is parametric:

• (Legrand) $G = C_2 \times C_2$;

<ロト < 四ト < 三ト < 三ト

Example

The extension $\mathbb{Q}(t, \sqrt{t^2 + 1})$ is not C_2 -parametric.

Groups with no parametric extension

In the following cases, no *G*-extension $N/\mathbb{Q}(t)$ is parametric:

• (Legrand) $G = C_2 \times C_2$;

• (Dèbes) Evidence towards: there exists a parametric *G*-extension N/K(t) if and only if $G \leq PGL_2(\mathbb{Q})$ (that is, $G = 1, C_2, C_3$, or S_3);

Example

The extension $\mathbb{Q}(t, \sqrt{t^2 + 1})$ is not C_2 -parametric.

Groups with no parametric extension

In the following cases, no *G*-extension $N/\mathbb{Q}(t)$ is parametric:

- (Legrand) $G = C_2 \times C_2$;
- (Dèbes) Evidence towards: there exists a parametric G-extension N/K(t) if and only if $G \leq PGL_2(\mathbb{Q})$ (that is, $G = 1, C_2, C_3$, or S_3);

(König–Legrand) G is of order prime to 6 and is not of prime order.

イロト イポト イヨト イヨト

Example

The extension $\mathbb{Q}(t, \sqrt{t^2 + 1})$ is not C_2 -parametric.

Groups with no parametric extension

In the following cases, no *G*-extension $N/\mathbb{Q}(t)$ is parametric:

- (Legrand) $G = C_2 \times C_2$;
- (Dèbes) Evidence towards: there exists a parametric G-extension N/K(t) if and only if $G \leq PGL_2(\mathbb{Q})$ (that is, $G = 1, C_2, C_3$, or S_3);
- (König–Legrand) G is of order prime to 6 and is not of prime order.

Most extensions are not specializations (König–Legrand) Given a *G*-extension N/K(t), almost all *G*-extensions L/K are not specializations of N/K(t).

Example

The extension $\mathbb{Q}(t, \sqrt{t^2 + 1})$ is not C_2 -parametric.

Groups with no parametric extension

In the following cases, no *G*-extension $N/\mathbb{Q}(t)$ is parametric:

- (Legrand) $G = C_2 \times C_2$;
- (Dèbes) Evidence towards: there exists a parametric G-extension N/K(t) if and only if $G \leq PGL_2(\mathbb{Q})$ (that is, $G = 1, C_2, C_3$, or S_3);
- (König–Legrand) G is of order prime to 6 and is not of prime order.

Most extensions are not specializations (König–Legrand)

Given a *G*-extension N/K(t), almost all *G*-extensions L/K are not specializations of N/K(t).

Local parametrization

Locally parametric extensions

A *G*-extension N/M for $M \supseteq K$ is called *locally parametric* if every *G*-extension $L^{(v)}/K_v$ is a specialization of N/M over K_v for every place v of K.

Problem (Grunwald- problems)

Let S be a finite set of places of K. Given G-extensions $L^{(v)}/K_v$, $v \in S$, is there a G-extension L/K such that $L_v \cong L^{(v)}$ for every $v \in S$.

Local parametrization

Locally parametric extensions

A *G*-extension N/M for $M \supseteq K$ is called *locally parametric* if every *G*-extension $L^{(v)}/K_v$ is a specialization of N/M over K_v for every place v of K.

Problem (Grunwald- problems)

Let S be a finite set of places of K. Given G-extensions $L^{(v)}/K_v$, $v \in S$, is there a G-extension L/K such that $L_v \cong L^{(v)}$ for every $v \in S$.

Remark

Suppose N/M is parametric, and all Grunwald problems are solvable for *G*, then N/M is locally parametric.

Local parametrization

Locally parametric extensions

A *G*-extension N/M for $M \supseteq K$ is called *locally parametric* if every *G*-extension $L^{(v)}/K_v$ is a specialization of N/M over K_v for every place v of K.

Problem (Grunwald- problems)

Let S be a finite set of places of K. Given G-extensions $L^{(v)}/K_v$, $v \in S$, is there a G-extension L/K such that $L_v \cong L^{(v)}$ for every $v \in S$.

Remark

Suppose N/M is parametric, and all Grunwald problems are solvable for *G*, then N/M is locally parametric.

Example (Wang)

Let $G = C_8$, and $L^{(2)}/\mathbb{Q}_2$ the unramified *G*-extension. Then there is no *G*-extension L/\mathbb{Q} whose completion at 2 is $L^{(2)}$.

Conjecture (Colliot-Thélène)

There exists a finite set T = T(G, K) of "bad" primes, such that all Grunwald problems for *G*, *K* and a set *S* that is disjoint from *T* are solvable.

イロト イポト イヨト イヨト

Example (Wang)

Let $G = C_8$, and $L^{(2)}/\mathbb{Q}_2$ the unramified *G*-extension. Then there is no *G*-extension L/\mathbb{Q} whose completion at 2 is $L^{(2)}$.

Conjecture (Colliot-Thélène)

There exists a finite set T = T(G, K) of "bad" primes, such that all Grunwald problems for *G*, *K* and a set *S* that is disjoint from *T* are solvable.

Evidence

The conjecture holds when:

イロト 不得 トイヨト イヨト 二日

Example (Wang)

Let $G = C_8$, and $L^{(2)}/\mathbb{Q}_2$ the unramified *G*-extension. Then there is no *G*-extension L/\mathbb{Q} whose completion at 2 is $L^{(2)}$.

Conjecture (Colliot-Thélène)

There exists a finite set T = T(G, K) of "bad" primes, such that all Grunwald problems for *G*, *K* and a set *S* that is disjoint from *T* are solvable.

Evidence

The conjecture holds when:

• *G* is of odd order (Neukrich);

イロト イポト イヨト イヨト

Example (Wang)

Let $G = C_8$, and $L^{(2)}/\mathbb{Q}_2$ the unramified *G*-extension. Then there is no *G*-extension L/\mathbb{Q} whose completion at 2 is $L^{(2)}$.

Conjecture (Colliot-Thélène)

There exists a finite set T = T(G, K) of "bad" primes, such that all Grunwald problems for *G*, *K* and a set *S* that is disjoint from *T* are solvable.

Evidence

The conjecture holds when:

• *G* is of odd order (Neukrich);

• G is supersolvable (Harpaz–Wittenberg).

イロト イポト イヨト イヨト

Example (Wang)

Let $G = C_8$, and $L^{(2)}/\mathbb{Q}_2$ the unramified *G*-extension. Then there is no *G*-extension L/\mathbb{Q} whose completion at 2 is $L^{(2)}$.

Conjecture (Colliot-Thélène)

There exists a finite set T = T(G, K) of "bad" primes, such that all Grunwald problems for *G*, *K* and a set *S* that is disjoint from *T* are solvable.

Evidence

The conjecture holds when:

- *G* is of odd order (Neukrich);
- *G* is supersolvable (Harpaz–Wittenberg).

<ロト < 四ト < 三ト < 三ト

The unramified case - dimension 1

Theorem (Dèbes-Ghazi)

For every regular G-extension N/K(t), there exists a finite set T_N satisfying: For every finite S disjoint from T_N , and unramified G-extensions $L^{(\nu)}/K_{\nu}$, $\nu \in S$, there exists a specialization L/K of N/K(t) such that $L_{\nu} \cong L^{(\nu)}$, $\nu \in S$.

Idea of proof for $K = \mathbb{Q}$

イロト イポト イヨト イヨト 二日

The unramified case - dimension 1

Theorem (Dèbes-Ghazi)

For every regular G-extension N/K(t), there exists a finite set T_N satisfying: For every finite S disjoint from T_N , and unramified G-extensions $L^{(\nu)}/K_{\nu}$, $\nu \in S$, there exists a specialization L/K of N/K(t) such that $L_{\nu} \cong L^{(\nu)}$, $\nu \in S$.

Idea of proof for $K = \mathbb{Q}$

• Twist N by the extension $L^{(p)}/\mathbb{Q}_p$ to obtain $N^p/\mathbb{Q}_p(t)$;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Dèbes-Ghazi)

For every regular G-extension N/K(t), there exists a finite set T_N satisfying: For every finite S disjoint from T_N , and unramified G-extensions $L^{(v)}/K_v$, $v \in S$, there exists a specialization L/K of N/K(t) such that $L_v \cong L^{(v)}$, $v \in S$.

Idea of proof for $K = \mathbb{Q}$

- Twist N by the extension $L^{(p)}/\mathbb{Q}_p$ to obtain $N^p/\mathbb{Q}_p(t)$;
- Reduce mod p to obtain a G-extension $\overline{N}^p/\mathbb{F}_p(t)$;

Theorem (Dèbes-Ghazi)

For every regular G-extension N/K(t), there exists a finite set T_N satisfying: For every finite S disjoint from T_N , and unramified G-extensions $L^{(v)}/K_v$, $v \in S$, there exists a specialization L/K of N/K(t) such that $L_v \cong L^{(v)}$, $v \in S$.

Idea of proof for $K = \mathbb{Q}$

- Twist N by the extension $L^{(p)}/\mathbb{Q}_p$ to obtain $N^p/\mathbb{Q}_p(t)$;
- Reduce mod p to obtain a G-extension $\overline{N}^p/\mathbb{F}_p(t)$;
- By Lang–Weil if p is large, \overline{N}^p has an \mathbb{F}_p -point;

Theorem (Dèbes-Ghazi)

For every regular G-extension N/K(t), there exists a finite set T_N satisfying: For every finite S disjoint from T_N , and unramified G-extensions $L^{(v)}/K_v$, $v \in S$, there exists a specialization L/K of N/K(t) such that $L_v \cong L^{(v)}$, $v \in S$.

Idea of proof for $K = \mathbb{Q}$

- Twist N by the extension $L^{(p)}/\mathbb{Q}_p$ to obtain $N^p/\mathbb{Q}_p(t)$;
- Reduce mod p to obtain a G-extension $\overline{N}^p/\mathbb{F}_p(t)$;
- By Lang–Weil if p is large, \overline{N}^p has an \mathbb{F}_p -point;
- Lift to a \mathbb{Q}_p -point of N^p . Approximate resulting point by a \mathbb{Q} -point.

Theorem (Dèbes-Ghazi)

For every regular G-extension N/K(t), there exists a finite set T_N satisfying: For every finite S disjoint from T_N , and unramified G-extensions $L^{(v)}/K_v$, $v \in S$, there exists a specialization L/K of N/K(t) such that $L_v \cong L^{(v)}$, $v \in S$.

Idea of proof for $K = \mathbb{Q}$

- Twist *N* by the extension $L^{(p)}/\mathbb{Q}_p$ to obtain $N^p/\mathbb{Q}_p(t)$;
- Reduce mod p to obtain a G-extension $\overline{N}^p/\mathbb{F}_p(t)$;
- By Lang–Weil if p is large, \overline{N}^p has an \mathbb{F}_p -point;
- Lift to a \mathbb{Q}_p -point of N^p . Approximate resulting point by a \mathbb{Q} -point.

The ramified case

Let N/K(t) be regular a *G*-extension and *S* a finite set. Assume the branch points $t_1, \ldots, t_r \in K$ of N/K(t) are *K*-rational, and $v(t_i) > 0$ for $v \in S$. Denote by D_i, I_i, L_i the decomposition gp, inertia gp, and residue field of N/K(t) at t_i , resp.

Theorem (Legrand–König–N)

There is a finite set T_N of bad places such that:

■ Let L/K denote the residue of N at $t_0 \in K$ with $v(t_0 - t_i) > 0$ coprime to $\#I_i$ for $v \notin T_N$. Then the Galois group $D(i, v) \leq G$ of L_v/K_v is determined by I_i , and the residue field of L_i at v.

< □ > < □ > < □ > < □ >

The ramified case

Let N/K(t) be regular a *G*-extension and *S* a finite set. Assume the branch points $t_1, \ldots, t_r \in K$ of N/K(t) are *K*-rational, and $v(t_i) > 0$ for $v \in S$. Denote by D_i, I_i, L_i the decomposition gp, inertia gp, and residue field of N/K(t) at t_i , resp.

Theorem (Legrand–König–N)

There is a finite set T_N of bad places such that:

- Let L/K denote the residue of N at t₀ ∈ K with v(t₀ − t_i) > 0 coprime to #I_i for v ∉ T_N. Then the Galois group D(i, v) ≤ G of L_v/K_v is determined by I_i, and the residue field of L_i at v.
- **②** For every finite *S* disjoint from T_N , and Galois field extensions $L^{(v)}/K_v$ with groups $D(i_v, v)$, $v \in S$ and some $i_v \leq r$, there exist residue fields L/K of *N* over $t_0 \in K$ such that $L_v \cong L^{(v)}$ for every $v \in S$.

The ramified case

Let N/K(t) be regular a *G*-extension and *S* a finite set. Assume the branch points $t_1, \ldots, t_r \in K$ of N/K(t) are *K*-rational, and $v(t_i) > 0$ for $v \in S$. Denote by D_i, I_i, L_i the decomposition gp, inertia gp, and residue field of N/K(t) at t_i , resp.

Theorem (Legrand–König–N)

There is a finite set T_N *of bad places such that:*

- Let L/K denote the residue of N at $t_0 \in K$ with $v(t_0 t_i) > 0$ coprime to $\#I_i$ for $v \notin T_N$. Then the Galois group $D(i, v) \leq G$ of L_v/K_v is determined by I_i , and the residue field of L_i at v.
- For every finite *S* disjoint from T_N , and Galois field extensions $L^{(v)}/K_v$ with groups $D(i_v, v)$, $v \in S$ and some $i_v \leq r$, there exist residue fields L/K of *N* over $t_0 \in K$ such that $L_v \cong L^{(v)}$ for every $v \in S$.

Let N/K(t) be a *G*-extension and *S* a finite set.

Theorem (Legrand–König–N)

There is a finite set T_N of bad places such that: For every finite S disjoint from T_N , and Galois field extensions $L^{(v)}/K_v$ with groups $D(i_v, v)$, $v \in S$ and some $i_v \leq r$, there exist residue fields L/K of N over $t_0 \in K$ such that $L_v \cong L^{(v)}$ for every $v \in S$.

Corollary

Let G be a group containing a noncyclic abelian group. Then

• N/K(t) is not locally parametric.

Let N/K(t) be a *G*-extension and *S* a finite set.

Theorem (Legrand–König–N)

There is a finite set T_N of bad places such that: For every finite S disjoint from T_N , and Galois field extensions $L^{(v)}/K_v$ with groups $D(i_v, v)$, $v \in S$ and some $i_v \leq r$, there exist residue fields L/K of N over $t_0 \in K$ such that $L_v \cong L^{(v)}$ for every $v \in S$.

Corollary

Let G be a group containing a noncyclic abelian group. Then

• N/K(t) is not locally parametric.

2 If furthermore CT-conjecture holds for G, then N/K(t) is not parametric.

Let N/K(t) be a *G*-extension and *S* a finite set.

Theorem (Legrand–König–N)

There is a finite set T_N of bad places such that: For every finite S disjoint from T_N , and Galois field extensions $L^{(v)}/K_v$ with groups $D(i_v, v)$, $v \in S$ and some $i_v \leq r$, there exist residue fields L/K of N over $t_0 \in K$ such that $L_v \cong L^{(v)}$ for every $v \in S$.

Corollary

Let G be a group containing a noncyclic abelian group. Then

• N/K(t) is not locally parametric.

2 If furthermore CT-conjecture holds for G, then N/K(t) is not parametric.

Note, K(t) can be replaced by function fields of curves over K.

イロト 不得 とくき とくき とうき

Let N/K(t) be a *G*-extension and *S* a finite set.

Theorem (Legrand–König–N)

There is a finite set T_N of bad places such that: For every finite S disjoint from T_N , and Galois field extensions $L^{(v)}/K_v$ with groups $D(i_v, v)$, $v \in S$ and some $i_v \leq r$, there exist residue fields L/K of N over $t_0 \in K$ such that $L_v \cong L^{(v)}$ for every $v \in S$.

Corollary

Let G be a group containing a noncyclic abelian group. Then

• N/K(t) is not locally parametric.

2 If furthermore CT-conjecture holds for G, then N/K(t) is not parametric.

Note, K(t) can be replaced by function fields of curves over K.

イロト 不得 トイヨト イヨト 二日

On the proof of KLN

Let N/K(t) be a regular *G*-extension. Assume the branch points $t_1, \ldots, t_r \in K$ of π are *K*-rational, and $v(t_i) > 0$ for v in a finite *S*. Denote by I_i, L_i the inertia gp, and residue field of π at t_i , resp.

Theorem (Inertia specialization – Beckmann)

Assume v is not in a finite set T_N of "bad" primes, and let L/K be the residue field extension of N at $t_0 \in K$. If $v(t_0 - t_i) > 0$ is coprime to v, then the inertia group of L/K at v is I_i .

Idea of proof of KLN

On the proof of KLN

Let N/K(t) be a regular *G*-extension. Assume the branch points $t_1, \ldots, t_r \in K$ of π are *K*-rational, and $v(t_i) > 0$ for v in a finite *S*. Denote by I_i, L_i the inertia gp, and residue field of π at t_i , resp.

Theorem (Inertia specialization – Beckmann)

Assume v is not in a finite set T_N of "bad" primes, and let L/K be the residue field extension of N at $t_0 \in K$. If $v(t_0 - t_i) > 0$ is coprime to v, then the inertia group of L/K at v is I_i .

Idea of proof of KLN

• Show that the residue field of L at v is the same as that of L_i at v;
On the proof of KLN

Let N/K(t) be a regular *G*-extension. Assume the branch points $t_1, \ldots, t_r \in K$ of π are *K*-rational, and $v(t_i) > 0$ for v in a finite *S*. Denote by I_i, L_i the inertia gp, and residue field of π at t_i , resp.

Theorem (Inertia specialization – Beckmann)

Assume v is not in a finite set T_N of "bad" primes, and let L/K be the residue field extension of N at $t_0 \in K$. If $v(t_0 - t_i) > 0$ is coprime to v, then the inertia group of L/K at v is I_i .

Idea of proof of KLN

- Show that the residue field of L at v is the same as that of L_i at v;
- Use twisting (Brauer embedding problems) to change a given residue extension L/K whose *v*-completion has group D(i, v) to arbitrary extensions whose completion have Galois group D(i, v).

イロト イポト イヨト イヨト

On the proof of KLN

Let N/K(t) be a regular *G*-extension. Assume the branch points $t_1, \ldots, t_r \in K$ of π are *K*-rational, and $v(t_i) > 0$ for v in a finite *S*. Denote by I_i, L_i the inertia gp, and residue field of π at t_i , resp.

Theorem (Inertia specialization – Beckmann)

Assume v is not in a finite set T_N of "bad" primes, and let L/K be the residue field extension of N at $t_0 \in K$. If $v(t_0 - t_i) > 0$ is coprime to v, then the inertia group of L/K at v is I_i .

Idea of proof of KLN

- Show that the residue field of *L* at *v* is the same as that of *L_i* at *v*;
- Use twisting (Brauer embedding problems) to change a given residue extension L/K whose *v*-completion has group D(i, v) to arbitrary extensions whose completion have Galois group D(i, v).

<ロト < 四ト < 三ト < 三ト

Example (2BB as an obstruction)

For $K = \mathbb{Q}(\sqrt{17})$, there is no parametric C_8 -extension $N/K(t_1, \ldots, t_n)$ for any n!

Local dimension (Work in progress)

Suppose $K(x_1, ..., x_n)^G$ is rational. Then there exists N/K(t, s) which specializes to every *G*-extension $L^{(v)}/K_v$ over almost every place v of K, in the following cases:

イロト 不得 とくき とくき とうき

Example (2BB as an obstruction)

For $K = \mathbb{Q}(\sqrt{17})$, there is no parametric C_8 -extension $N/K(t_1, \ldots, t_n)$ for any n!

Local dimension (Work in progress)

Suppose $K(x_1, ..., x_n)^G$ is rational. Then there exists N/K(t, s) which specializes to every *G*-extension $L^{(v)}/K_v$ over almost every place *v* of *K*, in the following cases:

) G is a p-group, and $\sqrt{-1} \in K$ if p = 2.

イロト 不得 トイヨト イヨト 二日

Example (2BB as an obstruction)

For $K = \mathbb{Q}(\sqrt{17})$, there is no parametric C_8 -extension $N/K(t_1, \ldots, t_n)$ for any n!

Local dimension (Work in progress)

Suppose $K(x_1, ..., x_n)^G$ is rational. Then there exists N/K(t, s) which specializes to every *G*-extension $L^{(v)}/K_v$ over almost every place *v* of *K*, in the following cases:

• G is a *p*-group, and
$$\sqrt{-1} \in K$$
 if $p = 2$.

2) the roots of unity of order $\exp(G)$ are in *K*.

イロト 不得 トイヨト イヨト 二日

Example (2BB as an obstruction)

For $K = \mathbb{Q}(\sqrt{17})$, there is no parametric C_8 -extension $N/K(t_1, \ldots, t_n)$ for any n!

Local dimension (Work in progress)

Suppose $K(x_1, ..., x_n)^G$ is rational. Then there exists N/K(t, s) which specializes to every *G*-extension $L^{(v)}/K_v$ over almost every place *v* of *K*, in the following cases:

- G is a *p*-group, and $\sqrt{-1} \in K$ if p = 2.
- 2 the roots of unity of order $\exp(G)$ are in K.

Question/Conjecture

There are *G*-extensions N_j/K , $j = 1, ..., b = b_{G,K}$ such that every *G*-extension $L^{(\nu)}/K_{\nu}$ is a specialization of some N_j/K .

D. Neftin (Technion)

Example (2BB as an obstruction)

For $K = \mathbb{Q}(\sqrt{17})$, there is no parametric C_8 -extension $N/K(t_1, \ldots, t_n)$ for any n!

Local dimension (Work in progress)

Suppose $K(x_1, ..., x_n)^G$ is rational. Then there exists N/K(t, s) which specializes to every *G*-extension $L^{(v)}/K_v$ over almost every place *v* of *K*, in the following cases:

- G is a *p*-group, and $\sqrt{-1} \in K$ if p = 2.
- **2** the roots of unity of order $\exp(G)$ are in *K*.

Question/Conjecture

There are *G*-extensions N_j/K , $j = 1, ..., b = b_{G,K}$ such that every *G*-extension $L^{(v)}/K_v$ is a specialization of some N_j/K .

Summary

Question/Conjecture I: Lifting dimension should be 1

Every finitely many *G*-extensions L_i/\mathbb{Q} , i = 1, ..., m are specializations of *b* regular *G*-extensions $N_j/K(t)$, for some *b* depending only on *G*!

Question/Conjecture I.5: Lifting as an obstruction to parametrization If there are *b R*-equivalence classes, then the number of parametrizing extensions $N_i/K(t)$ should be at least *b*.

イロト イポト イヨト イヨト

Summary

Question/Conjecture I: Lifting dimension should be 1

Every finitely many *G*-extensions L_i/\mathbb{Q} , i = 1, ..., m are specializations of *b* regular *G*-extensions $N_j/K(t)$, for some *b* depending only on *G*!

Question/Conjecture I.5: Lifting as an obstruction to parametrization If there are *b R*-equivalence classes, then the number of parametrizing extensions $N_j/K(t)$ should be at least *b*.

Question II: What is the parametric dimension?

When are there finitely many *G*-extensions $N_j/K(t,s)$, j = 1, ..., b such that every *G*-extension is a specialization of $N_j/K(t,s)$ for some j!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

Question/Conjecture I: Lifting dimension should be 1

Every finitely many *G*-extensions L_i/\mathbb{Q} , i = 1, ..., m are specializations of *b* regular *G*-extensions $N_j/K(t)$, for some *b* depending only on *G*!

Question/Conjecture I.5: Lifting as an obstruction to parametrization

If there are *b R*-equivalence classes, then the number of parametrizing extensions $N_j/K(t)$ should be at least *b*.

Question II: What is the parametric dimension?

When are there finitely many *G*-extensions $N_j/K(t, s)$, j = 1, ..., b such that every *G*-extension is a specialization of $N_j/K(t, s)$ for some *j*!

Questi

Summary

Question/Conjecture I: Lifting dimension should be 1

Every finitely many *G*-extensions L_i/\mathbb{Q} , i = 1, ..., m are specializations of *b* regular *G*-extensions $N_j/K(t)$, for some *b* depending only on *G*!

Question/Conjecture I.5: Lifting as an obstruction to parametrization

If there are *b R*-equivalence classes, then the number of parametrizing extensions $N_j/K(t)$ should be at least *b*.

Question II: What is the parametric dimension?

When are there finitely many *G*-extensions $N_j/K(t, s)$, j = 1, ..., b such that every *G*-extension is a specialization of $N_j/K(t, s)$ for some *j*!

Thank you!

Questions?