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CHAPTER 1

Introduction

A gradient systenn finite dimension is an ordinary fierential equation of the
form

(0.1) U+ Vo(u) = 0,

where ¢ € CYR"R) is a function andVy is its euclidean gradientVey =
(010, . .., 0nh).

Every solutionu of the gradient system (0.1) has the important property ghat
is decreasing along, that is, the functiorp(u) is decreasing. This follows simply
from derivating:

(Ut = (V(u(9), 1) = I < O

In this equation(-, -) denotes the euclidean scalar product giidhe corresponding
euclidean norm. In fact, the equation (0.1) just says that the time derivativésof
opposite to the gradieMp(u) which shows into the direction into which the function
¢ has largest directional derivative with respect to a unit vector in the euclidean norm.
A solution of the gradient system (0.1) thus always tries to minimize the ydlue
as fast as possible in the given geometry (here, the euclidean geometry).

The gradient system (0.1) admitsasLyapunov functioror energy functionby
this we just mean the fact thafu) is decreasing along every solution. Having a Lya-
punovenergy function is very natural in examples of ordinafyedential equations
arising in physics when the quantigfu) has an interpretation of a real energy. In
the following, we will often calkp an energy function.

In this course we will study gradient systems in finite and infinite dimension,
with an emphasis on the infinite dimensional case.

Examples of infinite dimensional gradient systems include the linear heat equa-
tion

w—Au=f
and the semilinear heat equation

w—Au+ f(u)y=0
5



6 1. INTRODUCTION

on an open subset ®". These parabolic partial filerential equations can in fact
be rewritten as ordinary flerential equations on infinite dimensional Hilbert spaces
spaces. The resulting ordinanyldirential equations are gradient systems.

Other examples of gradient systems are given by certain geometric evolution
equations like the mean curvature flow (curve shortening flow in one dimension), the
surface difusion flow, the Willmore flow, and the Ricci flow. The latter has recently
played an important role in the (very probable) solution of the Po@ncanjecture,
one of seven millenium problems. An introduction to at least one of these flows will
be aim of this course.

In a first place, however, we will have to provide some basic material necessary
for studying gradient systems in infinite dimensions. After these preliminaries, we
will study existence and uniqueness of solutions of linear gradient systems. The next
step will bring us to prove existence and uniqueness of solutions of certain nonlinear
evolution equations. Eventually, we will also study their regularity properties. While
we will always test our abstract results in concrete examples, we will only at the end
of this course be able to turn to geometric evolution equations.



CHAPTER 2

Linear gradient systems

Throughout we denote bY andY (real) Banach spaces and by K, V (real)
Hilbert spaces. The norm on a Banach sp#dds usually denoted by - ||x or || - ||,
and the inner product on a Hilbert spadas usually denoted by,(-)4 or (-, -).

Recall that a linear operatdr: X — Y is continuous if and only if it is bounded,
i.e. if and only if||Tllzxy) = SUR,<1 IIT Xy is finite. Instead of speaking of con-
tinuous linear operators we will in the following speak of bounded linear operators.
The space of all bounded linear operators frgnmto Y is denoted by (X, Y). Itis
a Banach space for the notm|| zxv)-

1. Definition of gradient systems

Let V be a real Hilbert space with inner prodyet), and lety : V — R be a
function of classC!. At every pointu € V the derivativey’(u) is by definition an
element oV’ and therefore’ is a functionvV — V’.

Let H be a second real Hilbert space with inner produciy and suppose that
V is a dense subspaceldfand that the embedding ®¥finto H is bounded, i.e. there
exists a constan® > 0 such that|ul|y < C|lully for everyu € V. We will write
V — H for this situation.

In the following, we denote by’ the dual space o¥, i.e. V' = L(V,R). The
duality betweerV’ andV is denoted by the brackét -)y v .

As soon asV is densely and continuously embedded iitp the dualH’ is
densely and continuously embedded into the ddalIn fact, the restriction to/
of a bounded linear functional € H’ defines a bounded linear functional V.
The resulting operatdd’ — V’ is clearly linear and bounded, and it is injective by
the fact thatv is dense irH. Using reflexivity of Hilbert spaces, one can even show
that the embedding df’ into V' is dense. Hence, ¥ — H, thenH’ — V’.

We recall the theorem of Riesz&ahet which says that for every bounded linear
functionalu’ € H’ there exists a unique elemant H such that
(U, V)i .y = (U, Vyy for everyv € H.

On the other hand, it is clear from the bilinearity of the inner product that for every
u € H the functionall’ : v — (u, V) is linear and bounded, i.e. it belongsHo. So

7



8 2. LINEAR GRADIENT SYSTEMS

the theorem of Riesz-Echet allows us to identify the spaddsandH’ via the linear
isomorphismu — u'. This isomorphism is even isometric as one easily verifies. It
will be aconventionn the following that we will always identiffH andH’ via this
isomorphism. We writéd = H’, but we have in mind that this equality does not hold

in the set theoretic sense and that the isomorphism behind this equality depends on
the choice of the inner product H.

By our assumption tha¥ — H and by our convention thad = H’, we thus
obtain the following picture

(1.1) Vo H=H <V,

and in particulaV is densely and continuously embedded ikto(but we can not
identify V. andV’ once we have identified andH’! The space/ is only a subspace
of V’). The above chain implies that for evane V and every € H

(1.2) (U Vvy: = UV = (U, V)

By agradient systerwe will understand an evolution equation of the form
(1.3) u+¢'(u) =0.

Classical solutions of this gradient system will be continuoudfietgntiable func-
tionsu : [0, T] — V for which the equality (1.3) holds in the spaZé recall that

¢’(u) is an element oV’, thatu is an element oV and thatV is a subspace of’

by our convention. We emphasize the fact that this evolution equation depends on
the choice of the Hilbert spadeé and in particular on the choice of the inner prod-
uct in H. Sometimes, it will therefore be convenient to witgy(u) instead of the
derivativey’(u). If the Hilbert spaceH is clear from the context, it $lices to write

V(u).

ExampLe 1.1. LetV = R"andH = R" equipped with the euclidean inner product.
Let ¢ : R" — R be of classC!. By Riesz-Féechet, for everyu € R" there exists
Vrng(U) such that

(@' (U), V)@ny zn = (Vrng(U), V)gn for everyv e R".

It is easy to verify thaVgng = Vg is the euclidean gradient @f, i.e. Vgnp(U) =
(010(u), ..., 0np(u)). The resulting gradient system is the system (0.1) from the In-
troduction.

ExampLe 1.2. We let agairV = R"andH = R" but we equipH with the inner
product
U, = (QU,V)gn,
whereQ is a symmetric and positive definite matrix. By Ries&éhet, for every
u € R" there exist&/{p(u) such that

(@’ (U), V@ny zn = (Viep(u), iy for everyv e R".
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On the other hand, by the definition of the scalar produdi iand by the previous
example
(Vhe(u), Vin = (QVHe(U), Virn = (Venp(U), V)rn.
Since this equality holds for everye R", we obtainVyp(u) = Q 1Vgnp(u). The
resulting gradient system is
U+Q 'Ve(u) =0,
whereVy denotes the euclidean gradient.

2. Operators associated with bilinear forms

In this sectionyV will be a real Hilbert space with inner produgt-)y .

Dermnition 2.1 (Bilinear form). A functioma : V x V — R is called abilinear
formif itis linear in each variable, i.e.

alau + Bv, w)
a(u, av + Bw)

for everyu, v, w € V and everyr, 8 € K.

aa(u, w) + Ba(v,w) and
aa(u, v) + Ba(u, w)

There are some simple but important examples of bilinear forms.
ExampLE 2.2. Every inner product oY is a bilinear form!

ExampLe 2.3. LetV = H}(Q) (@ c R" open) be the Sobolev space which is
obtained by taking the closure @(Q2) (the test functions o) in H(Q). The
spaceV is equipped with the inner product

(u,v)Hé ::fuv+fVqu,
Q Q

and the corresponding norm

1
lullye = (I1ullZ, + IVuliZ.)”
On this Sobolev space the equality

a(u,v) ::fVqu, u vevy,
Q

defines a bilinear form.

ExampLE 2.4. More generally, ifA € L*(Q;R™") is a bounded, measurable,
matrix valued function, then the equality

a(u,v) := fA(x)VuW, u,vev,
Q

defines a bilinear form on the Sobolev spate HJ(Q).

Dernition 2.5 (Boundedness, coercivity, symmetry). badte a bilinear form on
a Hilbert spacé/.
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(a) We say thah is boundedf there exists a constaft > 0 such that
[a(u, v)| < C||ullv [IVIlv for everyu, v € V.
(b) We say that is coerciveif there exists a constant> 0 such that
Rea(u, u) > n||ull¢ for everyu € V.
(c) We say that is symmetriaf
a(u,v) = a(v, u) for everyu, v e V.
Dermnition 2.6 (Operator associated with a bounded bilinear form). Given a

bounded, bilinear forna on V, we define the linear operatér : V — V'’ associ-
ated with this form by

(AU p)vy i=all, @), U peV.
It follows from the boundedness @f that the operatoA is well-defined and
bounded. In fact, le€ > 0 be the constant from Definition 2.5 (a). Then
AUl = sup KAU @)y vl

llellv<1

sup [a(u, ¢)|
llellv<1

sup Cllullv llellv = Cllully-
llglly<1

The following theorem says something about the solvability of the equAtion
f for given f € V. As one can see from the statement, coercivityaamplies
invertibility of A.

IA

Tueorem 2.7 (Lax-Milgram). Let a be a bounded, coercive, bilinear form on V.
Then for every fe V’ there exists a unique @V such that

a(u, p) = (f, @)y for everyp € V.

Proor. We have to prove that the bounded linear operater £(V,V’) associ-
ated witha is bijective. By coercivity, for every € V \ {0},

lIAUllv- sup [KAW V) vl

lIvilv<1

u
[{AU, —— v+ v/
[luflv

1
——a(u,u
IIUIIV( )

> nllullv.
This proves on the one hand injectivity Af but also that Ré\ is closed inV’.

If RgA # V', then there exists € V \ {0} such thaiAu,v),,y = O for every
u e V. If we takeu = v, then we obtain

\%

0= (AV,V)vy = a(V,V) = n|vi§ > O,
a contradiction. Hence, Ry= V', i.e. Aiis surjective. O



2. OPERATORS ASSOCIATED WITH BILINEAR FORMS 11

Dermnition 2.8. LetV andH be two Hilbert spaces such that (1.1) holds. We
call a forma : V xV — R H-elliptic if there existsw € R such that the form
a, : VxV — R defined bya,(u,v) := a(u,v) + w(u, Vv)y is coercive, i.e. if there
existsny > 0 such that

a(u,u) + wlull3 = nllull for everyu e V.

Derinition 2.9. We call a matrid € R™" elliptic if there exists a constant> 0
such that

As & > n|éf? for everyé e C"

We call a matrix-valued functiol € L*®(Q,R™") uniformly elliptic if there
exists a constant > 0 such that

ReA(X)& & > n|éf? for everyé e C", x € Q.

In the above definition, if the matri& is symmetric then ellipticity oA is equiv-
alent to saying thaA is positive definite.

ExampLe 2.10. Take the bilinear forra from Example 2.4 and assume that
L= (Q, R™M) is uniformly elliptic. Thena is bounded and elliptic. Indeed,

f A(X)VU VU + 7 |ull?,

Q
> nfqu|2+nllullfz
Q

2

a(u, u) + n|lull?

We define a second operator associated with a form

Dernition 2.11 (Operator associated with a bilinear form). adte a bounded,
bilinear form onV, and letH be a second Hilbert space such that (1.1) holds. We
define the operatok, : H > D(Ay) — H associated witla by

D(AH) = {ueV:aveHVYpeV : alue) = (V,o)u},
Aqu = W
The operatoA, is well-defined in the sense that the elemertH is uniquely

determined if it exists. Indeed, assume that there are two elememse H such
that

(V1, @) = a(u, ) = (V2, p)u for everyp e V.

Then {1 — v, ¢)y = 0 for everyyp € V, and sinceV is dense irH (here the density
of the embedding is used!), this already imphes= v..

Lemma 2.12. The operator A is the restriction of A to the space H, i.e.
D(AR) ={ueV : Aue H} and Aju = Au for ue D(An).

Proor. Exercise. O
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ExampLe 2.13 (Dirichlet-Laplace operator). L&t = H3(0,1), H = L*(0, 1) and
consider the forna : H} x Hj — R defined by

1
a(u,v) = f uv.
0

The dual space dfl; is denoted byH™*. Let A : H} — H™* be the operator associ-
ated with the forma and letA, 2 be its restriction td_?. We show that

D(A:) = H?*0,1)n Hj(0,1)and

Apu = -U".

This operator is called the Dirichlet-Laplace operator on the interval) (0

Letu € D(AL2) and letf = Aue L2. Then, for everyy € H} one has
(Loyw = (Au o)y
= (Ay, 90>H—1,H3
= a(u, ),

or

1 1
(2.1) f fo= f Uy’ for everyyp € H3(0, 1)
0 0

By the definition ofH?, this means that’ € H%(0, 1) andu” := (1)’ = —f. In other
words,u € H?(0,1) andAu = —u".

On the other hand, lete H2 N H} and letf = —u” € L2 One easily shows that
(2.1) holds, so thatf, o)y = a(u,¢) for everyp € Hg. By definition, this implies
ue D(A2) andAu = —U".

3. The theorem of J.-L. Lions

Throughout this section/ andH are two real separable Hilbert spaces such that
Ve H=H <V,

with dense injections. Moreover, we ket V x V — R be a bounded bilinear form,
and we letA : V — V'’ be the operator associated with Then we consider the
evolution equation

(3.1) G(t) + Au(t) = f(1), te [0,T], u(0) = uo.

This evolution equation is a gradient system if the fans in addition sym-
metric. The underlying energy is then: V — R, ¢(u) = %a(u, u). In fact, the
derivative of this quadratic form can be calculated very easily using the definition of
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the Féchet derivative and the bilinearity and the symmetry of the farm

e(u+ h) %(a(u, u) + a(u, h) + a(h, u) + a(h, h))

= ¢(u) +a(u, h) + %a(h, h)

= (u) + (¢’ (U), vy + o(h),
i.e.¢’(u) = Au.

Tueorem 3.1 (J.-L. Lions).Leta: V x V — R be a bilinear, bounded, elliptic
form and let A: V — V'’ be the associated operator. Let¥ 0. Then for every
f € L2(0, T; V") and every y € H there exists a unique solutioneulW>?(0, T; V') N
L2(0, T; V) of the problen(3.1).

We will prove this theorem in several steps. First, we study the maximal regular-
ity spaceMRy(a, b; V', V).
Lemma 3.2. For every ue WH(R; V') n L%(R; V) the function t— |u(t)IZ is
differentiable almost everywhere and
1d
2dt
Proor. One shows by regularisation that the spa@HR;V) is dense in
W2(R; V)N L3(R; V). Then one verifies that for functiomss C1(R; V) the equality
(3.2) is true, using also the equality
d1l 2 : )
gt 2Ok = (U, u(®)n = CU(D), u®)v-v.

The claim then follows by an approximation argument. O

(3.2) Ul = <Ut), ut)vr v

Lemma 3.3. One has
(3.3) WH(R; V') N LA(R; V) — Co(R; H).

Proor. We use again the fact that the sp&¥R; V) is dense inW-2(R; V) N
L%(R; V). For everyu € Cl(R; V) and evenyt € R one has

t d )
IOO d_S”u(S)”H ds

- 2 f (9. (S ds

Iu(t)IIF

2 f (S, Uy ds

21Ul 2gavry Ull2govy

IN A

1112 2
”u”LZ(R;V') + ”u”LZ(R;V)

IA

2
2||Ullfaryavr v)-
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Hence, the embedding operator

(CeR; V), 11 - lIMRro@:vvy) = (Co(R; H), Il - llco@e:Hy)

is bounded. Sinc€l(R;V) is dense inWV2(R; V') N L(R; V), the embedding (3.3)
follows. o

Lemma 3.4. For every—oo < a < b < oo one has
(3.4) W2(a, b; V') N L?(a, b; V) — C([a, b]; H).
Proor. Leta, b be arbitrary, but finite. There exists a linear bounded extension
operator
E : W2(a,b; V') N L%(a, b; V) - WH(R; V') N L(R; V)

with the property thaEu restricted to the intervab(b) equalsu (exercice!). Using
that the restriction operator

Co(R;H) = C([a,b]; H), u Ulap

is linear and bounded, too, the claim follows by considering the composition of the
extension operatdg, the embedding (3.3), and this restriction operator. O

Lemma 3.5 (Uniqueness)Let A be as in Theorem 3.1. Then for everyef
L2(0, T;V’) and every y € H there exists at most one solutioredV*?(0, T; V") N
L2(0, T; V) of the problen(3.1).

Proor. By linearity, it sufices to prove that ifi € W*2(0, T; V') N L?(0, T; V) is
a solution of
u(t) + Au(t) =0,t€[0,T], u(0)=0,
thenu = 0. So letu be a solution of this problem. Then, by ellipticity of the foan
and by Lemma 3.2,
1d

2
2dtIIU(t)IIH

Cu(), u()v-.v

—(AU(t), u(t))v v
< w|lu@®).

As a consequence,
Iu)Ilf < €lu(O)If = O for everyt € [0, T].
Henceu = 0. O

Proor or THEOREM 3.1. By Lemma 3.5 it remains only to prove existence of a
solution. The proof of existence will be done by a Galerkin approximation.

Let (w,) c V be a linearly independent sequence such that sgans dense in
V (here we use thal is separable in order to ensure existence of such a sequence).
LetVy, = spanw, : 1 < n < m}. As a finite dimensional vector space, the space
Vn is a closed subspace ¥ H andV’. It will be equipped with the norms coming
from these three spaces. Note that the three norms are equivalépt on
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The restriction of the forna to the spacé&/y, (i.e. the forma, : Vi, X Vin & R
defined byan(u, V) := a(u,V)) is a bilinear, bounded and elliptic form. Hence, there
exists an operatohy, : (Vi |l - llv) = (Vm. |l - [lv) such that

(AmU, )y v = am(u, v) = a(u, v) for everyu, v e V.
Consider the ordinary fferential equation
(3.5) Un(t) + AnUm(t) = fm(t), t € [0, T], um(0) = ug,

whereug' := PpUo, Py : H — H being the orthogonal projection i ontoVy,, and
where f(t) = Pnf(t) (note that the orthogonal projectidh, extends to a bounded
projectionV’ — V' and that|Pyllv, = 1).

The problem (3.5) is a linear inhomogeneous ordinaffedential equation in a
finite dimensional HilbeyBanach space and we know from the theory of ordinary
differential equations that (3.5) admits a unique solutige C*([0, T1; Vin).

Multiplying the equation (3.5) withu,,, we obtain

(Um(t), Um(©)n + (AmUm(t), Un()n = (fn(D), Um()H
and hence, by ellipticity o4,
1d
éd—tllum(t)llﬁ + 7 [Um®IIF
< (Un(®), Un(®)vrv + (Ati(t), Un()vev + @ [[Um()IIF
= <fm(t), um(t)>V’,V +w ||um(t)||ﬁ

< Cllifm®IR + gnum(t)n% + o U@

As a first consequence, we obtain the inequality

1d
éd—tnum(t)n2 < C,llfm(®IIZ + @ llum(®)IIZ.

By Gronwall’'s lemma, this implies for evetye [0, T],

t
lun®IE < eYudli3 + C, f 9| f(9)11%, ds
0

IA

.
C(IIUollﬁ+f I (S d9),
0

whereC > €*T(C, + 1). When we plug this inequality into the above inequality,
then we obtain

1d T
Ed—tnum(t)ua + g lum®II5 < C, I fn®IIZ, + C(lluoll + f (915 ds).
0

This implies, when integrating over,(D),

T 1 T
2 [ 118 dt+ SlunTE < Cloll + [ 1F(SIE d9.
0 0
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This and the equation (3.5) imply
T T T
[ de < [ 1A dee [ 1ol
0 0 0

T T
M f IUn(®IZ dit + f IR, dt
0 0

2(MC+1) (T
< %(f I @®)I12, dt + [luoll?).
0

Summing up, we see that there exists a consantO such that for everyn > 1

T T T
f lum®IIZ dt + f 1Um(®)IIZ dtSC( f I OIS dt+||uo||ﬁ)-
0 0 0

The right-hand side is finite by assumption and does not depend:oa.
As a consequenceyf) is bounded (0, T; V) andW*?(0, T; V’). By reflex-
ivity, we can thus extract a subsequence (which we denote again,pys(ich that

Un — uin L%(0,T;V) and
Un — Vin L%(0,T; V).
This means that for every € L2(0, T; V")
T T
lim [ . i = [ 0.0y

and for everyp € L2(0, T; V)

T T
r!jan fo (Um(t), o)y = fo V(t), (v v-

Letw € V be any fixed vector and lete D(0, T) be a scalar test function. Then an
integration by parts yields

!
< f L) dt Wiy
0

IA

IA

i
fo (D). oW

X
fim [ ). oowvy

i
~lim [ ). eOwy

.
_ fo V(). e OW v

~ fo V() (1), Wy

Since this equality is true for evewy € V, we find that

T T
f u{o:—f Ve in V',
0 0
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for every test functiop € D(0,T). Hence, by definition of the Sobolev space, the
functionu belongs taN*2(0, T; V’) andu = v.
SinceA: V — V'’ is a bounded linear operator, we find that

Au, — Auin L2(0,T; V"),
i.e. for everyp € L2(0,T; V)
T T
jim f (Aln(®). ey = f (AU, o)y v
m—oo 0 0

Note that also
AnlUn — Auin L2(0, T; V).

In order to see this, let € V, for somen > 1 and lety € L%(0, T). Then, for every
m>n,

T T
[ At 60wy = [ a0
0 0
]
= fo a(um(t), p(t)w)
]
_ fo (Al(D), (W

- L (AU(L), p(OWhyy (M — o0).

SinceJ, V,, is dense inV, and since therefore the sgt(-)v : ¢ € L%, T), V €
Un Vil is total inL2(0, T; V), the last claim follows.
Note also thaf,, — f in L?(0, T;V’). We thus obtain for every € L2(0, T; V)

i
fo U(t). e

)
lim fo (Un®). O

.
lim f (fm(t) = AmUm(t), (O))v- v
m=eo Jg

.
fo CH(E) — AU, (O v.

Since this equality holds for evegye L?(0, T; V), we find that
u(t) + Au(t) = f(t) fora.e.t € [0, T],

i.e. uis a solution of our dferential equation.

It remains to show that verifies also the initial condition. Lew € V and let
¢ € CY([0,T]) be such thatp(0) = 1 andy(T) = 0. Then an integration by parts
yields on the one hand

T T
fo (U Wiy = —(U(0), Whyry — fo (U, Wiy
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On the other hand, sinag' — U in H,

T T
f U, oWy = lim f (Um, @W)\» v
0 m—eo Jo

.
= lim (—(um(O),W>V/,v—f (Um, QW) v
m—oo 0
.
= _,Lim (u?,w)vf,v—f U, Wy v
— 00 O

T
= —(Uo, W)y v — f U, oWy .
0
Comparing both equalities, we obtain
(U(0), Wy v = (Ug, Why v
for everyw € V. Hence u(0) = uy. O

Remark 3.6. Lions’ Theorem says that the operator. V — V’, considered
as a closed, unbounded operator\@nwith domainD(A) = V, hasL?-maximal
regularity. This follows when regarding the inhomogeneous problem with initial
valueu(0) = 0.

Moreover, it follows from Lions’ Theorem, especially the solvability of the initial
value problem, thaH c Tr,(V’,V). Together with Lemma 3.4 this implies the
identity

Try(V',V) = H,
i.e. a complete description of the trace space in this special situation.

ExampLE 3.7. We consider the linear heat equation with Dirichlet boundary con-
ditions and initial condition

W(t, X) — Au(t,x) = f(t,x) (t,x) € Qr,
(3.6) ut,x) =0 X € 0Q,
u(0, X) = ug(x) X € Q,

whereQ c R" is any open set an@r = (0,T) x Q. This heat equation can be
abstractly rewritten as a linear Cauchy problem

u(t) + Au(t), t € [0, T], u(0) = u,

whereA : H}(Q) — H™(Q) is the Dirichlet-Laplace operator associated with the
forma: H3(Q) x H3(Q) — R defined by

a(u,v) = f Vuvv.
Q

It follows from Lions’ Theorem that for every € L?(0, T; H-}(Q)) and everyy, €
L2(Q) there exists a unique solution

ue WH(0,T; H(Q)) n L3O, T; H3(Y)
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of this problem.

A particular situation arises whe@ = R" (in this case the boundary conditions
are obsolete) and whein= 0, because in this case we have an explicit formula for
the solution. Using the heat kernel, one has for evgrg L?(R") the solutionu of
the heat equation is given by

1 x-yI2/(4)
) fR n e Uo(y) dy.
Lions’ Theorem implies that this solution belongs to the space
ue WH(0, T; HH(R") N L*(0, T; HY(R™) N C([0, T]; L*(R™)).

u(t, x) =

4. * LP-maximal regularity

LetA: X > D(A) —» X be aclosed, linear, densely defined operatoXon

We consider the abstract linear inhomogeneous Cauchy problem
4.2) u(t) + Au(t) = f(t), te [0,T], u(0)=0.
Here,f € LP(0, T; X) for some 1< p < oo.

Derinition 4.1. (@) A functionu € CY([0, T]; X) n C([0, T]; D(A)) is called a
classical solutionf u(0) = 0 and if u satisfies the dierential equation (4.1) for
everyt € [0, T].

(b) A functionu € WP(0, T; X) N LP(0, T; D(A)) is called a(LP) strong solution
if u(0) = 0 and ifu satisfies the diierential equation (4.1) for almost everyg [0, T].

DeriniTion 4.2, We say thaf hasLP-maximal regularity(on (Q T)) if for ev-
ery f € LP(O,T;X) there exists a unique strong solutione WYP(0,T; X) N
LP(0, T; D(A)) of the problem (4.1).

By definition, if A hasLP-maximal regularity, then the Cauchy problem (4.1)
is uniquely solvable in the spad&™P(0,T;X) n LP(0, T; D(A)), for every f ¢
LP(0, T; X). It will be convenient to introduce thmaximal regularity space

MR(a, b; X, D(A)) := W*P(a, b; X) N LP(a,b; D(A)) (-~ <a<b< )
which is naturally endowed with the norm

lullmr, = llUllwrr@px) + [1UllLr@ab:DeAY)-

SinceWP(a, b; X) andLP(a, b; D(A)) are Banach spaceBiR,(a, b; X, D(A)) is also
a Banach space. If there is no danger of confusion, we will vivi,(a, b) instead
of MRy(a, b; X, D(A)).

We will first show that the definition oEP-maximal regularity is independent
of T > 0, so that it stfices in fact to speak only dfP-maximal regularity. On
the way we will also show that the initial value problem is uniquely solvable in the
maximal regularity space, at least for certain initial values. For this, we first need
the following locality lemma.



20 2. LINEAR GRADIENT SYSTEMS

Lemma 4.3. Assume that A hasPkmaximal regularity on(0,T). If f €
LP(0, T; X) is zero on the interval0, T’) (with 0 < T < T), and if u €

MRy (0, T; X, D(A)) is the corresponding solution ¢#.1), then u= 0on (0, T”).
Proor. Define the function
ft+T) fO<t<T-T,
g(t) := . ,
0 ifT-T <t<T.

Theng € LP(0, T; X). By definition of LP-maximal regularity, there exists a unique
ve MRy(0, T; X, D(A)) solution of (4.1).

Now define
0 fo<t<T,
w(t) = _
vt-T") ifT" <t<T.

Then the functiorw restricted to the two intervals [U’] and [T’, T] belongs to the
maximal regularity spacedR,(0, T") andMR,(T’, T), respectively. Sinceis also
continuous irlT” (note thatv(0) = 0!), we actually havev e MR(0, T).

It follows easily from the definition olv (the definition ofg andv), thatw solves
the problem (4.1) for the functiof. Since (4.1) is uniquely solvable,= w, and
thereforeu=0o0on [Q T]. |

We also have to define thece space
Trp(X, D(A)) = {u(0) : ue MRy(0,1)},
which is naturally a Banach space for the norm
IUollrr, = inf{llullmr,0.1) : U € MRy(0, 1) andu(0) = uo}.

If there is no danger of confusion, we simply write, instead ofTr,(X, D(A)).

The spacdlr, is called trace space since it containstedkcesin t = 0 of functions

u e MRy(0,1). Note that we can evaluatg0) for every functioru in the maximal
regularity spaceMR,(0, T; X, D(A)) since W-P(0, T; X) is contained in the space

of all continuous functions (see vector-valued Sobolev spaces in one dimension).
Clearly, by definition,Tr, is contained inX, and since for everyl, € D(A) the
constant functiom = up belongs taMR,(0, 1), one has the inclusions

D(A) — Tr, < X.

It turns out thafT r,, is a strictly contained betwedd(A) and X (see below). For the
moment, however, we need not to know this.

LemMma 4.4. The following are true:
(a) Forevery T>0and every0 <t < T one has

Try ={u(t) : ue MRy(0, T)}.
(b) One has the inclusion
MRy(0, T) c C([0, T]; Trp)
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and there exists a constantX’0 (depending on T 0) such that
Ullcqo.my;Try) < Clliullmr, for every ue MRy,
Proor. The spaceMR,(0, T) andMR,(0, 1) are isomorphic via the isomorphism
um u(-T). Hence, for everyl > 0,
Trp, ={u(0) :ue MR,(0,T)},
and
lUollrr,.t := inf{[lullmr,.1) : U€ MR,(0, T) andu(0) = uo}
defines an equivalent norm arrp,.
Givenu € MRy(0, T) we may define the extensiane MR,(0, 2T) by
u(t) ifO<t<T,
v(t) = _
u2T —t) If T <t<2T.
We define next the functiong € MR,(0, T) by
Ww(s) :=v(it+s), 0<st<T.
Then one sees thaft) = u;(0) € Tr,, for every 0< t < T and since
t—u, [0,T] - MRy[0,T]
is continuous, one obtains from the definition of the nornTopthat
t—u(t), [0,T]—>Trp
is continuous. Moreover,

sup lu®)lirr, < C sup [U®)lltr,2r < ClVIMRy0.21) = 2C [UllMR,©.T)-
t€[0.T] te[0.T]

O

Tueorem 4.5 (Initial value problem)Assume that A hasPkmaximal regularity
on (0, T). Then for every i Tr, there exists a unique @ MR,(0, T) solution of
the problem

ut) + Aut) =0,t € [0,T], u(0) = up.

Proor. Existence:Let uy € Trp. By definition of Tr, and Lemma 4.4, there
existsv € MRy(0, T) such that(0) = up. By definition of LP-maximal regularity,
there existsv € MR,(0, T) solution of

W(t) + AW() = U(t) + A1), t € [0, T], wW(0) = O.

Now putu := v —w.

Uniqueness:Let u andv be two solutions of the initial value problem. Then
u — v is a solution of the same initial value problem with initial valugreplaced
by 0. The solution for that problem, however, is unique by definitiobfemaximal
regularity. Hencey = v. O

Tueorem 4.6 (Independence @f > 0). Assume that A has’tmaximal regularity
on (0, T). Then A has B-maximal regularity or(0, T’) for every T > 0.
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Proor. Fix T” € (0,T]. Let f € LP(0,T’; X) and extendf by zero on T’, T].
The resulting function is denoted Wy Let (i € MRy(0, T) be the unique solution
of (4.1). Letu be restriction ofuto the interval [0T’]. Thenu € MR,(0, T") is a
solution of (4.1) withT replaced byl’. Hence, we have proved existence of strong
solutions.

In order to prove uniqueness, by linearity, itfistes to show thati = 0 is the
only solution of (4.1) withT replaced byT’” and withf = 0. So letu be some
solution of the problem

Ut + Au(t) = 0, t€ [0,T'], u(0) = O.
O

Remark 4.7. Theorem 4.6 allows us just to speak_ 8fmaximal regularity of an
operatorA or of the Cauchy problem (4.1) without making the- O precise.

5. * Interpolation and LP-maximal regularity

The aim of this section is to study interpolation results for maximal regularity. In
particular, as a corollary, we will prove that the operaigr: D(A4) — H associated
with a bounded, elliptic bilinear form: V x V — R hasL?-maximal regularity.

Given two Banach space§ Y such thaty — X, and givenT > 0, p € [1, o],
we define thanaximal regularity space

MR,(0,T; X, Y) := W-P(0, T; X) N LP(O, T; Y)
and the trace space
Try(XY) :={u(0) :ue MR,(0, T; X, Y)}
with usual norms. The maximal regularity space and the trace space used up to now
was obtained fol¥ = D(A). The definition ofT ry(X, Y) is independent of > 0.

Lemma 5.1 (Interpolation of a bounded linear operatd@t X;, X5, Y1, Y> be four
Banach spaces such thats X; fori =1, 2. Let S: X; —» X, be a bounded linear
operator such that its restriction to,¥s a bounded linear operator SY; — Ya.
Then, for every pe [1, o], the restriction of S to Ty(Xy, Y1) is a bounded linear
operator S: Trp(Xy, Y1) = Trp(Xz, Y2) and

ISH 2T rpxwY2). TroxeY2)) < MAXISH £xy. 005 1SH £evav2) }-
Moreover, if S: X; — X; and S: Y; — Y, are invertible, then S Trp(Xy, Y1) —
Try(Xz, Y2) is invertible, too.

Proor. Letug € Try(Xy, Y1). By definition of the trace space, and by definition
of the norm on the trace space, for every 0 there existai € MRy(0, T; Xy, Y1)
such thatjullur, < (1 + &) [lUolltr,. Putv(t) := SUt). Thenve MRy(0, T; Xz, Y2) and

IVImr, = IIVlwerT;%,) + [IMILr0.T;v2)
< IS £ x2) NUllwep1:x0) + 1SH2ev ) IUlle.T:v)
< maX|ISll L. x)s 1Sz HIUIMR, < o0.
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In particular,v(0) = SU0) = S € Try(Xy, Y2) and

IS Wllrrev) < [MIMg, < MaX||SI| £(x,,x2)» 1SI£¢v2.v5)} lullmgr, <
< (1 + &) maxX{|ISIl zex.x2)» 1SH2eviv2)} UollTrx.va)-
Sincee > 0 was arbitrary, the first claim follows.
If S: X, —» X;andS : Y; — Y, are invertible, then one applies the above
argument to the operat@?! : X, — X; whose restriction td, is a bounded linear
operatorS™ : Y, — V;. O

Remark 5.2. The situation in the interpolation lemma. The boundedneSs:of
X1 — X, andS : Y; — Y, is assumed, the boundednessSoh the interpolation
spaces is a consequence:

X1 S X,

) 7
Tro(X, Y1) 3 Trp(Xe, Yo)
) )

Y, s \

—

The following lemma will not be proved.

LemMma 5.3. Let X, Y be two Banach spaces such thatY X. Then, for every

p e[l ],
Trp(LP(O, T; X), LP(0, T;Y)) = LP(O, T; Try(X, Y)).

LetA: D(A) —» X be aclosed linear operator &n This implies that the domain
D(A) equipped with the graph norm is a Banach space. We can define the restriction
of Ato the spac®(A) by

D(A;) = {xeD(A):Axe D(A)},
Ax = AX
This restriction is again a closed linear operator (exercice!).
Lemma 5.4. Let A: D(A) — X be a closed linear operator on X and define

A; : D(A;)) — D(A) as above. Assume that4Awl is invertible and that A has
LP-maximal regularity. Then Ahas LP-maximal regularity.

Proor. The operatoA + wl is an isomorphism between the Banach sp&yey
andX, and also between the Banach spdaés,) andD(A).

Let f € LP(0, T; D(A)). Then A+ wl)f € LP(0, T; X) and byLP-maximal regu-
larity there exists a unique solutiane MR,(0, T; X, D(A)) of the problem

u+Au=(A+wl)f,te[0,T], u0)=0.
Multiply this differential equation byX+ wl)~t and putv(t) := (A+ wl)~tu(t). Then
v e MRy(0, T; D(A), D(A1)) is solution of the problem
v+Av=f,te[0,T], v(0)=0.
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This solution is unique since every solutionMR,(0, T; D(A), D(A1)) is also a so-
lution in MR,(0, T; X, D(A)) of the same problem and the solution in the latter space
is unique byLP-maximal regularity.

As a consequencéy; : D(A;) — D(A) hasLP-maximal regularity. O

Remark 5.5. One can repeat the above argument and restrict the opérsedor
the spacé(A;) which is also a Banach space. This restriction is given by

D(A) = {xeD(Ap): Axe D(AL)},
Aox = AX

and it is also a closed linear operator. By iteration, one can define closed linear
operators

D(A) = {xe D(A1): Axe D(A1)},

AX = AX
and one obtains the following picture:
DA A X =X
T T
D(A) * DA =X
T T
D(A;) 7 D(A) =X

If A+ wl isinvertible and ifA hasLP-maximal regularity, then each operatarhas
LP-maximal regularity.

Even more is true: we know from the interpolation lemma (Lemma 5.1)Ahat
is also a closed linear operator on the interpolation spaces bevaadD(A). In
the following theorem we prove thatX + wl is invertible and ifA hasLP-maximal
regularity, then also the restriction Afto Tr,(X, D(A)) hasLP-maximal regularity.

Tueorem 5.6. Let A: D(A) — X be a closed linear operator on X and define its
restriction to T r,(X, D(A)) by

D(Arr,) = Try(D(A), D(A)).
Arr,X 1= AX

Assume that A wl is invertible and that A has l-maximal regularity. Then A,
has LP-maximal regularity.

Proor. Define
MR%(O,T; X,D(A)) := {ue MRy(0, T; X, D(A)) : u(0) = 0}
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and define the operator

S:MRYO,T;X,D(A)) — LP(O,T;X),
u —» u+Au

The operato§s is clearly bounded. Moreover, the operafohasLP-maximal regu-

larity if and only if the operato§ is invertible. Hence, by assumptidajs invertible.
The restriction ofS to the spacéVR,(0, T; D(A), D(A1)) is a bounded operator

with values inLP(0, T; D(A)), and, by Lemma 5.4, this restriction is also invertible.
By Lemma 5.3, we have

Tro(LP(0, T; D(A)), LP(0, T; D(A1))) = LP(0, T; Try(D(A), D(A1))),
and
Trp(WHP(O, T; X); WHP(0, T; D(A))) = W-P(0, T; Trp(X, D(A))).

It then follows that

Trp(MRy(0, T; X, D(A)), MR(0, T; D(A), D(A1))) =
= MR;(0, T; Tryp(X, D(A)), Trp(D(A), D(A))).

By the Interpolation Lemma (Lemma 5.1), the restriction

S: MRB(O,T;Trp(X, D(A)), Trp(D(A), D(A1))) — LP(O, T; Tro(X, D(A))),
u —» u+Au

is bounded and invertible. This means that the operdgrhasLP-maximal regu-
larity. O

Remark 5.7. One has the equality
Try(D(A), D(A1) = {x € D(A) : Axe Trp(X, D(A)},

so thatAr,, is really the restriction oA to the spacé r,(X, D(A)).

In order to prove this equality, let, € Trp(D(A), D(A1)) ¢ D(A). Then there
existsu € MR(0, T; D(A), D(A1)) such thati(0) = up. Putv(t) := (A+wl)u(t). Then
v e MR,(0,T; X, D(A)) and thus A + wl)up € Trp(X, D(A)). Hence,up € D(Ar,).
The other inclusion is proved similarly, using the invertibilityd# wl.

Remark 5.8. As before, the procedure of considering restrictions to intermediate
spaces can be repeated on the smaller spgcesD(A), X, = D(A,), etc.. One thus
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obtains the following picture:

D(A) A X =1 Xo

T T
Tro(D(A),D(A)) *  Try(X,DA) = Xip

T T

D(Ay) A D(A) =1 X

T T
Tro(D(A),D(A)) A Try(D(A).D(A1)) = Xpsayp

T T

D(A2) A D(A1) = X

If A+ wl is invertible and ifA hasLP-maximal regularity, then each operator in this
picture had_P-maximal regularity.

CoroLLARY 5.9. Leta: V XV — R be a bilinear, bounded, elliptic form and
let Ay : D(Ay) — H be the associated operator on H. Thep Bas [>-maximal
regularity. In particular, for every fe L?(0, T; H) and every y € V there exists a
unigue solution . W2(0, T; H) N L2(0, T; D(Ay)) of the problem

Ut + Au(t) = f(1), te [0,T], u(0) = Uo.

Proor. By Lions’ Theorem (Theorem 3.1, see also Remark 3.6), the operator
AV — V'’ associated with the form hasL?-maximal regularity.

By ellipticity of the forma and by the theorem of Lax-Milgram, the operator
A + wl is invertible. Hence, by Theorem 5.6, the restrictionrAdb the trace space
Try(V’, V) hasL?-maximal regularity, too.

But by Remark 3.6, this trace space is equattand the restriction of to the
spaceH is nothing else thaky. Hence Ay hasL?-maximal regularity.

For the second statement, one has to proveTingH, D(Ay)) = V. O

ExampLE 5.10. We consider again the linear heat equation (3.6) with Dirichlet
boundary conditions and initial condition from Example 3.7. From the results in this
section follows that for every, € Hj(Q2) and everyf e L%(0,T; L3Q)) the heat
equation (3.6) admits a unique solution

ue WH(0, T; L¥(Q)) N L*(0, T; D(AL,)) N C([0, T; Hg(®),

whereD(A,2) is the domain in?(Q) of the Laplace operator with Dirichlet boundary
conditions. IfQ = (a, b) is a bounded interval, theB(A2) = H?(a, b) N H(a,b)
(exercice). One also hd¥(A2) = H3(Q) N H3(Q) if @ ¢ RN has smooth boundary,
but this result is more dlicult to prove and will be omitted.
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Note that one can identify the spackeq0, T; L3(Q2)) and L?((0,T) x Q) in a
natural way so that the inhomogeneityis actually a real valued function on the
product (QT) x Q as suggested in the heat equation (3.6).






CHAPTER 3

Nonlinear gradient systems

1. Quasilinear equations: existence and uniqueness of local solutions

Let X and D be two Banach spaces such tats densely and continuously
embedded intX. Fix 1 < p < co. Letug € Try(X, D) andf e LP(0, 1; X).

Let, moreoverA : D — £(D, X) andF : D — X be two functions having the
property that

H) for everyT > 0 and everyu, ve MRy(0, T; X, D) one has
A(u)v € LP(0, T; X) andF(u) € LP(0, T; X).
In this section, we consider tlggiasilinear problem
U+ Aluu+Fu)=f, t=>0,
u(0) = uo.

A local solutionof this problem will be a functiom € MR,(0, T; X, D) which
satisfies the dierential equation almost everywhere onTdand which satisfies the
initial condition.

(1.1)

Tueorem 1.1 (Existence and uniquenesddssume that there exists z
MR,(0, 1; X, D) such that @) = up and
(i) there exists r> O, L > 0 such that for every) < T < 1 and every u, v,
w € MRy(0, T; X, D) satisfying {0) = v(0) = w(0) = Up and|lu - ZImr,,
IV = Zlmr,, IW = ZIur, < r one has
ICAU) — A(V))WIILe.1;x) < LU= ViIMr,0.1) IWIIMR,0.T)»
(ii) there exists r> 0 and Ly > 0 such thatlimy_oLt = 0 and for every
0< T <1landeveryu, e MR,(0, T; X, D) satisfying {0) = v(0) = up and
U= Zlmr,, IV - Zlmr, < r One has
IF(W) = F(W)llLe:x) < Ly llu— VMR, (0.T)5

(iii) forevery0 < T < 1, every ge LP(0,T; X) and every y € Tr, the linear
problem
V+A(zv=0,t€[0,T], v(0)=Vvp
admits a unique solution& MR(0, T; X, D).
Then the quasilinear problen{1.1) admits a unique local solution ue
MR,(0, T; X, D).

29
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Proor. For everyT > 0 we set
My := {ue MR,(0,T; X, D) : u(0) = up}.

The setM will be equiped with the metric induced by the norm\iR,. Functions
in M already satisfy the initial condition from (1.1).
Consider the nonlinear map

R:M — LPO,T;X),
u - (A2 -AWwu-F(u) + f.

By the hypothesis (H), the mdpis well defined.
Consider also the solution map

S:LP(O,T;X) —» M,
g — Sg:=u,

which assigns to every functiop € LP(0, T; X) the unique solution irM of the
problem

v+ A(2Qv=g(t),te[0,T], v(0)=uo.

By assumption (iii), this solution map is well defined, too.

By definition of the two maps above, a functiore MR(0, T; X, D) is a solution
of the quasilinear problem (1.1) if and onlytife M andS Ru= u, i.e. if uis a fixed
point of SR We have thus reduced the problem of existence to a fixed point problem
which we will solve by using Banach’s fixed point theorem.

LetSp : LP(0, T; X) = MRy(0, T; X, D) be the solution operator which assigns
to every functiorg € LP(0, T; X) the unique solution := Syg of the problem

V+A@V=g te[0,T], W0)=0.

There exists a consta@s > 0 independent of & T < 1 such that|Sy|| < Cs for
everyO< T < 1.

We may assume that the constant O from assumptions (i) and (ii) is the same.
Letr’ > 0 be such that

. 1
r’ < minfr, ——1},

10CsL
choose < T < 1 suficiently small so that
1
Lt < —,
T~ 5Cs
(1.2) lZImr,0m) < I’, and

. 3 ,
IF(D)llLer:x) + 12+ ADZlLeoT:x) + I fllLeTr:x) < N r.
S

Such a parametdr clearly exists, by the assumption that {iny Lt = 0 and by the
properties of the norms ib® andW*P. Set

M :={u e Mr : lu-Zlur,om <1}
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The setM is a complete metric space for the metric induced by the riprityr, =
|| - lIvry0T)- FOr everyu € M one has
lUllvr, < U - Zlvr, + [1ZIng, < 2r".
We prove tha Rmaps the se¥l into itself. In order to see this, lete M. Then
ISRU-2ZIwr, = IISRU-S(z+ A(D2)llur,
ISo(Ru=z+ A(D2)lIvr,

< Cs(I(A() = AW)ulleeT;x) + IF(2) = F(WllLeor:x) +
+[IF@ller:x) + 112+ ADZIer:x) + I TllLe@T:x)
3,
< Cs(Lllz= ullwr, IUllmr, + L7llz= Ullmr, + == 1)

5Cs

3
< Cs(2Lr'r +Lyr' + —17r’
< s ( + Lt +5Cs )

< r(z+=-+=) = Tr.

This proves that Rue M.
We next prove tha$ Ris a strict contraction. In order to see this, lev € M.
Then

ISRU-SR¥uwr, = IISo(RU-RVllur,
< Cs(I(AD — AW)(U = W)lle:x) + [ICAWU) = AW)VIILe@T:x) +
+|IF(u) = FW)llLeo.:x))
< Cs(Lllu=2Zlmr, + LIMImr, + L1) [lU = Viivr,
< CS (Lr/+ L2r + LT)”u_VHMRp
3 1
< (E+ E)IIU_V”MR,)
= 5 llu = VMg,

Hence,SR: M — M is a strict contraction. By Banach'’s fixed point theorem, there
exists a unique fixed point € M which by construction o6 andR is a solution of
the quasilinear problem (1.1). |

Remark 1.2. It follows from the proof of Theorem 1.1 that one could actually
also study non-autonomous (i.e. time-dependent) quasi-linear problems of the form

(1.3) u+At,uu+ F(t,u)=0,t>0, u(0)= up.

HereA:[0,T] x D —» £(D, X) andF : [0, T] x D — X are two functions such that
for everyT > 0 and everyu, ve MR,(0, T) one has
A(t,u)v € LP(0, T; X) andF(t,u) € LP(O, T; X).

By this hypothesis, for every > 0, the operatoré& : MRy(0, T) x MR,(0,T) —
LP(0, T; X) andF : MRy(0, T) — LP(O, T; X) given respectively byy,v) — A(t, u)v

(1.4)
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and (1, v) — F(t,u) are well-defined. Theorem 1.1, with an obvious small change in
condition (iii), holds then true for the non-autonomous problem 1.3, too.

The following lemma gives gficient conditions when the conditions (i) and (i)
of Theorem 1.1 are satisfied.

Lemma 1.3. Fix 1 < p < oo. The following are true:

(i) IfA: Trp, = L(D,X) is Lipschitz continuous in a neighbourhood ef u
(with respect to the topology in F), then the assumption (i) of Theorem
1.1is satisfied.

(i) If F : Tr, — X s Lipschitz continuous in a neighbourhood @f(with
respect to the topology in F), then the assumption (i) of Theorem 1.1 is
satisfied.

In order to prove this lemma, we need the following lemma.

Lemma 1.4. For every T> 0 and every ue MR,(0, T; X, D) satisfying {0) = O
one has

(1.5) Iullcqo.yTry < 21Ullvre0.T:xD)-

Proor. Every functionu € MR,(0, T; X, D) satisfyingu(0) = O can be extended
to a functionu e MR(0, o0; X, D) by setting

u(t) ifO<t<T,
ut) :==4q u@T -t) If T <t<?2T,
0 if 2T <t,

and for this particular extension one has

[UlIMRy(0.00:x.0) < 21Ul MRy(0.T:xD)-

Note that in this reasoning it is important th&0) = 0! As a consequence, by
definition of the norm in the trace space, for everyO,

Nu@®llrr, < Ut + lmry©.2x0) < 2[lUllMRy0.T:x.0)>

and the inequality (1.5) follows. |

Proor or LEmma 1.3. (i) By assumption, there exists- 0 andL > 0 such that

IAU) = AMV)IIzo.x) < LU= Ve,

whenevew, v € Tr, are such thalfu — uollrr, < r and||v — Uo|ltr, <.

Let z € MRy(0,1) be such that syg, ;;11z(t) — Uollrr, < r/3. For everyu, v,
w e MRy(0, T) with u(0) = v(0) = w(0) = up and||u — Z|ur, < /3, IIV-2Zlvr, < /3
and|jw — Z|mr, < T/3 We have, by Lemma 1.4,

U= Zlcqo.ayrys IV = ZlcqoayTry) < 2r/3,

and therefore, for everye [0, 1],

lu(t) — Uollrr,, lIV(t) — Uollrr, <T.
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As a consequence,
I(A(U) — A(V))WIILro.;%)

IA

S[(l)JTD] IAU(t)) — AVl £o,x) [IWllLp.T:D)
t€[0,

Lilu = Viicqo.:7rp) IWIvRr,
2L [|u = VlImr, [IWImR,-

IN A

Hence A satisfies the condition (i) of Theorem 1.1.
(i) By assumption, there exists> 0 andL > 0 such that

IF(U) = F()Iix < Lllu=Vrr,,

wheneveuw, v € Tr, are such thaftu — Ulit,, < r and|lv — Uollrr, < r. Similarly as
above, for every, v € MRy(0, T) with u(0) = v(0) = up and||u - Z|ur, < r/3 and
IV - ZImr, < /3 we obtain

1

IF(U) = F()IILro.T;%) To IF() — FM)lcgoT%)
TsL lu = VMlcqo,my;7r,)
2T L [lu— Vil,.

Hence F satisfies the condition (ii) of Theorem 1.1. |

IANIA

IA

A special case of the quasilinear equation (1.1) is obtained when the function
A is constant In this case, we call the quasilinear equatsamilinear We will
formulate the local existence and uniqueness of solutions in this special case. For
this, we assume again thatand X are two Banach spaces such tBas densely and
continuously embedded in. Let A: D — X be a fixed bounded linear operator.

Fix 1 < p< o andletF : D —» X be a function such that

(1.6) foreveryT > 0 and everyu € MR,(0, T; X, D) one has~(u) € LP(0, T; X).
We consider theemilinear problem
U+Au+F(u)=f, t=>0,
u(0) = uo,

wheref € LP(0, T; X) andug € Tr, = Trp(D, X). A local solutionof this problem
will be a functionu € MR(0, T; X, D) which satisfies the elierential equation al-
most everywhere on [0'] and which satisfies the initial condition.

(1.7)

Note that the linear operatdk gives rise to the constant functioh : D —
L(D, X) which assigns to eveny € D the operatoA. A constant functiom clearly
satisfies condition (i) from Theorem 1.1. Hence, the following result is an immediate
corollary to Theorem 1.1. Note that condition (i) in the following corollary is nothing
else than condition (ii) from Theorem 1.1.

CororLrLary 1.5 (Existence and uniquenesdissume that there exists &
MR,(0, 1; X, D) such that @) = up and
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() there exists r> 0 and Ly > 0 such thatlimr_oLy = 0 and for every
0< T < landeveryu, e MR,(0, T; X, D) satisfying {0) = v(0) = up and
lu = Zlmr,, IV = ZImr, < T One has

IF(U) = FW)llLeo1;x) < Lt U= Viimry01)s
(i) for every ge LP(0, 1;X) and every y € Trp the linear problem
V+Av=g,te[0,1], v(0)=vp

admits a unique solution ¥ MR,(0, 1;X, D), that is, the operator A has
LP-maximal regularity.

Then the semilinear problen{l.7) admits a unique local solution ue
MR,(0, T; X, D).

ExampLE 1.6 (Semilinear heat equation). L@tc RN (N > 3) be openT > 0,
Qr = (0, T)xQ, f € CY(R), and consider the semilinear heat equation with Dirichlet
boundary conditions and initial condition:

W(t, X) — Au(t, X) + f(u(t,x)) =0 (t,x) € Qr,
(1.8) ut,x) =0 X € 0Q,
u(0, X) = ug(x) XeQ,

Assume in addition that there exists some constantO such that

[f'(9)] < |$ﬁ for everyse R.

CoroLLarY 1.7. For every i € H3(Q) there exists a unique local solutionau
W20, T'; LA(€2)) N L%(0, T’; D(AL2)) N C([0, T']; H3(€2)) of the probleny(3.6).

Proor. In fact, we may apply Corollary 1.5, whete = —A,: is the Dirichlet-
Laplace operator associated with the famH3(Q)xH3(€2) — R given bya(u,v) =
fQ VuVvv (which had_?-maximal regularity on.?(Q2) by Corollary 5.9) and wherE :
H(Q) — L*(Q) is theNemytski operatoassociated with the functioft F(u)(x) :=
f(u(x)). By Lemma 1.3, it sfiices to show that this Nemytski operator is locally
Lipschitz continuous. We will need the Sobolev embedding

Ho() — LY(Q),
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which is true forq = % From this embedding, the growth condition énthe

mean value theorem andbiier’s inequality we deduce that for evaryv € H3(Q)

f () — F)P

Q
l]wamwm—wmf
fg OO Ju— VP

f Ul v VIR U — v

Q

2 N-2
[y iR [ -
Q Q

& 2
max( Ul [Vllug} ¥ U = Vil

IF(u) = FOWIIZ,

IA

IA

IA

IA

Hence, for everyR > 0 there exists a Lipschitz constdnt> 0 such that for every,
v € H(Q) with norms less thaR one has

IF @) = FWllz < L flu— Vs

In fact, one may také. := R¥z. In other wordsF is Lipschitz continuous on
bounded subsets &f;(Q). m

ExampLE 1.8 (Cahn-Hilliard equation). Le® c R3 be a bounded domain which
is regular in the send that the domain of the Dirichlet-Laplace operater A, >
which is associated with the form: H}(Q) x H}(Q) — R, a(u,v) = [ VuVy, is
given by

D(A) = H2 N H(Q).
In this example, we consider the Cahn-Hilliard equation
Ut(t, X) + A(Au(t? X) - f(u(t’ X))) =0 (t$ X) € QTa
(1.9 u(t,x) = Au(t,x) =0 X € 0Q,
u(0, X) = ug(x) X € Q,
where as befor€; = (0,T) x Q, and where the nonlinearitf belongs toC3(R).
No growth restrictions orf are imposed. We will apply Corollary 1.5 in order to

prove existence and uniqueness of solutions of the Cahn-Hilliard equation, at least
for initial valuesup € H? N H3(Q). For this, we start by the following lemma.

Lemma 1.9. The bilinear form bi H2 N H3(Q) x H? N H}(Q) — R defined by

b(u,v) = f AUAV
Q

is bounded and elliptic.
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Proor. The Dirichlet-Laplace operator dr?(Q) is a closed linear operator. In
particular, its domai(A) is a Banach space for the graph norm

llulloeay = llullez + |AUll.2.
By assumption, the doma(A) coincides withH2NH3(€2). Hence, by the bounded
inverse theorem, the graph norm is equivalent to the usual nokd mH?, which

is the norm induced frori?. This implies that there exists> 0 such that

2
1.
H2nH;

Hence, the fornb is elliptic. Boundedness df is straightforward. O

2 2 2
b(u, u) + [lUllZz = IAUIIT, + [l > 7 lull

Lemma 1.10. Let B = B2 be the operator on £ which is associated with the
form b from Lemma 1.9. Then

D(B) = {ue H* N HJ(Q) : Au e H? n H3(Q)}
and Bu= A?u.

Proor. Let A be the Dirichlet-Laplace operator dr?(Q2). By assumption,
D(A) = H2n H3(Q). Moreover, by definition of the formb, b(u,v) = (Au, Av).-
and thus

D(B) = {ue D(A) : Ave LA(Q) Vp € D(A) : (Au, Ap).2 = (V, ¢)2}.
Define the adjoinA* of A by
D(A) = {uel*Q):3veL*(Q),Yp e D(A): (U Ap)Lz = (V @)Lz},
Au = v
For everyu € D(A) and everyy € D(A) the symmetry ot and the scalar product in
L2 imply
(U ARz = (Ap,U)2
= a(p,u)
= a(u,¢)
= (AU )2

This identity impliesu € D(A*) andA*u = Ay, i.e. A* is an extension of.
SinceA s already surjective, the operatéit is surjective. On the other hani;
is also injective: ifA*u = 0, then for everyy € D(A)

0= (A"u,¢) = (u, Ap).
SinceA is surjective, this impliesl = 0, i.e. A" is injective. SinceA* is a bijective
extension ofA which is itself already bijective, we obtal(A*) = D(A) andA* = A

This, the definition oA* and the above characterization@fB) imply the claim.
|

LemMa 1.11. Let f € C3(R) be such that (0) = 0. Then the Nemytski operator
F : H(Q) — H2Q) given by Ru)(x) := f(u(x)) is well-defined and Lipschitz
continuous on bounded subsets G{®)).
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Proor. We use the Sobolev embeddings
H%(Q) — L*(Q) andHY(Q) — L*Q),

which are valid since2 is a subset oR3 (in fact, the above embeddings are also
true for open subsets & andR?, but they are not true in dimension 4 and higher
dimensions).

Letu € H3(Q). Then, by the Sobolev embeddings and by the fact theatd its
derivatives are bounded on bounded intervals one obtains

f(u) € LA(Q),

a _ 7 ﬂ 0 12 2
aXif(u)—f(u)axieL L c LY(Q)
and

& du du d%u
f — f// o= .I:r
OX;j0%; ) ) 0X; 0%; " (U)(9Xj8Xi

where in the last inclusion we also usedlder’s inequality. This proves th&t is
well-defined fromH?(Q) into H?(Q).

We next show thaF is Lipschitz continuous on bounded setsHf(Q). Let
R> 0 and letu, v € H2(Q) such thatu||yz, [IVIl42 < R. By the Sobolev embeddings,
there exists a consta@t> 0 such that

el L4 L*+L> L2 c LAQ),

lullie, IV, [IVUlls, [IVVIIe < CR
Let M = M(R) > 0 be a constant such that

1f®lLcrer < M for everyk € {0, 1,2, 3}.

Then
1) - FWIZ = f () - FV)12
Q
< ||f/||fw(_cRCR)||U—V||Ez
< M?||lu=Vl|ye.
Moreover,

A

I (F) - FOIE < fg 1) - Pl P+ fg TRl - 5o
1712w ccrerllt = VIZIUIZ, +
+ 112 —crerliu — VI,
(M?C?Re + M?) [lu— VI,
Lo(R)? [lu — VIIZ,..

IA

IA
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Finally,

IA

& » , ) 20U 5
L@ TIE < [ 117 - PR

6u av ou
.I:// ___2_2
f| (V)"axj ax ol

6v (9u ov ,
f//
f| W 5 — 5o +

+f|f/(u) ’ ZaX‘aXi|2
]

0%v
/(v 2
f' ()l laxjax. 6xj<9>q|
M?|u - IILwII |IL4II ||L4

ou 6v
+ M?|— —
”ax, axJ”L“” ||L4

2||—|| AIQ - ﬂ||2
X a%  Ox -
2

a 6X|||L2

ou 0%V

M?

" ”6x,8x. AX; 6)(.||L2

< Ls(R?[lu—VIfZ..

IA

+ M?[lu = VIIE |

A

Putting the last three estimates together we have thus provedr tlsatipschitz
continuous on bounded subsetdH(Q). O

Tueorem 1.12. Assume that &£ C3(R) satisfies {0) = 0 and thatQ is regular
in the sense described above. Then for evgry H? N H}(Q) there exists a unique
local solution

ue WH(0, T; L¥(Q)) N L0, T; D(B))
of the Cahn-Hilliard equatior§1.9). Here, O(B) is as in Lemma 1.10.
Proor. Apply Corollary 1.5. O

ExampLE 1.13 (Quasilinear diusion equation). More generally, & c RN is
open and bounded (!), we may also solve the following quasilinear problem:

—div(a(x,u)Vu) + f(x,u) =0 (t, x) € Qr,
(2.10) ut,x) =0 X € 09,
u(0, X) = ug(x) X€Q,
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wherea, f : Q xR — R are of clas€!. We assume that there exist constadis,
n > 0 such that for everx e Q,u,ve R

(H1) C=x>a(xu)>n>0,
(H2) Ja(x,u) —a(x, V)| < Lju—v,
(H3)  If'(u)l < Clu~>.

CoroLLARY 1.14. For every i € L?(Q) there exists a unique local solutionau
W20, T'; H(Q)) N L%(0, T'; H3(2)) N C([0, T]; L*(€2)) of the problen(3.6).

Proor. We apply Theorem 1.1, working in the Hilbert spade!(Q) =: X. The
Nemytski operatoF : L2(Q) — H™}(Q) defined byF(u)(x) := f(x, u(x)) is locally
Lipschitz continuous by hypothesis (H3); the proof is very similar to that in the
preceeding example, but we now use thait (Q) embeds continuously intd ~1(Q)
and we actually show that the Nemytski operatais locally Lipschitz continuous
from L2(Q) into L%z (Q).

Next, for everyu € H}(Q2) we define the bilinear forra(u) : Hj x H3 — R by

a(u)(wy, wp) = f a(x, u(x))vVw, Vws,.
Q
By hypothesis (H1), for every € H3(<Q). O

2. Regularity of solutions

In this section we want to study the regularity of solutions of the nonlinear equa-
tion
(2.1) u+F@u)=0,t>0, u(0)=up.
Here,F : D — Xis a function satisfying hypothesis (1.6), amgde Tr,(X, D). This
problem includes as special cases the quasilinear problem (1.1) (we do not assume a
vanishing Lipschitz condition as in condition (ii) of Theorem 1.1) and the semilinear

problem (1.7). Our regularity result will be true in this general situation, but it will
really be applied in the situations considered before.

For the proof of our regularity theorem we need the following classical theorem
from calculus (which is in fact also proved by using Banach’s fixed point theorem,
like our theorem of existence and uniqueness for the quasilinear problem).

Tueorem 2.1 (Implicit function theorem)Let X, Y, Z be three Banach spaces
and let G: X x Y — Z be of class €for some k> 1. Assume that X, y) = 0 and
assume that the partial derivati\ﬁ’g()?,y) .Y — Z is boundedly invertible.

Then there exists a neighbourhoodd X of X, a neighbourhood \& Y ofy,
and a function g U — Y of class & such that

{(x,y) e UxV:G(xy) =0 ={(x09(X):xeU}.

If, in addition, the function G is analytic, then the implicit function g is analytic,
too.
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Tueorem 2.2 (Regularity for the quasilinear problentin the nonlinear problem
(2.1), assume that the induced operator. MR,(0, T) — LP(0, T; X) is of class ¢
for some k> 1. Let ue MR,(0, T; X, D(A)) be a local solution of2.1) and assume
that the linear problem

v+ F'(uwv=g,te[0,T], wv0)=v,

has P-maximal regularity in the sense that it admits for everg §°(0, T; X) and
every y € Trp a unique solution ¥ MR,(0, T). Then, for every > 0,

u e WP, T; X) n WEP(r, T; D) and

u e C(0,T]; X) N C*(0,T]; D).
If F is of class C°, then in fact ue C*(]0, T]; D), and if F is analytic, then u is
analytic in a local sector around the positive real axis.

Proor or THEOREM 2.2. Lete > 0O be suficiently small so that for every €
(—¢, €) the function
w(t) == u((@+ 1), te[0,T],
is well-defined. For every € (—¢, €) the functionu, € MRy(0, T; X, D) is the unique
solution of the nonlinear problem

u+(1+Q)F@)=0,t>0, u(0)= up.
Consider the nonlinear operator
G:RxMRy(O,T;X,D) — LP(O,T;X)xTrp(X D),
A4,v) > (v+ @+ DFMV),v(0) - up).
SinceF is of classC¥, the operato is also of clas€* as one easily verifies.
Moreover, by definition oG and the functions;, one has
G(1,u;) = (0,0) for everyd € (—¢, &).
We show thaG actually satisfies the assumptions of the implicit function theo-

remin (Qu). For this, we have to consider the partial deriva@%@, u) which is the
linear operator given by

%(O, u): MRy(0, T; X,D) — LP(O, T;X)x Try(X, D),
v B (V+ F'(u(t)v, v(0)).

Hence, by our assumption on the linear probkemF’(u)v = g, and by the bounded
inverse theorem, the partial derivati%%(O, u) is boundedly invertible.

By the implicit function theorem, there exists € (0, ), a neighbourhootl c
MR, (0, T; X, D) and an implicit functiorg : (-¢’, ") — U of classC* such that

G(4,9(1) = (0,0),

and all solutions in{&’,&’) x U of the equatiorG(4,v) = (0,0) are of the form
(1,9(2). Since the elementsl(u,) are solutions of this equation, we obtaip =

9().
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Moreover, the function
g:(=¢,¢") = MRy(O,T; X D),
A = u=u(l+2)),
is of classC*. When calculating the consecutive derivategat 1 = 0, we see that
t - tu(t) € MR,

t > tu®(t) e MR,
and this yields the stated regularity of the solution O

The above regularity theorem is already interesting in the linear case, that is,
when the operatoF : D — X is bounded and linear. In this case, the induced
operatorF : MRy(0, T; X, D) — LP(0, T; X) is also linear, hence analytic.

CoroLLary 2.3. Assume that A D(A) — X is a closed linear operator on a
Banach space X. Assume that A h&snhaximal regularity. Then for everyyue
Try(X, D(A)) the unique solution u of the linear problem

u+Au=0,t>0, u(0)=uo
satisfies for every k 1
ue MR,(0, T; X, D(A)) N C=(]0, T]; D(AY)).
In fact, the solution u is analytic in a neighbourhood(@f).

Proor. Applying Theorem 2.2, one obtaing € C>([r,T]; D(A)) for ev-
ery 0 < 7 < T. From this and the Cauchy problem one obtains ther
LP(r,T; D(A?) and derivating in the Cauchy problem one successively obtains
firstu e C*([r, T]; D(A?)) and then by inductiom € C*([r, T]; D(AY)) for every
k> 1. O

ReMark 2.4 (Co-semigroups). A family $(t))o of bounded linear operators on
a Banach spacX is called aCy-semigroupf
(i) S(0) =1,
(i) S(t+ s) = S(t)S(s) for everyt, s> 0, and
(iii) for every x € X the functiont — S(t)x is continuous.
A closed linear operatoA : D(A) — X is called thegeneratorof a Cyp-semigroup
(S(1))wo if for every x € X andt > 0 one hasfot S(s)x dse D(A) andAfOt S(s)x ds=
S(t)x — x.

LetA: D(A) — X be a closed linear operator on a Banach spaeed assume
that A hasLP-maximal regularity. Then for every € Tr, = Try(X, D(A)) there
exists a unique solution € MR, of the problem

u+Au=0,t>0, u(0)=x
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If one putsS(t)x := u(t) (u being the unique solution for the initial values Try),
then S(t))w=0 is aCo-semigroup on the trace spate,. The orbitsS(-)x being by
definition the solutions of the above Cauchy problem, this semigroup isaven
lytic by Corollary 2.3.

In the special situation wheA : V — V’ is the operator associated with a
bilinear, bounded and coercive foram VxV - R (V — H = H’' — V), then we
obtain an analytic semigroufs(t))=oc on the spaceéd whose generator is actually
the operatoAy.

Tueorem 2.5. Let A: D(A) — X be a closed, linear operator on a Banach space
X, and let Be L(Tr,, X). Assume that A has’kmaximal regularity. Then A B has
LP-maximal regularity.

Proor. Saying that the operatok hasLP-maximal regularity is equivalent to
saying that the operator

So: MRY(O,T; X,D(A)) — LP(0,T;X),
u - Uu+Au,
is invertible for some (for all)r > 0. Note that the norm of the inverﬂSalll IS

uniformly bounded inl € (0, 1].
We have to prove that the operator

S: MR, T;X,D(A) — LP(O,T;X),
u — u+Au+Bu,

is invertible for some (for all)l > 0. There exists a consta@t > 0 such that for
everyT € (0,1]

IA

C ”B”L(MR%,LD)
C sup |IBulleeT;x)
Ul g <L

-1
IS0 B||L(MR?,)

IA

IA

CTY? sup [Bulcgo:x
llullyeg <1

CTYPIBlizrr,x  SUP IlUlleqoryTry)
Iulhyeg <1

2CTYPIIBIl gty -

IA

IA

Hence, ifT > 0 is small enough, then, by the Neumann selliesS;'B is invertible
in MR)(0, T; X, D). As a consequence, the operaore So(l + S;'B) is invertible
for T > 0 small enough. Hencé + B hasLP-maximal regularity. O
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ExampLE 2.6. LetQ = (0,1), f € C*(R), and consider the semilinear heat equa-
tion

W — U+ f(U)=0, (t,x) eR, x(0,1),
(2.2) ut,0)=u(t,1)=0, teR,,
u(0, X) = up(x), x € (0,1).
CoroLLARY 2.7. For every § € H}(0, 1) there exists a unique local solutionau

W20, T; L3(0,1)) N L%(0, T; H2 n H3(0, 1)) of the semilinear heat equatig2.2)
satisying

ueC((0,T) x(0,1)).
Proor. The negative Dirichlet-Laplace operator b#{0, 1) given by
A2 i H2NH3(0,1) - L%(0,1), U —Uyy,

hasL2-maximal regularity by Lions’ theorem and by interpolation.
The Nemytski operator

F:H30,1) — L30,1), uw f(u),

is of classC™. In order to see this, one may use the embeddingi¥b, 1) into
Co(0,1). In particularF is locally Lipschitz continuous.

By Theorem 1.1, the heat equation (2.2) admits a unique local solution in the
maximal regularity space. By Theorem 2.2, this solution even satisfies

(2.3) ue C*(10, T]; H3(O, 1)).
Note that for everk € N one has
F(H(0,1)) c H¥(0, 1),

and the restriction of the Nemytski operatérto H*(0, 1) is again of clas€>. In
particular, by (2.3),

o, f(u) € C(10, T]; H(0, 1)),
which by the heat equation implies
Uxx € C*(10, T]; H(0, 1))
or
ue C=(]0, T]; H*0, 1))
By induction, one shows that for evekye N
ue C*(J0, TJ; H¥(0, 1)) = C=(10, T]; C**([0, 1])).

In particular, all the partial derivatives af exist and are continuous. The claim
follows. o
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3. * Navier-Stokes equations: local existence of regular solutions
In this section we are looking for (regular) solutions
u:[0,T]xR" —» R",
p:[0,T]xR" - R
of the Navier-Stokes equation
ou—Au+(u-V)u+Vp=0, (t,x)€[0,T]xR",
(3.2) divu =0, (t,x) € [0, T] xR,
u(0, X) = up(x), X € R".

The Navier-Stokes equation is actually a systenm efjuations which we may
also write in the form

Ol — AU + Y ujd Ui + 0, p =0, (t,x) € [0, T] xR",
divu = 0, (t, %) € [0, T] xR,
u(0, x) = Uo(X), xeR",

with u = (ug, ..., Up).

The first step in solving the Navier-Stokes equation will be to rewrite it in an ab-
stract functional analytic setting and to obtain an abstract nonlinear evolution equa-
tion of parabolic type.

We introduce the following spaces. First the Sobolev space ebihoidal(i.e.
divergence free) vector fields

HL:= HY®R"R") := {ue H}R™R" : divu = 0},
and also the Lebesgue space of all solenoidal vector fields

L2 := L2(R™R") := {ue L’R™R") : Vo € HYR") : f u- Ve =0}
Rn

Lemma 3.1. The spaces Hand L2 are closed subspaces of land L2, respec-
tively. The space His a dense subspace of L

Proor. The closedness of the two spaces is straightforwarduleet?! and let
¢ € HYRM). Then an integration by parts yields

0:fdiVU¢=fu-Vgo,
RN RN

and hencas € L2. The density ofH! in L2 follows from a usual regularization
argument. O

Lemma 3.2. Let
L2 := LZ(R™R") := {ue L3R R") : v e HY(R") s.t. u= Vv}
be the space of all gradient vector fields. Then
L2 1 L2,
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i.e. the two spaces are orthogonal iA(R"; R").

Proor. This follows from the very definition off2. O

Since L2 is a closed subspace &f, there exists the orthogonal projection
P : L? — L2 onto the spac&?. This projection is called thelelmholtz projec-
tion. By Lemma 3.2PL2 = {0}.

Next, we need the following forra: H x H} — R which is defined by
n
a(u,v) = f Vuvyv = Z f Ox;UiOx, V.
RN =1 RN
The following lemma is straightforward.
LemMma 3.3. The form a defined above is bilinear, bounded and elliptic.

Let A= A be the operator oh2 associated with the form The operatoA is
called theStokes operator
For everyu € H2 = H2 N H! and every € H! an integration by parts yields

f VuVv

Rn

— f AUV
Rn

- f AuPv
Rn

(—PAu)v,

Rn

a(u, v)

where we have used th&®v = v sinceP is the identity onL2. Hence, for every
u € H2 one hasi € D(A) and

Au= —PAu.

We will use in the following (without proof) thaD(A) = H2. This can be shown by
using the Fourier transform drf(R") and the Plancherel theorem.

Lemma 3.4. The Stokes operator AH2 — L2 has [>-maximal regularity.

Proor. This lemma is a direct consequence of Lions’ theorem (Theorem 3.1) and
interpolation. See in particular Corollary 5.9. O

Assume for the moment, that the Navier-Stokes equation admits a solutign (
such thau(t, -) € L2, p(t,-) € HY(R") and such that the membeigi(t, -) andAu(t, -)
belong toL? (so that necessarily also the nonlinear term belonds’}o Then for
eacht we can apply the Helmholtz projection to each member and we obtain the
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following equation
0Pu—PAu+P((u-V)u)y=0, (t,x)€[0,T] xR",
divu =0, (t,x) € [0, T] xR",
u(0, X) = ug(X), X € R".

Here we have used that the Helmholtz projection applied to gradient vector fields
gives 0. The resulting equation is only an equation in the unknown funati8imce

divu = 0, one hasi € L2, and the above equation can abstractly be rewritten in the
spacel.2:

u—Au+P((u-V)u)=0, te[0,T],
(3.2) { o ((u-V)u) [0,T]
This is the equation which we will solve by abstract methods. Let
MR, = W-2(0, T; L2) n L3(0, T; H2).
Lemma 3.5. Assume that & 2 or n = 3. Then the operator
B: MR, x MR, — L%0,T;L32),
(wv) = P(u-V)v)
is well-defined, bilinear and bounded (i.e. continuous).
Proor. We will use the Sobolev embeddings
H! — L*andH? — L™

which hold true ifn=2 orn = 3.
These Sobolev embeddings imply the embeddings

MR; < C([0, T]; H}) — L*(0, T; L%
and for everyu € MR, one has
Vue L%0,T; HL) — L0, T; LY.
By Holder’s inequality, this implies for eveny, ve MR,
(u-V)ve L3O, T;L?,
and

l(u- VMIo1;e2) < Cllullmg, IMIvR,»

for some constar€ > 0 independent ofi andv. Hence,P((u- V)v) € L?(0, T; L2),
i.e. Bis well-defined. Moreover, by the preceeding inequabtis also bounded. o

Tueorem 3.6. Assume that & 2 or n = 3. For every y§ € HZ the equation(3.2)
admits a unique local solution

ue WH(0,T; L2) n L%(0, T; H2).
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SKETCH OF THE PROOE. Let

~

M :={ue MR; : u(0) = ug}.
Define the nonlinear operator
R:M — L%0,T;L2),
u - —P((u-V)u).

This operator is well-defined by Lemma 3.5. Actually, for evarg M one has
Ru= —B(u, u).
Define in addition the operator

S:L%0,T;L3) — M,
f —» Sf
which assigns to everf the unique solutiom = S f of the problem
u+Au= f,te[0,T], u(0)= uo,

whereA is the Stokes operator. The operafois well-defined byL?-maximal regu-
larity of the Stokes operator (Lemma 3.4).

Thenu € MR; is a solution of the abstract Navier-Stokes equation (3.2) if and
only if u e M is a fixed point ofSR: M — M.

The rest of the proof is very similar to the proof of Theorem 1.1 on existence
and uniqueness of local solutions of the quasilinear problem. In particular, existence
and unigueness for the abstract Navier-Stokes equation follows from Banach'’s fixed
point theorem. We omit this part of the proof. O

CoroLLaRY 3.7. Assume that & 2 or n = 3. Then for every gie H. there exists
a unique local solution of the Navier-Stokes equation:

u € W(0,T;L2) N L0, T;H2) nC(0,T]; H}) and
u,Vp € C(0,T] xR"R").

Proor. O

4. * Diffusion equations: comparison principle

In this section, we want to study order preservingness of semilin€asidin
equations of the form

W—Lu+f(uy=0 (t,x)eR, xQ,
4.1) u(t,x) =0, te R, X 0Q,
u(0, X) = up(x), XeQ,

wherelL is a second order elliptic operator of the form

Lu= > dia;j()aju+ > (B:(9au+di(c()u)) + d(xu.
] i
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We will work on the Hilbert spacel = L?(Q). We say that a function € L(Q)
is positive(and we writeu > 0) if u(x) > 0 almost everywhere. We also write> v
if u—v > 0. For every pair of functions, v € L?(Q) we define thesupremum v v
and thenfimum uA v respectively by

u Vv v(x) := supgu(x), v(x)} andu A v(x) := inf{u(x), v(x)}..

Note thatu v v andu A v belong toL?(Q2). For a functionu € L?(Q) we define the
positive part d, thenegative part 0 and theabsolute valuéu| respectively by

u":=uvO,u:=(-uyvOoandul =u"+u.
Note thatu®, u™ and|u| are positive, and = u* — u™. Note also that
Hul {2 = [ulle.

Lemma 4.1. Let Q c R" be an open set. For every @ Hj(Q2) one has 0,
u- € Hj(Q) and
Vu' = 1,0VuandVu = 1,oVu.

Proor. Letg: R — R be defined by

o 0, t<0,
9= t, t>0.

Moreover, for everyg > 0 we put

0, t<0,
g&(t) = gv 0<t<83
t-%, t>e

%
Note thatg, € CY(R) N W-*(R) with [|g.[|e <

We first show that for every € H(Q) one hasg.,S ou € H}(Q) andVg, ou =
g,(u)Vu. In fact, givenu € Hj(Q), there exists a sequenag) € D(Q) such that
U, — uin H3(Q). By the classical chain rule, for evemye N, g. o u, € H3(€2) (even
Cl(©)) andV(g. o uy) = g.(u,)Vu,. In particular, ifp € D(Q), then

ou
f g€ o unax| f gs )_ngo

Lettingn — o and using Lebesgue’s dominated convergence theorem, we obtain

[eougt =~ [dwie

This implies the first claim abouw, o u. But in this equation we may now let tend
& — 0 and use that

9s(U) — u” andg;(u) — luso.
By Lebesgue’s dominated convergence theorem again, we find that

oy f ou
ut == = — | leo—e.
0 O o0 0% "
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The claim is proved. O

Remark 4.2. Lemma 4.1 remains true for functiondHA(Q2), but then one should
use the fact thaE'(Q) n HY(Q) is dense irtH(Q), at least if one wants to copy the
proof above.

Lemma 4.3. For every u, e H3(Q) one has i v, uA v e HJ(Q).
Proor. Note that
uvv=v+(Uu-v)"anduAav=v-(u-v),
and use Lemma 4.1. O

LetV be a Hilbert space which is densely and continuously embeddediiato
L2(Q). Leta: V xV — R be a bounded, bilinear, elliptic form. Lét = A. be
the operator or.2(Q) which is associated with the form LetF : V — L%(Q) be
a nonlinear locally Lipschitz continuous operator. Consider the semilinear evolution
problem

(4.2) u+Au+F(u)=0,t>0, u(0)=uo.

By Theorem 1.1 we know that for every € V there exists a unique local
solutionu € MR,(0, T; L%(Q), V) of this problem. Letu andv be two solutions of
(4.2) and assume thag < vo. We prove the following comparison principle under
additional assumptions on, a andF.

Tueorem 4.4 (Comparison principle)Assume that there exisis € R, L > 0
such that for every & V one has tie V and

a(u, u’) + wllu*|%, = 0
and for every u, e V,
|(F(U) = F)(U-v)*] < L(u-v"~

Letw, Vo € V, and let u and v be two local solutions @f.2) (both existing o0, T])
corresponding to the initial conditiongland vy, respectively. Assume thaj g Vo.
Then t) < v(t) for every te [0, T].

Proor. Sinceu andv are solutions of (4.2), we have
U-v)+Au-Vv)+FUu)-F() =0.
Multiplying this equation scalarly il = L(Q) by (u— v)* € V, we obtain

%dgt fg (U= +au-v,(u-v)") + L(F(u) -FW)u-v)*=0.

By hypothesis o andF, this implies

1d
SIU= I < @+ D=l
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By assumption ony, andvg one has i — v)*(0) = (ug — Vp)* = 0. Hence, by
Gronwall's lemma,

lI(u(t) = V(D) *IIZ, = O for everyt € [0, T],
i.e. (u(t) —v(t))* = 0 oru(t) < v(t) for everyt € [0, T]. O

Remark 4.5. The condition o from Theorem 4.4 is satisfied if for evenye V
one hasrt, u” € V and
a(u~,u) >0.

ExampLE 4.6. LetV = HJ(Q) so thatV is densely and continuously embedded
intoH = L%(Q). Leta: V x V — R be the bounded, bilinear, elliptic form given by

a(u,v):fA(x)Vqu+f(b(x)Vuv+ c(x)qu)+fd(x)uv.

Here, the cofficient matrixA € L*(Q; RNN) is uniformly elliptic, andb;, ¢;, d €
L*(Q), b= (1), c = (c).

Let A = A_> be the operator oh?(Q) which is associated with the form
Formally, A is a realization of the elliptic operator from thefdision equation (4.1).

Let f € CY(R) be globally Lipschitz continuous and I€t : L?(Q) — L?(Q)
be the Nemytski operator associated with(note thatF is also Lipschitz con-
tinuous). Consider the semilinear evolution problem (4.1) from the beginning of
this section. We know that for every, € Hj(Q2) there exists a unique solution
u € MRy(0, T; L?(Q), D(A)) of (4.1). By Theorem 4.4, ifi andv are two solutions
of (4.1), and ifu(0) < v(0), thenu(t) < v(t) for everyt in the common interval of
existence. In fact, we have to prove the two conditions from Theorem 4.4.

First, if u € H3(Q), thenu*, u™ € H}(Q) by Lemma 4.1 and by Lemma 4.1 one
also obtains

a(u~,u’)

fA(x)Vu‘Vu*+f(b(x)Vu‘u++c(x)u‘Vu+)+fd(x)u‘u+

fA(X)lvulzl{u<0}1{u>0}+fb(X)VUU1{u<O}1{u>O}+
Q Q

+ f c(X)uVuliy<oLiuso) + fd(X)UU1{u<0} L0
o o
= 0.

Hence, by Remark 4.5, the condition ais satisfied.
Next, sincef is globally Lipschitz continuous, for every v e H}(Q),

j?um—umw—w+ \fﬁ@—ﬂﬂﬂh@hm}
Q Q

-L f(u —V)Zl{u>v}
—lew—wv%

v
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whereL > 0 is the Lipschitz constant df.

If one assumes in addition th&{0) = 0, so that the constant functian= 0 is
a solution of the dtusion equation (4.1), then the comparison principle yields the
following form of the maximum principle. Ifiis a solution of the dfusion equation
(4.1) such that(0) > 0, thenu > 0.

ExampLE 4.7. One may also consider the heat equation with Neumann boundary
conditions, i.e. the problem

w—Au+ f(u)y=0, (t,x)eR, xQ,
(4.3) M, x) =0, te R, x 0Q,
u(0, X) = up(x), X € Q.

Assume thatf is globally Lipschitz continuous. The negative Laplacian with Neu-
mann boundary conditions is realized (at least for reglauch as intervals or
smooth domains) oh?(Q2) by the operatoA = A > which is associated with the
forma: HY(Q) x HY(Q) — R given by

a(u,v) = f Vuvv.
Q

It follows from the previous results that for evemy € H(Q) there exists a unique
local solutionu € MRy(0, T; L3(€2), D(A)) of (4.3). Moreover, the comparison prin-
ciple can be applied.

Assume thaff (0) = 0 andf(u) = 0 for someu > 0. Then the constant functions
u = 0 andu = u are global solutions of the heat equation (4.3). Hence, if an initial
valueu, satisfies 0< Uy < U, and ifu € MRy(0, T; L?(Q2), D(A)) is a local solution
of (4.3), then the comparison principle implues @ < u. In particular, the solution
u is bounded uniformly in time and space. We will see in the next section that the
solution can be extended to a global solution (i.e. existing far:al0).

ExampLE 4.8. Also in this example we show how the comparison principle may
be applied in order to prove global existence of solutions. We consider the semilinear
heat equation

U — U — JUP?u=0, (t,X)eR, x(0,1),
(4.4) U0 =ut,1)=0, teR,,
u(0, X) = up(x), x € (0,1),

wherep > 2 is a real parameter. Again, we know that for evagye HJ(0, 1) there
exists a unique local solution

ue MRy(0, T; L%(0, 1), H® N H3(0, 1))

of this heat equation.
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We calculate thstationary solutionsf (4.4), i.e. the solutiong € H2NHJ(0, 1)
of the ordinary diterential boundary value problem

{ —pxx— lolP20 =0, x€(0,1),
¢(0) = ¢(1) = 0.

Assume that is a solution of this stationary problem. Then a multiplcation of
(4.5) bygy implies that

(4.5)

&(SDX + B|90| ) =0,
or

1
(4.6) Qi+ BW =C

for a constan€C which is necessarily positive. The const@ntepresents an energy
of the solution.

Clearly, every solutionp of the stationary problem (4.5) is necessarily also a
solution of the initial value problem

—oxx— lplP 29 =0, x¢€(0,1),
(4.7) ¢(0) =0,
‘Px(o) =C.

The theory of ordinary diierential equations implies that for everye R the initial
value problem (4.7) admits a unique solutipaxisting for allx € R and in particular
on the interval [01]. For every such solutiog, the identity (4.6) holds, bus(1) is
not necessarily equal to 0.

By identity (4.6), for every solutiog of the initial value problem (4.7) one has

¢x(0)= £VC =c,
and if X € R is a local extremum, then

(%) = +(pC)?.

Assume thatp,(0) > 0 (so thaty is positive on some interval [@]) and letx, €
(0, ) be the first maximum op. The functiony is thus positive and increasing on

[0, Xo]. By the identity (4.6),
/ 1
SDX = C - B(Pp,

fXO /Lx_dhx()
0 c-1

which implies

— BQDP
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After substitution, one obtains

XO:

CoLEN
f 1 s
1
0 ‘[C—Bsp
11
Th T
1
0 1-39

The above calculation shows that if we defieas in this last equality, thexy is a
maximum ofy. Solutions of the initial value problem are then obtained by taking
a solution on [0xg], extending it by reflection to [®xg] and [Q 4x], and then to
extend the thus obtained functiomperiodically.

Hence, ify is a solution of the boundary value problem (4.5), txen- 2—1n for
somen € N. This shows that solutions of (4.5) exist for a discrete set of ene@yies
For everyn € N, there exist two stationary solutiops ande_, which have their first
extremum inxy = % The functiong, is positive inxy, the functiony_,, is negative
in Xg. To this set of stationary solutions one has to add the solgtjan 0. We see
that the stationary problem (4.5) admits a countable number of solutions which form
a discrete subset ¢12 N H3(O, 1).

Let ¢, andy_; be the solutions of (4.5) which have exactly one maximum (resp.
minimum) in (Q 1). Theny; is positive on (01) andy_; is negative.
The functionau; andu_; defined by

Uz (t, X) = ¢1(X) andu_y(t, X) = ¢_1(X)

are global solutions of the heat equation (4.4)udfe HZ(0,1) is an initial value
such thatp_; < ug < ¢, and ifu is the corresponding solution of (4.4), then the
comparison principle implies

p-1(X) < U(t, X) < @1(X).
In particular, the solution remains uniformly bounded in time and space, as long as
it exists. We will see in the next section that this implies that for every initial value as

above the corresponding solution can be extended to a global solution (i.e. existing
for everyt > 0).

5. * Energy methods and stability






CHAPTER 4
Appendix

1. Closed linear operators

For the following, we will have to consider a larger class of linear operators.
WheneverX andY are two Banach spaceslinear operatoris a linear mapping
A : D(A) — Y defined on a linear subspabgA) of X. The spacd(A) is called
domainof A. Note that the domaiB®(A) need not be a closed linear subspac of

Dermnition 1.1. LetX andY be two Banach spaces. A linear operaiarD(A) —
Y is calledclosedif its graph

G(A) :={(x,AX) : xe D(A)} c XX Y
is closed in the product spagex Y.

Lemma 1.2. A linear operator A: D(A) — Y is closed if and only if the following
property holds:

D(A) > x, = xin X and

) = X e D(A) and Ax=y.
AX, —yinY

Proor. It suffices to note thab(A) > x, — xin X andAx, — yin Y if and only
if G(A) 2 (X, A%,) — (X, Y) in the product spacX x Y, by definition of the product
topology.

If Ais closed and if5(A) > (X, AX) — (X, y) then k,y) € G(A) by the closed-
ness ofA and thusx € D(A) andy = Ax.

Conversely, ifG(A) 3 (X, Ax) — (X Y) implies necessarilx € D(A) and
y = Ax, then &, y) € G(A), i.e. G(A) is closed, and thua is closed. O

Lemma 1.3. A linear operator A: D(A) — Y is closed if and only if its domain
D(A) equipped with the graph norm

IXlloea) = lIXllx + [IAXly, X € D(A),
is a Banach space.

Proor. If Ais closed, then, by definitiog(A) is a closed subspace of the product
spaceX x Y. SinceX x Y is a Banach space, the grapfA) is a Banach space. Now
note thatD(A) equipped with the graph norm ai{A) equipped with the product
norm are isometrically isomorphic under the isomddA) — G(A), X — (X, AX).
HenceD(A) equipped with the graph norm is a Banach space.

Conversely, assume thB{A) equipped with the graph norm is a Banach space.
ThenG(A) (equipped with the product norm froX x Y) is a Banach space by the
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same argument as before. In particu@fA) is a closed subspace ¥fx Y. Hence,
Alis closed. O

LemMma 1.4. Every bounded linear operator TX — Y (with domain T) = X)
is closed.

Proor. LetT € L(X,Y). The normyg| - ||x and|| - [|p(ry are equivalent norms ax
which is a Banach space for the nojim||x. HenceX = D(T) is a Banach space for
the norm|| - ||p¢r). By Lemma 1.3 is closed. O

The following theorem is a fundamental theorem in functional analysis. It is a
consequence of Baire’s theorem, but it will not be proved here.

Tueorem 1.5 (Closed graph theoremlet X and Y be Banach spaces and let
T : X - Y (with domain IT) = X) be closed. Then T is bounded.

ExampLE 1.6. LetX = Y = C([0, 1]) be the space of continuous functions on
[0, 1] with norm||f|l. := SURp 4 | T(X)I. Define thederivation operator Doy

D(D) := CY([0, 1]) andDf := f’ for f € D(D).

ThenD is closed. In fact, the spa€([0, 1]) is a Banach space for the graph norm
I flloy = llflle + 1]l (EXErcice).

ExampLe 1.7. LetX = Y = LP(R) (1 < p < o0) with norm]|| - ||,. Define the
multiplication operator Mby

D(M) :={f € LP(R) : xf(X) € LP(R)} and M f) := xf(x) for f € D(M).
ThenM is closed. In fact,
D(M) = LP(R; (1 +x") dX),

and the graph norr- [lpv) is equivalent to the norm

1/p
I FllLp;(2+xp) ) = (f|f|p(1+ 1XP) dx) ,
R

which maked P(R; (1 + |x|P) dX) a Banach space.

2. Vector-valuedLP spaces

As beforeX denotes a Banach space. In this sectfond, u) is a measure space.

Derniion 2.1. (@) A functionf : Q — X is calledstep functionif there exists
a sequenceA,) c A of mutually disjoint measurable sets and a sequerged X
such thatf =}, 1a Xn.
(b) A function f : Q — X is calledmesurableif there exists a sequencg) of step
functionsf, : Q — X such thatf, — f pointwiseu-almost everywhere.
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Remark 2.2. Note that there may be dl@dirence to the definition of mesurability
of a scalar valued functions. Measurability of a function is here depending on the
measureu. However, if the measure spad®, (A, u) is completein the sense that
u(A) = 0 andB c A impliesB € A, then the above definition of measurability and
the classical definition of measurability coincide. Note that one may always consider
complete measure spaces.

Lemma 2.3. If f : Q — X is measurable, thefpf|| : Q — R is measurable.
More generally, if f: Q — X is measurable and if g X — Y is continuous, then
go f:Q — Y is measurable.

Proor. This is an easy consequence of the definition of measurability and the
continuity ofg. Note that in particular the noripn- || : X — R is continous. O

Lemma 2.4. If f : Q — X and g: Q — K are measurable, then fgQ — X is
measurable.

Similarly, if f : Q — X and g: Q — X" are measurable, thef@, f)x x : Q@ - K
is measurable.

Tueorem 2.5 (Pettis).A function f: Q — X is measurable if and only {i’, f)
is measurable for every x X’ (we say that f isveakly measurab)eand if there
exists gu-null set Ne A such that {Q \ N) is separable.

For a proof of Pettis’ theorem, seaikk & PuiLLips [11].

CoroLrAry 2.6. If (f,) is a sequence of measurable functiéhs-» X such that
f, — f pointwiseu-almost everywhere, then f is measurable.

Proor. We assume that this corollary is known in the scalar case, i.e. when
X =K.
By Pettis’s theorem, for ahi there exists @& null setN, € A such thatf,(Q\ Ny)
is separable. Moreover there existg aull setNy € Q such thatf,(t) — f(t) for all
t e Q\ Np. LetN := |50 Nn; @s a countable union @fnull sets,N is au null set.
Then f (restricted taQ \ N) is the pointwise limit everywhere of the sequence
(fn). In particularf is weakly measurable. MoreovdiQ2 \ N) is separable since

FQ\N) c | f(@\N),

and sincef,(Q \ N) is separable. The claim follows from Pettis’ theorem. |

Derinition 2.7. A measurable functio : Q — X is calledintegrable if
Jo 11t < co.

Lemma 2.8. For every integrable step function fQ — X, f = 3, 1a X, the
series)., xnu(A,) converges absolutely and it is independent of the representation of
f.
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Proor. Let f = 3,14 X, be an integrable step function. The setg)(c A are
mutually disjoint andX,) c X. Then

D el (A = fg 11l d < .

O

Dermnition 2.9 (Bochner integral for integrable step functions). EetQ — X
be an integrable step functioh= Y, 15 X,. We define

IRETERTTO)

LemMma 2.10. (a) For every integrable function fQ — X there exists a sequence
(f,) of integrable step function® — X such that|f,|| < ||f|| and f, — f pointwise
u-almost everywhere.

(b) Let f: Q — X be integrable. Letf,) be a sequence of integrable step functions
such that| f,|| < ||f|]| and f, —» f pointwiseu-almost everywhere. Then

X = lim f f, du exists
Q

N—oo

I < f 1] o
Q

Proor. (a) Letf : Q — X be integrable. Thefif|| : Q — R is integrable.
Therefore there exists a sequengg 6f integrable step functions such that@, <
Ifll andg, — || ]| pointwiseu-almost everywhere.

Sincef is measurable, there exists a sequerigeof step functiong2 — X such
that f, — f pointwiseu-almost everywhere.

Put

and

__faon
Ifall + £
(b) For every integrable step functign Q — X one has

I f g duf| < f gl dye.
Q Q
| f fo— i | < f I1fa — fll i,
Q Q

and by Lebesgue’s dominated convergence theorem the sequgrfgedﬁz) is a
Cauchy sequence. When we put lim,,_,., fg f, du then

X < liminf f 1ol e = f 11 e
N—ooo Q Q

n-

Hence, for everyn, m
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DeriniTion 2.11 (Bochner integral for integrable functions). lfet Q — X be
integrable. We define

fd,u—llmffd,u,

nN—oo

where (f,) is a sequence of step functiofis— X such that|f,|| < ||f||andf, — f
pointwiseu-almost everywhere.

Remark 2.12. The definition of the Bochner integral for integrable functions is
independent of the choice of the sequenizg ¢f step functions, by Lemma 2.10.

Remark 2.13. We will also use the follwing notation for the Bochner integral:

fg f oder fg () dut),

and ifQ = (a,b) is an interval inR:

j; £ oder f ’ () dut).

If u = Ais the Lebesgue measure then we also write

fab f(t) dt.

Lemma 2.14. Let f: Q — X be integrable and T £L(X,Y). ThenTf: Q - Y

is integrable and
fo du = Tf f du.
Q Q

Proor. Exercise. O

Tueorem 2.15 (Lebesgue, dominates convergendest (f,) be a sequence of
integrable functions. Suppose there exists an integrable functio®g— R and
an (integrable) measurable function:fQ — X such thaf|f,]| < gand f — f
pointwiseu-almost everywhere. Then

ffd,u:Iimffnd,u.
O n—oo 0

Proor. Exercise. O

DerniTiON 2.16 (£P spaces). For every & p < oo we define
LPOX)={f: Q> X measurablef IIf1IP du < oo}.
Q

We also define
L7(Q; X) :={f : Q > X measurable AC > 0 such thau({||f|| > C}) = 0}.



60 4. APPENDIX

Lemma 2.17. For everyl < p < co we put

Ifllp := (f 1P due) ™.
Q
We also put
[Ifll :=inf{C > 0 : u({lIfll > C}) = O}.
Then|| - ||, is a seminorm oP(€2; X) (1 < p < o).

Remark 2.18. A function|| - || : X — R, on a real or complex vector space is
called aseminormif

(i) x=0= X =0,
(@i1) [|AX| = 141Xl for everyA € K and allx € X,
@) [Ix+yll < [Ixl + |Ivil for all x, y € X.
DerniTion 2.19 (LP spaces). For every & p < oo we put
Ny, = {f e LP(Q;X):]fll,=0}
= {f € LP(Q; X) : f = Ou-almost everywhere
We define the quotient space
LP(Q; X) := LP(Q; X)/N,,
which is the space of all equivalence classes
[f]:=f+ Ny feLP(QX).
Lemma 2.20. For every[ f] € LP(Q; X) (f € LP(Q; X)) the value
ILE1llp = NI Fllp

is well defined, i.e. independent of the representant f. The funittiynis a norm
on LP(Q; X). The space k(Q; X) is a Banach space when equipped with this norm.

Remark 2.21. As in the scalar case we will in the following identffynctions
f e L£P(Q; X) with their equivalence classdg$] € LP(Q; X), and we say thattP is
afunction spacalthough we should be aware that it is only a space of equivalence
classes of functions.

Remark 2.22. ForQQ = (a, b) an interval inR and foru = A the Lebesgue measure
we simply write
LP(a, b; X) := LP((a, b); X).
We can do so since the spadeg¥[a, b]; X) and LP((a, b); X) coincide since the end
points{a} and{b} have Lebesgue measure zero and there is no danger of confusion.

Lemma 2.23. Let Q c R" be open and bounded. Ther@: X) c LP(Q; X) for
everyl < p < oo,

Proor. Actually, for finite measure spaces, we have the more general inclusions
L=(Q; X) c LP(Q; X) c LY(Q; X) c LY(Q; X)
ifl<q<p<oo. |
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Lemma 2.24. Let the measure spad€, A, u) be such that E(Q) is separable
forl < p < o (e.g.Q c R" be an open set with the Lebesgue measure). Let X be
separable. Then(Q; X) is separable fold < p < .

Proor. By assumption the spack’(Q2) andX are separable. Let) c LP(Q; X)
and (,) c X be two dense sequences. Then the set

Fo={f :Q— X:f=hyXn

is countable. It stiices to shows thaf c LP(Q; X) is total, i.e. spafF is dense in
LP(Q; X). This is an exercise. |

Tueorem 2.25. LetQ be as in lemma 2.24. Lat< p < oo and assume that X is
reflexive. Then the spacé(Q; X) is reflexive and

LP(Q; X)" = LP(Q; X).
Proor. Without proof. O

3. Vector-valued Sobolev spaces

Dermnition 3.1 (Sobolev spaces). Leto <a<b < ocand 1< p < 0. We
define

WHP(a,b; X) := {ue LP(a,b; X) : 3Ave LP(a b; X) Yy e D(a,b)
b b
f Uy’ = —f Vip}.
a a

Lemma 3.2. For every—co < a < b < oo and everyl < p < o one has
WLP(a, b; X) c CP((a, b); X). For every ue W*P(a,b; X) and every s, te (a,b)
one has

Notation:v =: U'.

u(t) —u(s) = ft u'(r) dr.
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