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CHAPTER 1

Introduction

1. * Examples of nonlinear problems

1.1. Roots of polynomials. Let p : C→ C be a polynomial.
Problem: Prove existence of a root of p, that is, prove that the equation

p(z) = 0

admits a solution. If possible, try to find an explicit formula for a solution, or try to
locate a solution.

The same questions may be asked for polynomials p : Cn → Cn.

1.2. Ordinary differential equations. Let f : Rn → Rn be a continuous func-
tion, and let x0 ∈ Rn. Prove existence (and uniqueness) of a local solution of the
ordinary differential equation with initial value

ẋ(t) = f (x(t)), x(0) = x0.

1.3. Optimization problems. Let j : R → R be a convex function and define
the cost functional J on the space C([0, 1]) by

J(u) =
∫ 1

0
j(u(s)) ds, u ∈ C([0, 1]).

Prove that the cost functional J admits a global (or local) minimum.

1.4. Nonlinear diffusion. Let Ω ⊂ Rn be a an open set. Let u : [0, T ] ×Ω→ R
be some function depending on a time variable t ∈ [0, T ] and a space variable x ∈ Ω.
For example, this function may in the applications be an energy density, a population
density, or an image.

In the following, we think of u being an energy density. If O ⊂ Ω is a small
volume (with smooth boundary ∂O), then

∫

O
u(t, x) dx

is the total energy in the volume O at time t. The total energy in O can only change
if there is an energy transport through the boundary, or if there is an energy source
within O. According to Fourier’s law, an energy transport is only possible in the
opposite direction of the gradient ∇u; recall that the gradient ∇u points into the
direction in which u increases most, in particular, into the direction in which there is
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6 1. INTRODUCTION

a higher energy density, and energy transport is directed to regions with lower energy
density.

Hence,
∂

∂t

∫

O
u dx =

∫

∂O
a(|∇u|) ∇u

|∇u|
n dσ,

where a : R+ → R+ is some given function (the diffusion coefficient function),
the integral over the boundary ∂O is taken with respect to the surface measure and
n = n(x) is the outer normal in a point x ∈ ∂O.

By changing the order of differentiation and integration on the left-hand side,
and by applying the divergence theorem to the integral on the right-hand side, we
obtain

∫

O

∂u
∂t

dx =
∫

O
div

(

a(|∇u|) ∇u
|∇u|

)

dx.

Since this last inequality holds for every arbitrary volume O ⊂ Ω, we obtain that
the energy density u satisfies the following partial differential equation:

(1.1)
∂u
∂t
− div

(

a(|∇u|) ∇u
|∇u|

)

= 0.

This is a quite general example of a diffusion equation which appears in heat con-
duction, population dynamics, geometric flows, image analysis, . . . , depending on
the choice for the diffusion coefficient a.

For example, if we choose a(s) = s, then

div
(

a(|∇u|) ∇u
|∇u|

)

= div∇u =: ∆u

is the Laplace operator, and the equation (1.1) is the linear diffusion equation

∂u
∂t
− ∆u = 0.

If the diffusion coefficient is nonlinear but homogeneous, for example if a(s) =
sp−1 for some p ≥ 1, then

div
(

a(|∇u|) ∇u
|∇u|

)

= div
(|∇u|p−2∇u

)

=: ∆pu

is the p-Laplace operator, and the equation (1.1) becomes the nonlinear diffusion
equation

∂u
∂t
− ∆pu = 0

involving the p-Laplace operator. Note that the 2-Laplace operator is just the Laplace
operator defined before. This equation will serve as a model problem for nonlinear
diffusion.
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In the applications, other diffusion coefficients appear. For example, the function
a(s) = s√

1+s2
leads to the nonlinear partial differential equation

∂u
∂t
− div

( ∇u
√

1 + |∇u|2
)

= 0

which is related to the mean curvature flow of surfaces, and only slightly different
diffusion coefficients are also used in image analysis.

1.5. Nonlinear elliptic problems. Instead of the time dependent problems from
the previous section, we may also consider the stationary (time-independent) prob-
lems

−∆pu = f in Ω, u = 0 in ∂Ω,

or, more generally,

−div
(

a(|∇u|) ∇u
|∇u|

)

= f in Ω, u = 0 in ∂Ω.

Problem: Prove that for every f in a certain class of functions there exists a unique
solution u.

Before solving this problem, one actually has to define the notion of solution;
for example, one has to say in which class of functions a solution should live, and in
which sense it solves the PDEs above.

2. The Sobolev space W1,p(Ω)

Let Ω ⊂ Rn be an open set. For every function u ∈ C1(Ω) we define its support
by

supp u := {x ∈ Ω : u(x) , 0};
the closure is to be taken in Rn. Then we define the space of all compactly supported
C1 functions:

C1
c (Ω) := {u ∈ C1(Ω) : supp u is compact and contained in Ω}.

For every 1 ≤ p < ∞ we define the Sobolev space

W1,p(Ω) := {u ∈ Lp(Ω) : ∀1 ≤ i ≤ n∃vi ∈ Lp(Ω)∀ϕ ∈ C1(Ω)
∫

Ω

u
∂ϕ

∂xi
= −

∫

Ω

viϕ}.

We note that the elements vi are uniquely determined, if they exist, and we write
∂u
∂xi

:= vi. We call ∂u
∂xi

the weak partial derivative of u with respect to xi.
We equip the space W1,p(Ω) with the norm

‖u‖W1,p :=
(‖u‖p

Lp +

n
∑

i=1

‖ ∂u
∂xi
‖p

Lp

)
1
p .

Then the space W1,p(Ω) is a Banach space.
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We further define

W1,p
0 (Ω) := C1

c (Ω)
‖·‖W1,p
.

Whenever X is a Banach space, we denote by X′ its dual space, which is the
space

X′ := {x′ : X → R : x′ is linear and continuous}.

It is equipped with the norm

‖x′‖X′ := sup
‖x‖X≤1

|x′(x)|.

Instead of x′(x) we will also write 〈x′, x〉X′,X.
The dual space of W1,p

0 (Ω) is denoted by W−1,p′(Ω) with p′ = p
p−1 , that is

W1,p
0 (Ω)′ =: W−1,p′(Ω).

For every u ∈ Lp′ (Ω) and every 1 ≤ i ≤ n we define the weak partial derivative
∂u
∂xi

as an element in W−1,p′(Ω) by

〈 ∂u
∂xi
, v〉W−1,p′ ,W1,p := −

∫

Ω

u
∂v
∂xi

dx.

L 2.1. For every 1 ≤ p < ∞, the operators

∂

∂xi
: W1,p(Ω) → Lp(Ω),

u 7→ ∂u
∂xi
,

and

∂

∂xi
: Lp′ (Ω) → W−1,p′(Ω),

u 7→ ∂u
∂xi

are linear and continuous.

P. The two operators are clearly linear. For the first operator, one has

‖ ∂u
∂xi
‖Lp ≤ ‖u‖W1,p ,
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by the definition of the norm in W1,p. For the second operator, one calculates, using
Hölder’s inequality,

‖ ∂u
∂xi
‖W−1,p′ = sup

‖v‖
W

1,p
0
≤1
|〈 ∂u
∂xi
, v〉W−1,p′ ,W1,p

0
|

= sup
‖v‖

W
1,p
0
≤1
|
∫

u
∂v
∂xi
|

≤ sup
‖v‖

W
1,p
0
≤1
‖u‖Lp′ ‖

∂v
∂xi
‖Lp

≤ ‖u‖Lp′ .

Hence, both operators are continuous. �

The following lemma is an immediate consequence of the preceding lemma.

L 2.2. For every 1 ≤ p < ∞, the operators

div : W1,p(Ω)n → Lp(Ω),

u = (ui) 7→
∑

i

∂ui

∂xi
,

and

div : Lp′ (Ω)n → W−1,p′(Ω),

u = (ui) 7→
∑

i

∂ui

∂xi

are linear and continuous.

3. * The p-Laplace operator

Let Ω ⊂ Rn be an open set. The p-Laplace operator (p ≥ 1) is the partial
differential operator which to every function u : Ω→ R assigns the function

∆pu(x) := div
(|∇u(x)|p−2∇u(x)

)

, x ∈ Ω.

We simply write ∆ instead of ∆2 and call the 2-Laplace operator simply Laplace op-
erator.

In the following, we will realize the p-Laplace operator as an abstract operator
between two Banach spaces and use functional analytic methods in order to solve el-
liptic and parabolic PDEs involving the p-Laplace operator. We will see that several
abstract methods will apply.
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D 3.1 (p-Laplace operator). Let 1 ≤ p < ∞, and let Ω ⊂ Rn be an open
set. We define the Dirichlet p-Laplace operator on Ω to be the operator

∆Ωp : W1,p
0 (Ω) → W−1,p′(Ω),

u 7→ ∆Ωp u := div (|∇u|p−2∇u).

L 3.2. The Dirichlet p-Laplace operator is well defined and continuous.
Moreover, there exist constants C ≥ 0, η > 0 such that for every u ∈ W 1,p

0 (Ω)

‖∆Ωp u‖W−1,p′ ≤ C ‖u‖p−1
W1,p

and
− 〈∆Ωp u, u〉W−1,p′ ,W1,p

0
≥ η ‖∇u‖p

Lp.

P. The operator

div : Lp′ (Ω)n → W−1,p′(Ω),

u = (ui) 7→ div u :=
n

∑

i=1

∂ui

∂xi

is linear and continuous by Lemma 2.2, and ∆Ωp is the composition of the operator

D : W1,p
0 (Ω) → Lp′ (Ω)n,

u 7→ |∇u|p−2∇u,

and the operator div. We show that the operator D is well defined and continuous.
First of all, for every u ∈ W1,p

0 (Ω)
∫

Ω

|Du|p′ =
∫

Ω

|∇u|(p−1)p′ =

∫

Ω

|∇u|p < ∞,

which implies that D is well defined. So it remains to show that D is continuous.
Let (un) ⊂ W1,p

0 (Ω) be converging to some u ∈ W1,p
0 (Ω). Then ∇un → ∇u in

Lp(Ω)n. For every convergent sequence in Lp, we find a subsequence which con-
verges almost everywhere and which is dominated by some function in Lp, that
is, after passing to a subsequence (!) which we denote again by (un), we have
∇un → ∇u almost everywhere and |∇un| ≤ g for some g ∈ Lp(Ω) and all n. Hence,
|∇un|p−2∇un → |∇u|p−2∇u almost everywhere, and |∇un|p−1 ≤ gp−1 ∈ L

p
p−1 (Ω) =

Lp′ (Ω) for every n. By Lebesgue’s dominated convergence theorem, this implies
|∇un|p−2∇un → |∇u|p−2∇u in Lp′ (Ω).

We have thus shown that for every convergent sequence (un) ⊂ W1,p(Ω), un → u,
we find a subsequence (again denoted by (un)) such that Dun → Du in Lp′ (Ω).
This implies that D is continuous, as the following short argument by contradiction
shows. Assume that D is not continous. Then there exists a convergent sequence
(un) ⊂ W1,p(Ω), un → u, such that (Dun) does not converge to Du in Lp(Ω). The
property that (Dun) does not converge to Du means that there exists a subsequence
of (un) (which we denote again by (un)) and some ε > 0 such that

‖Dun − Du‖Lp′ ≥ ε for every n.
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But the subsequence (un) is still convergent to u, and by what has been said before,
there exists again a subsequence (again denoted by (un)) such that Dun → Du in
Lp′ (Ω), a contradition to the estimate above. Hence, the assumption that D is not
continuous must be false, and therefore D is continuous.

It remains to show the two estimates. First of all,

‖∆Ωp u‖W−1,p′ = sup
‖v‖

W1,p
0
≤1
|〈∆Ωp u, v〉W−1,p′ ,W1,p

0
|

= sup
‖v‖

W1,p
0
≤1

∣

∣

∣

∫

Ω

|∇u|p−2∇u∇v
∣

∣

∣

≤ sup
‖v‖

W
1,p
0
≤1
‖∇u‖p−1

Lp ‖∇v‖Lp

≤ ‖∇u‖p−1
Lp

≤ ‖u‖p−1
W1,p .

Secondly,

− 〈∆Ωp u, u〉W−1,p′ ,W1,p
0
=

∫

Ω

|∇u|p,

and the claim is completely proved. �





CHAPTER 2

Minimization of convex functions

In the following, X denotes a Banach space with norm ‖ · ‖. The space

X′ := {x′ : X → K : x′ is linear and bounded}

is the dual space of X, that is, the space of all linear and bounded functionals on X.
The dual space X′ is a Banach space for the norm

(0.1) ‖x′‖ := sup
x∈X
‖x‖≤1

|x′(x)|.

1. Reflexive Banach spaces

The following theorem, one version of the Hahn-Banach theorem, is standard in
any functional analysis course and it will not be proved here.

T 1.1 (Hahn-Banach; extension of bounded functionals). Let X be a
normed space and U ⊂ X a linear subspace. Then for every bounded linear
u′ : U → K there exists a bounded linear extension x′ : X → K (i.e. x′|U = u′)
such that ‖x′‖ = ‖u′‖.

C 1.2. If X is a normed space, then for every x ∈ X \ {0} there exists
x′ ∈ X′ such that

‖x′‖ = 1 and x′(x) = ‖x‖.

P. By the Hahn-Banach theorem (Theorem 1.1), there exists an extension
x′ ∈ X′ of the functional u′ : span{x} → K defined by u′(λx) = λ‖x‖ such that
‖x′‖ = ‖u′‖ = 1. �

C 1.3. If X is a normed space, then for every x ∈ X

(1.1) ‖x‖ = sup
x′∈X′
‖x′‖≤1

|x′(x)|.

P. For every x′ ∈ X′ with ‖x′‖ ≤ 1 one has

|x′(x)| ≤ ‖x′‖ ‖x‖ ≤ ‖x‖,

which proves one of the required inequalities. The other inequality follows from
Corollary 1.2. �

R 1.4. The equality (1.1) should be compared to the definition (0.1) of the
norm of an element x′ ∈ X′.

13



14 2. MINIMIZATION OF CONVEX FUNCTIONS

From now on, it will be convenient to use the following notation. Given a normed
space X and elements x ∈ X, x′ ∈ X′, we write

〈x′, x〉 := 〈x′, x〉X′×X := x′(x).

For the bracket 〈·, ·〉, we note the following properties. The function

〈·, ·〉 : X′ × X → K,

(x′, x) 7→ 〈x′, x〉 = x′(x)

is bilinear and for every x′ ∈ X′, x ∈ X,

|〈x′, x〉| ≤ ‖x′‖ ‖x‖.
The bracket 〈·, ·〉 thus appeals to the notion of the scalar product on inner product
spaces, and the last inequality appeals to the Cauchy-Schwarz inequality, but note,
however, that the bracket is not a scalar product since it is defined on a pair of two
different spaces. Moreover, even if X = H is a complex Hilbert space, then the
bracket differs from the scalar product in that it is bilinear instead of sesquilinear.

C 1.5. Let X be a normed space, U ⊂ X a closed linear subspace and
x ∈ X \ U. Then there exists x′ ∈ X′ such that

〈x′, x〉 , 0 and 〈x′, u〉 = 0 for every u ∈ U.

P. Let π : X → X/U be the quotient map (π(x) = x + U). Since x < U, we
have π(x) , 0. By Corollary 1.2, there exists ϕ ∈ (X/U)′ such that 〈ϕ, π(x)〉 , 0.
Then x′ := ϕ ◦ π ∈ X′ is a desired functional we are looking for. �

C 1.6. If X is a normed space such that X′ is separable, then X is
separable, too.

P. Let D′ = {x′n : n ∈ N} be a dense subset of the unit sphere of X′. For
every n ∈ N we choose an element xn ∈ X such that ‖xn‖ ≤ 1 and |〈x′n, xn〉| ≥ 1

2 . We
claim that D := span {xn : n ∈ N} is dense in X. If this was not true, i.e. if D̄ , X,
then, by Corollary 1.5, we find an element x′ ∈ X′ \ {0} such that x′(xn) = 0 for every
n ∈ N. We may without loss of generality assume that ‖x′‖ = 1. Since D′ is dense in
the unit sphere of X′, we find n0 ∈ N such that ‖x′ − x′n0

‖ ≤ 1
4 . But then

1
2
≤ |〈x′n0

, xn0〉| = |〈x′n0
− x′, xn0〉| ≤ ‖x′n0

− x′‖ ‖xn0‖ ≤
1
4
,

which is a contradiction. Hence, D̄ = X and X is separable. �

Given a normed space X, we call

X′′ := (X′)′

the bidual of X.

L 1.7. Let X be a normed space. Then the mapping

J : X → X′′,

x 7→ (x′ 7→ 〈x′, x〉),
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is well defined and isometric.

P. The linearity of x′ 7→ 〈x′, x〉 is clear, and from the inequality

|Jx(x′)| = |〈x′, x〉| ≤ ‖x′‖ ‖x‖,
follows that Jx ∈ X′′ (i.e. J is well defined) and ‖Jx‖ ≤ ‖x‖. The fact that J is
isometric follows from Corollary 1.2. �

D 1.8. A Banach space X is called reflexive if the isometry J from
Lemma 1.7 is surjective, i.e. if JX = X′′. In other words: a normed space X is
reflexive if for every x′′ ∈ X′′ there exists x ∈ X such that

〈x′′, x′〉 = 〈x′, x〉 for all x′ ∈ X′.

R 1.9. It may happen that the spaces X and X′′ are isomorphic without X
being reflexive (the example of such a Banach space is however quite involved). We
emphasize that reflexivity means that the special operator J is an isomorphism.

L 1.10. Every Hilbert space is reflexive.

P. By the Theorem of Riesz-Fréchet, we may identify H with its dual H ′

and thus also H with its bidual H′′. The identification is done via the scalar product.
It should be noted, however, that for complex Hilbert spaces, the identification of H
with its dual H′ is only antilinear, but after the second identification (H′ with H′′) it
turns out that the identification of H with H′′ is linear.

It is finally an exercise to show that this identification of H with H′′ coincides
with the mapping J from Lemma 1.7. �

L 1.11. Every finite dimensional Banach space is reflexive.

P. It suffices to remark that if X is finite dimensional, then

dim X = dim X′ = dim X′′ < ∞.

Surjectivity of the mapping J (which is always injective) thus follows from linear
algebra. �

T 1.12. The space Lp(Ω) is reflexive if 1 < p < ∞ ((Ω,A, µ) being an
arbitrary measure space).

L 1.13. The spaces l1, L1(Ω) (Ω ⊂ RN) and C([0, 1]) are not reflexive.

P. For every t ∈ [0, 1], let δt ∈ C([0, 1])′ be defined by

〈δt, f 〉 := f (t), f ∈ C([0, 1]).

Then ‖δt‖ = 1 and whenever t , s, then

‖δt − δs‖ = 2.

In particular, the uncountably many balls B(δt,
1
2 ) (t ∈ [0, 1]) are mutually disjoint so

that C([0, 1])′ is not separable.
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Now, if C([0, 1]) were reflexive, then C([0, 1])′′ = C([0, 1]) would be separable
(since C([0, 1]) is separable), and then, by Corollary 1.6, C([0, 1])′ would be sepa-
rable; a contradiction to what has been said before. This proves that C([0, 1]) is not
reflexive.

The cases of l1 and L1(Ω) are proved similarly. They are separable Banach spaces
with nonseparable dual. �

T 1.14. Every closed subspace of a reflexive Banach space is reflexive.

P. Let X be a reflexive Banach space, and let U ⊂ X be a closed subspace.
Let u′′ ∈ U′′. Then the mapping x′′ : X′ → K defined by

〈x′′, x′〉 = 〈u′′, x′|U〉, x′ ∈ X′,

is linear and bounded, i.e. x′′ ∈ X′′. By reflexivity of X, there exists x ∈ X such that

(1.2) 〈x′, x〉 = 〈u′′, x′|U〉, x′ ∈ X′.

Assume that x < U. Then, by Corollary 1.3, there exists x′ ∈ X′ such that x′|U = 0
and 〈x′, x〉 , 0; a contradiction to the last equality. Hence, x ∈ U. We need to show
that

(1.3) 〈u′′, u′〉 = 〈u′, x〉,∀u′ ∈ U′.

However, if u′ ∈ U′, then, by Hahn-Banach we can choose an extension x′ ∈ X′, i.e.
x′|U = u′. The equation (1.3) thus follows from (1.2). �

C 1.15. The Sobolev spaces W k,p(Ω) (Ω ⊂ RN open) are reflexive if
1 < p < ∞, k ∈ N.

P. For example, for k = 1, the operator

T : W1,p(Ω) → Lp(Ω)1+N ,

u 7→ (u,
∂u
∂x1
, . . . ,

∂u
∂xN

),

is isometric, so that we may consider W1,p(Ω) as a closed subspace of Lp(Ω)1+N

which is reflexive by Theorem 1.12. The claim follows from Theorem 1.14. �

C 1.16. A Banach space is reflexive if and only if its dual is reflexive.

P. Assume that the Banach space X is reflexive. Let x′′′ ∈ X′′′ (the tridual!).
Then the mapping x′ : X → K defined by

〈x′, x〉 := 〈x′′′, JX(x)〉, x ∈ X,

is linear and bounded, i.e. x′ ∈ X′ (here JX denotes the isometry X → X′′). Let
x′′ ∈ X′′ be arbitrary. Since X is reflexive, there exists x ∈ X such that JX x = x′′.
Hence,

〈x′′′, x′′〉 = 〈x′′′, JX x〉 = 〈x′, x〉 = 〈x′′, x′〉,
which proves that JX′x′ = x′′′, i.e. the isometry JX′ : X′ → X′′′ is surjective. Hence,
X′ is reflexive.
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On the other hand, assume that X′ is reflexive. Then X′′ is reflexive by the
preceeding argument, and therefore X (considered as a closed subspace of X ′′ via
the isometry J) is reflexive by Theorem 1.14. �

D 1.17. Let X be a normed space. We say that a sequence (xn) ⊂ X
converges weakly to some x ∈ X if

lim
n→∞
〈x′, xn〉 = 〈x′, x〉 for every x′ ∈ X′.

Notations: if (xn) converges weakly to x, then we write xn ⇀ x, w − limn→∞ xn = x,
xn → x in σ(X, X′), or xn → x weakly.

T 1.18. In a reflexive Banach space every bounded sequence admits a
weakly convergent subsequence.

P. Let (xn) be a bounded sequence in a reflexive Banach space X. We first
assume that X is separable. Then X′′ is separable by reflexivity, and X′ is separable
by Corollary 1.6. Let (x′m) ⊂ X′ be a dense sequence.

Since (〈x′1, xn〉) is bounded by the boundedness of (xn), there exists a subsequence
(xϕ1(n)) of (xn) (ϕ1 : N→ N is increasing, unbounded) such that

lim
n→∞
〈x′1, xϕ1(n)〉 exists.

Similarly, there exists a subsequence (xϕ2(n)) of (xϕ1(n)) such that

lim
n→∞
〈x′2, xϕ2(n)〉 exists.

Note that for this subsequence, we also have that

lim
n→∞
〈x′1, xϕ2(n)〉 exists.

Iterating this argument, we find a subsequence (xϕ3(n)) of (xϕ2(n)) and finally for
every m ∈ N, m ≥ 2, a subsequence (xϕm(n)) of (xϕm−1(n)) such that

lim
n→∞
〈x′j, xϕm(n)〉 exists for every 1 ≤ j ≤ m.

Let (yn) := (xϕn(n)) be the ’diagonal sequence’. Then (yn) is a subsequence of (xn)
and

lim
n→∞
〈x′m, yn〉 exists for every m ∈ N.

Let x′ ∈ X′ be arbitrary, and let ε > 0. Since {x′m : m ∈ N} is dense in X′, there
exists m ∈ N such that

‖x′ − x′m‖ ≤ ε.
Then there exists n0 ∈ N such that for every µ, ν ≥ n0

|〈x′m, yµ − yν〉| ≤ ε.
Hence, for every µ, ν ≥ n0,

|〈x′, yµ − yν〉| ≤ |〈x′ − x′m, yµ − yν〉| + |〈x′m, yµ − yν〉|
≤ ε(2M + 1),
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where M = supn ‖yn‖ < ∞ is independent of ε, µ and ν. As a consequence,

〈x′′, x′〉 := lim
n→∞
〈x′, yn〉 exists for every x′ ∈ X′,

and x′′ is a bounded linear functional on X′.
Since X is reflexive, there exists x ∈ X such that Jx = x′′. For this x, we have by

definition of J
lim
n→∞
〈x′, yn〉 = 〈x′, x〉 exists for every x′ ∈ X′,

i.e. (yn) converges weakly to x.
If X is not separable as we first assumed, then one may replace X by X̃ :=

span {xn : n ∈ N} which is separable. By the above, there exists x ∈ X̃ and a
subsequence of (xn) (which we denote again by (xn)) such that for every x̃′ ∈ X̃′,

lim
n→∞
〈x̃′, xn〉 = 〈x̃′, x〉,

i.e. (xn) converges weakly in X̃. If x′ ∈ X′, then x′|X̃ ∈ X̃′, and it follows easily that
the sequence (xn) also converges weakly in X to the element x. �

2. Main theorem

We start by stating a second version of the Hahn-Banach theorem. We will not
prove this theorem. We only recall that a subset K of a Banach space X is convex if
for every x, y ∈ K and every t ∈ [0, 1] one has tx + (1 − t)y ∈ K.

T 2.1 (Hahn-Banach; separation of convex sets). Let X be a Banach
space, K ⊂ X a closed, nonempty, convex subset, and x0 ∈ X \ K. Then there
exists x′ ∈ X′ and ε > 0 such that

Re 〈x′, x〉 + ε ≤ Re 〈x′, x0〉, x ∈ K.

C 2.2. Let X be a Banach space and K ⊂ X a closed, convex subset
(closed for the norm topology). If (xn) ⊂ K converges weakly to some x ∈ X, then
x ∈ K.

P. Assume the contrary, i.e. x < K. By the Hahn-Banach theorem (Theorem
2.1), there exist x′ ∈ X′ and ε > 0 such that

Re 〈x′, xn〉 + ε ≤ Re 〈x′, x〉 for every n ∈ N,
a contradiction to the assumption that xn ⇀ x. �

A function f : K → R ∪ {+∞} on a convex subset K of a Banach space X is
called convex if for every x, y ∈ K, and every t ∈ [0, 1],

(2.1) f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y).

Let K ⊂ X be an arbitrary subset of a Banach space. A function f : K →
R ∪ {+∞} is called lower semicontinuous if for every sequence (xn) ⊂ K and every
x ∈ K one has

x = lim
n→∞

xn ⇒ f (x) ≤ lim inf
n→∞

f (xn).
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L 2.3. A function f : K → R∪ {+∞} is lower semicontinuous if and only if
for every c ∈ R the set {x ∈ K : f (x) ≤ x} is closed in K.

P. Assume first that f is lower semicontinuous. Let c ∈ R and let Kc := {x ∈
K : f (x) ≤ c}. Let (xn) ⊂ Kc be a convergent sequence such that x = limn→∞ xn ∈ K.
Then, by lower semicontinuity,

f (x) ≤ lim inf
n→∞

f (xn) ≤ c,

so that x ∈ Kc. Hence, Kc is closed in K.
Assume now that Kc := {x ∈ K : f (x) ≤ c} is closed for every c ∈ R. Let

(xn) ⊂ K be a convergent sequence such that x = limn→∞ xn ∈ K. We have to show
that f (x) ≤ lim infn→∞ f (xn) =: c. If this inequality was not true then there exists
ε > 0 such that

f (x) ≥ lim inf
n→∞

f (xn) + ε = c + ε.

In addition, there exists a subsequence (xnk ) of (xn) such that limk→∞ f (xnk) = c. This
means that xnk ∈ Kc+ ε2

for all k large enough. Since xnk → x and since Kc+ ε2
is closed

in K, this implies x ∈ Kc+ ε2
, or, equivalently,

f (x) ≤ c +
ε

2
,

which is a contradiction to the above inequality. Hence, we have shown that f is
lower semicontinuous. �

C 2.4. Let X be a Banach space, K ⊂ X a closed, convex subset, and
f : K → R ∪ {+∞} a lower semicontinuous, convex function. If (xn) ⊂ K converges
weakly to x ∈ K, then

f (x) ≤ lim inf
n→∞

f (xn).

P. For every c ∈ R, the set Kc := {x ∈ K : f (x) ≤ c} is closed (by lower
semicontinuity of f and by Lemma 2.3) and convex (by convexity of f ). After
extracting a subsequence, if necessary, we may assume that c := lim infn→∞ f (xn) =
limn→∞ f (xn). Then for every ε > 0 the sequence (xn) is eventually in Kc+ε, i.e.
except for finitely many xn, the sequence (xn) lies in Kc+ε. Hence, by Corollary 2.2,
x ∈ Kc+ε, which means that f (x) ≤ c + ε. Since ε > 0 was arbitrary, the claim
follows. �

T 2.5. Let X be a reflexive Banach space, K ⊂ X a closed, convex,
nonempty subset, and f : K → R ∪ {+∞} a lower semicontinuous, convex func-
tion such that

lim
‖x‖→∞

x∈K

f (x) = +∞ (weak coercivity).

Then there exists x0 ∈ K such that

f (x0) = inf{ f (x) : x ∈ K} > −∞.
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P. Let (xn) ⊂ K be such that limn→∞ f (xn) = inf{ f (x) : x ∈ K}. By the
coercivity assumption on f , the sequence (xn) is bounded. Since X is reflexive, there
exists a weakly convergent subsequence (Theorem 1.18); we denote by x0 the limit.
By Corollary 2.2, x0 ∈ K. By Corollary 2.4,

f (x0) ≤ lim
n→∞

f (xn) = inf{ f (x) : x ∈ K}.

The claim is proved. �

3. * A nonlinear elliptic problem

Let Ω ⊂ Rn be a bounded open set and let p ≥ 2. Let f : Ω → R be some
function in L2(Ω). We consider the nonlinear elliptic boundary value problem

(3.1)















−∆pu(x) = f (x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

We call a function u ∈ W1,p
0 (Ω) a weak solution of this problem if

(3.2)
∫

Ω

|∇u|p−2∇u∇ϕ =
∫

Ω

fϕ for every ϕ ∈ C1
c (Ω).

Note that u ∈ W1,p
0 (Ω) is a weak solution of (3.1) if and only if −∆Ωp u = f , where ∆Ωp

is the p-Laplace operator defined in Chapter 1, Section 3.

In the following, we will give an other characterization and we will see that
u ∈ W1,p

0 (Ω) is a weak solution of (3.1) if and only if u is a critical point of some real
valued energy function. Part of this energy function is introduced in the following
lemma.

L 3.1. Let Ω ⊂ Rn be an open set, 1 ≤ p < ∞, and define

E0 : W1,p
0 (Ω) → R,

u 7→ E0(u) :=
1
p

∫

Ω

|∇u|p.

Then the function E0 is convex, of class C1, and for every ϕ ∈ W1,p
0 (Ω) one has

E′0(u)ϕ =
∫

Ω

|∇u|p−2∇u∇ϕ.

In other words, if p ≥ 2 and if Ω ⊂ Rn is bounded, then E′0(u) = −∆Ωp u.

P. We consider the function

| · | : W1,p
0 (Ω) → R,

u 7→ |u| := (

∫

Ω

|∇u|p)
1
p ,

which is a semi-norm on W1,p
0 (Ω). This means that it satisfies all the properties of a

norm except the implication |u| = 0 ⇒ u = 0 which is not true in general.
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In particular, for every u, v ∈ W1,p
0 (Ω), the triangle inequality

|u + v| ≤ |u| + |v|

is true, and this implies the triangle inequality from above

|u − v| ≥
∣

∣

∣|u| − |v|
∣

∣

∣.

This triangle inequality from above implies, that if un → u in W1,p
0 (Ω), then

0← ‖un − u‖W1,p ≥ |un − u| ≥
∣

∣

∣|un| − |u|
∣

∣

∣,

and hence the application | · | is continuous. Moreover, for every u, v ∈ W 1,p
0 (Ω) and

every t ∈ [0, 1] the triangle ineqzality implies

|tu + (1 − t)v| ≤ t|u| + (1 − t)|v|,

so that | · | is also convex.
Since also the function R+ → R, s 7→ 1

p sp is continuous and convex, and since
E0 is the composition of | · | with this latter function, we obtain that E0 is continuous
and convex.

Next, we note that for every u ∈ W1,p
0 (Ω) the operator

Tu : W1,p
0 (Ω) → R,

h 7→ Th =
∫

Ω

|∇u|p−2∇u∇h

is well defined, linear and continuous. Moreover, one can show that for every u ∈
W1,p

0 (Ω)

lim
‖h‖

W1,p
0
→0

E0(u + h) − E0(u) − Tuh
‖h‖W1,p

0

= 0.

In fact, this equality is a consequence of the differentiability of the function Rn →
R, x → |x|p, where now | · | denotes the euclidean norm, and several convergence
theorems from measure and integration theory; we omit the detailed proof. This last
equality implies, by definition, that the function E0 is differentiable and E′0(u) = Tu,
that is,

E′0(u)ϕ =
∫

Ω

|∇u|p−2∇u∇ϕ for every u, ϕ ∈ W1,p
0 (Ω).

Hence, if p ≥ 2 and if Ω ⊂ Rn is bounded, then, for every u ∈ W1,p
0 (Ω) one has

E′0(u) = −∆Ωp u, or simply E′0 = −∆Ωp . Since, by Lemma 3.2 (Chapter 1), the operator
∆Ωp is continuous, we obtain that the function E0 is C1 in this case. In the general
case, that is, for 1 ≤ p < ∞ and Ω ⊂ Rn open, the continuity of E′0 is proved as in
Lemma 3.2 (Chapter 1). �

In order to prove the main result in this section, we recall the Poincaré inequality.
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T 3.2 (Poincaré inequality). Let Ω ⊂ Rn be a bounded domain, and let
1 ≤ p < ∞. Then there exists a constant C ≥ 0 such that

∫

Ω

|u|p ≤ Cp

∫

Ω

|∇u|p for every u ∈ W1,p
0 (Ω).

We note that the Poincaré inequality implies that

‖u‖ :=

(∫

Ω

|∇u|p
)

1
p

defines an equivalent norm on W1,p
0 (Ω) if Ω ⊂ Rn is bounded. Clearly,

‖u‖ ≤ ‖u‖W1,p
0

for every u ∈ W1,p
0 ,

by the definition of the norm in W1,p. On the other hand,

‖u‖W1,p
0
≤ C (‖u‖Lp + ‖∇u‖Lp)

≤ C ‖∇u‖Lp = C ‖u‖,
by the Poincaré inequality.

T 3.3. Let Ω ⊂ Rn be bounded and open, and let p ≥ 2. Then for every
f ∈ L2(Ω) there exists a unique weak solution u ∈ W1,p

0 (Ω) of the problem (3.1).

P. Let f ∈ L2(Ω), and define the function

E : W1,p
0 (Ω) → R,

u 7→ E(u) =
1
p

∫

Ω

|∇u|p −
∫

Ω

f u.

We claim that this function is convex, of class C1, and for every ϕ ∈ W1,p
0 (Ω) one has

E′(u)ϕ =
∫

Ω

|∇u|p−2∇u∇ϕ −
∫

Ω

fϕ.

In fact, note that E is the sum of the function E0 from Lemma 3.1 and a continuous,
linear function. Since every continuous, linear function is convex and of class C1,
by Lemma 3.1, the function E is convex and of class C1. The formula above follows
also from Lemma 3.1, and from derivating a linear function.

As a consequence, a function u ∈ W1,p
0 (Ω) is a weak solution of (3.1) if and only

if u is a critical point of E, that is, if and only if E ′(u) = 0!

Existence: By the Poincaré inequality, and by the Cauchy-Schwarz inequality,

E(u) ≥ 1
2p

∫

Ω

|∇u|p + 1
2pCp

∫

Ω

|u|p − ‖ f ‖2 ‖u‖2

≥ η ‖u‖p

W1,p
0

− ‖ f ‖2‖u‖W1,p
0

= ‖u‖W1,p
0

(η ‖u‖p−1

W1,p
0

− ‖ f ‖2).
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Since p > 1, this implies
lim

‖u‖
W

1,p
0
→∞

E(u) = ∞,

that is, E is weakly coercive. Since the space W1,p
0 (Ω) is reflexive, by Theorem 2.5

about the minimization of convex functions, there exists u ∈ W 1,p
0 (Ω) such that

u = inf
W1,p

0

E,

that is, u is a global minimum. Since every local (or global) minimum of E is a
critical point of E, we have thus proved existence of a weak solution of (3.1).

Uniqueness: Assume that v ∈ W1,p
0 (Ω) is a second weak solution. Then E′(v) =

E′(u) = 0. Since E is in addition convex, we obtain that the function f : [0, 1]→ R,
f (t) = E(tu + (1 − t)u) is convex and f ′(0) = f ′(1) = 0. Hence, f ′(t) = 0 for every
t ∈ [0, 1] (the derivative of a convex function is increasing), so that f is constant.
Hence, v is also a global minimum of E. If u , v, then the strict convexity of E (!!)
implies

E(
u + v

2
) <

E(u) + E(v)
2

= inf E,

which is a contradiction. Hence, we must have u = v. �

4. * The von Neumann minimax theorem

In the following theorem, we call a function f : K → R on a convex subset K of
a Banach space X concave if − f is convex, or, equivalently, if for every x, y ∈ K and
every t ∈ [0, 1],

(4.1) f (tx + (1 − t)y) ≥ t f (x) + (1 − t) f (y).

A function f : K → R is called strictly convex (resp. strictly concave) if for every x,
y ∈ K, x , y, f (x) = f (y) the inequality in (2.1) (resp. (4.1)) is strict for t ∈ (0, 1).

T 4.1 (von Neumann). Let K and L be two closed, bounded, nonempty,
convex subsets of reflexive Banach spaces X and Y, respectively. Let f : K × L → R
be a continuous function such that

x 7→ f (x, y) is strictly convex for every y ∈ L, and

y 7→ f (x, y) is concave for every x ∈ K.

Then there exists ( x̄, ȳ) ∈ K × L such that

(4.2) f ( x̄, y) ≤ f ( x̄, ȳ) ≤ f (x, ȳ) for every x ∈ K, y ∈ L.

R 4.2. A point ( x̄, ȳ) ∈ K × L satisfying (4.2) is called a saddle point of f .
A saddle point is a point of equilibrium in a two-person zero-sum game in the

following sense: If the player controlling the strategy x modifies his strategy when
the second player plays ȳ, he increases his loss; hence, it is his interest to play x̄.
Similarly, if the player controlling the strategy y modifies his strategy when the first
player plays x̄, he diminishes his gain; thus it is in his interest to play ȳ. This property
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of equilibrium of saddle points justifies their use as a (reasonable) solution in a two-
person zero-sum game ([3]).

P. Define the function F : L → R by F(y) := inf x∈K f (x, y) (y ∈ L). By
Theorem 2.5, for every y ∈ L there exists x ∈ K such that F(y) = f (x, y). By strict
convexity, this element x is uniquely determined. We denote x := Φ(y) and thus
obtain

(4.3) F(y) = inf
x∈K

f (x, y) = f (Φ(y), y), y ∈ L.

By concavity of the function y 7→ f (x, y) and by the definition of F, for every y1,
y2 ∈ L and every t ∈ [0, 1],

F(ty1 + (1 − t)y2) = f (Φ(ty1 + (1 − t)y2), ty1 + (1 − t)y2)

≥ t f (Φ(ty1 + (1 − t)y2), y1) + (1 − t) f (Φ(ty1 + (1 − t)y2), y2)

≥ t F(y1) + (1 − t) F(y2),

so that F is concave. Moreover, F is upper semicontinuous: let (yn) ⊂ L be conver-
gent to y ∈ L. For every x ∈ K and every n ∈ N one has F(yn) ≤ f (x, yn), and taking
the limes superior on both sides, we obtain, by continuity of f ,

lim sup
n→∞

F(yn) ≤ lim sup
n→∞

f (x, yn) = f (x, y).

Since x ∈ K was arbitrary, this inequality implies lim supn→∞ F(yn) ≤ F(y), i.e. F is
upper semicontinuous.

By Theorem 2.5 (applied to −F), there exists ȳ ∈ L such that

f (Φ( ȳ), ȳ) = F( ȳ) = sup
y∈L

F(y).

We put x̄ = Φ( ȳ) and show that ( x̄, ȳ) is a saddle point. Clearly, for every x ∈ K,

(4.4) f ( x̄, ȳ) ≤ f (x, ȳ).

Therefore it remains to show that for every y ∈ L,

(4.5) f ( x̄, ȳ) ≥ f ( x̄, y).

Let y ∈ L be arbitrary and put yn := (1 − 1
n ) ȳ +1

ny and xn = Φ(yn). Then, by
concavity,

F( ȳ) ≥ F(yn) = f (xn, yn)

≥ (1 − 1
n

) f (xn, ȳ) +
1
n

f (xn, y)

≥ (1 − 1
n

)F( ȳ) +
1
n

f (xn, y),

or

F( ȳ) ≥ f (xn, y) for every n ∈ N.
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Since K is bounded and closed, the sequence (xn) ⊂ K has a weakly convergent
subsequence which converges to some element x0 ∈ K (Theorem 1.18 and Corollary
2.2). By the preceeding inequality and Corollary 2.4,

F( ȳ) ≥ f (x0, y).

This is just the remaining inequality (4.5) if we can prove that x0 = x̄. By concavity,
for every x ∈ K and every n ∈ N,

f (x, yn) ≥ f (xn, yn)

≥ (1 − 1
n

) f (xn, ȳ) +
1
n

f (xn, y)

≥ (1 − 1
n

) f (xn, ȳ) +
1
n

F(y).

Letting n → ∞ in this inequality and using Corollary 2.4 again, we obtain that for
every x ∈ K,

f (x, ȳ) ≥ f (x0, ȳ).

Hence, x0 = Φ( ȳ) = x̄ and the theorem is proved. �

5. * The brachistochrone problem

The following problem was asked by Johann Bernoulli in 1696:

For given two points A and B in a vertical plane, find a curve con-
necting A and B which is optimal among all other such curves in the
following sense. The point P of unit mass which starts from A with
zero velocity and moves along this curve only due to the gravitational
force will reach the point B in a minimal time.

Without loss of generality, we may assume that in the xy-plane we have A =
(0, a) and B = (b, 0) for some a, b > 0. We will look for a curve connecting A
and B and which is in addition a graph of a continuously differentiable function
y : [0, b]→ R satisfying y(0) = a and y(b) = 0.

The principle of conservation of energy implies that

1
2

v(t)2 = g y(x(t)),

where v is the velocity of the point P, g is the gravitational constant and x(t) is the
x-coordinate of the point P at time t (and y(x(t)) is the height of the point P). Note
that

v(t) =
√

1 + y′(x(t))2 ẋ(t),

and therefore

ẋ(t) =
dx
dt

(t) =

√

2gy(x(t))
1 + y′(x(t))2

.
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Hence, the time T at which the point P reaches the point B is given by

T =
∫ T

0
dt =

∫ b

0

√

1 + y′(x)2

2gy(x)
dx.

The problem is therefore to minimize the functional T given by

T (y) =
∫ b

0

√

1 + y′(x)2

2gy(x)
dx,

where y varies in the convex set

K := {y ∈ W1,p(0, b) : y(0) = a and y(b) = 0}
and p ≥ 1 is to be fixed. It is easy to check that the functional T is convex and that
for every p ≥ 1 the set K is closed in W1,p(0, 1). However, the space W1,p(0, 1) is
reflexive only if p > 1. On the other hand, the functional T is coercive only if p = 1.

Hence, we can not apply the main theorem of this section on minimization of
convex functionals (Theorem 2.5), unless we replace the set K by a bounded convex
subset which is likely to contain the global minimum of T !



CHAPTER 3

Iterative methods

1. * Newton’s method

T 1.1 (Newton’s method). Let X and Y be two Banach spaces, U ⊂ X an
open set. Let f ∈ C1(U; Y) and assume that there exists x̄ ∈ U such that (i) f ( x̄) = 0
and (ii) f ′( x̄) ∈ L(X, Y) is an isomorphism. Then for every L ∈ (0, 1) there exists
a neighbourhood V ⊂ U of x̄ such that for every x0 ∈ V the operator f ′(x0) is an
isomorphism, the sequence (xn) defined iteratively by

(1.1) xn+1 = xn − f ′(xn)−1 f (xn), n ≥ 0,

remains in V and ‖xn− x̄‖ ≤ Ln ‖x0− x̄‖ for every n ∈ N. In particular, limn→∞ xn = x̄.

R 1.2. The iteration given by (1.1) is called Newton iteration.

P  T 1.1. By continuity, there exists a neighbourhood Ṽ ⊂ U of
x̄ such that f′(x) is an isomorphism for all x ∈ Ṽ. It will be useful to define the

auxiliary function ϕ : Ṽ → X by

ϕ(x) := x − f ′(x)−1 f (x), x ∈ Ṽ .

Since f ( x̄) = 0, we find that for every x ∈Ṽ

ϕ(x) − ϕ( x̄) = x − f′(x)−1( f (x) − f ( x̄)) − x̄

= x − x̄ − f′(x)−1( f ′( x̄)(x − x̄) + o(x − x̄)),

so that by the continuity of f ′(·)−1

lim
x→ x̄

‖ϕ(x) − ϕ( x̄)‖
‖x − x̄‖

= 0.

In particular, for every L ∈ (0, 1) there exists r > 0 such that V := B( x̄, r) ⊂Ṽ ⊂ U
and such that for every x ∈ V

‖ϕ(x) − x̄‖ = ‖ϕ(x) − ϕ( x̄)‖ ≤ L ‖x − x̄‖.

This implies that for every x0 ∈ V one has ϕ(x0) ∈ V and if we define iteratively
xn+1 = ϕ(xn) = ϕn+1(x0), then

‖xn − x̄‖ ≤ Ln ‖x0 − x̄‖ → 0 as n→ ∞.

�

27
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2. Local inverse theorem and implicit function theorem

Let X and Y be two Banach spaces and let U be an open subset of X. The
following are two classical theorems in differential calculus.

T 2.1 (Local inverse theorem). Let f : U → Y be continuously differ-
entiable and x̄ ∈ U such that f′( x̄) : X → Y is an isomorphism, that is, bounded,
bijective and the inverse is also bounded. Then there exist neighbourhoods V ⊂ U
of x̄ and W ⊂ Y of f ( x̄) such that f : V → W is a C1 diffeomorphism, that is f is
continuously differentiable, bijective and the inverse f −1 : W → V is continuously
differentiable.

T 2.2 (Implicit function theorem). Assume that X = X1 × X2 for two
Banach spaces, and let f : X ⊃ U → Y be continuously differentiable and
x̄ = ( x̄1, x̄2) ∈ U such that ∂ f

∂x2
( x̄) : X2 → Y is an isomorphism. Then there exist

neighbourhoods U1 ⊂ X1 of x̄1 and U2 ⊂ X2 of x̄2, U1 ×U2 ⊂ U, and a continuously
differentiable function g : U1 → U2 such that

{x ∈ U1 × U2 : f (x) = f ( x̄)} = {(x1, g(x1)) : x1 ∈ U1}.

For the proof of the local inverse theorem, we need the following lemma.

L 2.3. Let f : U → Y be continuously differentiable such that f : U →
f (U) is a homeomorphism, that is, continuous, bijective and with continuous inverse.
Then f is a C1 diffeomorphism if and only if for every x ∈ U the derivative f ′(x) :
X → Y is an isomorphism.

P. Assume first that f is a C1 diffeomorphism. When we differentiate the
identities x = f −1( f (x)) and y = f ( f −1(y)), which are true for every x ∈ U and every
y ∈ f (U), then we find

IX = ( f −1)′( f (x)) f ′(x) for every x ∈ U and

IY = f ′( f −1(y))( f −1)′(y)

= f ′(x)( f −1)′( f (x)) for every x = f −1(y) ∈ U.

As a consequence, f ′(x) is an isomorphism for every x ∈ U.
For the converse, assume that f ′(x) is an isomorphism for every x ∈ U. For every

x1, x2 ∈ U one has, by differentiability,

f (x2) = f (x1) + f ′(x1)(x2 − x1) + o(x2 − x1),

where o depends on x1 and limx2→x1

o(x2−x1)
‖x2−x1‖ = 0. We have x1 = f −1(y1) and x2 =

f −1(y2) if we put yi := f (xi). Hence, the above identity becomes

y2 = y1 + f ′( f −1(y1))( f −1(y2) − f −1(y1)) + o( f −1(y2) − f −1(y1)).

To this identity, we apply the inverse operator ( f ′( f −1(y1)))−1 and we obtain

f −1(y2) = f −1(y1) + ( f ′( f −1(y1)))−1(y2 − y1) − ( f ′( f −1(y1)))−1o( f −1(y2) − f −1(y1)).
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Since f −1 is continuous, the last term on the right-hand side of the last equality is
sublinear. Hence, f −1 is differentiable and

( f −1)′(y1) = ( f ′( f −1(y1)))−1.

From this identity (using that f −1 and f ′ are continuous) we obtain that f −1 is con-
tinuously differentiable. The claim is proved. �

P     . Consider the function

g : U → X,

x 7→ f ′( x̄)−1 f (x).

It suffices to show that g : V → W is a C1 diffeomorphism for appropriate neigh-
bourhoods V of x̄ and W of g( x̄).

Consider also the function

ϕ : U → X,

x 7→ x − g(x).

This function ϕ is continuously differentiable and ϕ′(x) = I − f ′( x̄)−1 f ′(x) for every
x ∈ U. In particular, ϕ′( x̄) = 0. By continuity of ϕ′, there exists r > 0 and L < 1
such that ‖ϕ′(x)‖ ≤ L for every x ∈ B̄( x̄, r) ⊂ U. Hence,

‖ϕ(x1) − ϕ(x2)‖ ≤ L ‖x1 − x2‖ for every x1, x2 ∈ B̄( x̄, r).

By the definition of ϕ, this implies

‖g(x1) − g(x2)‖ = ‖x1 − x2 − (ϕ(x1) − ϕ(x2))‖(2.1)

≥ ‖x1 − x2‖ − L ‖x1 − x2‖
= (1 − L) ‖x1 − x2‖.

We claim that for every y ∈ B̄(g( x̄), (1 − L)r) there exists a unique x ∈B̄( x̄, r) such
that g(x) = y.

The uniqueness follows from (2.1).
In order to prove existence, let x0 = x̄, and then define recursively xn+1 = y +

ϕ(xn) = y + xn − f ′( x̄)−1 f (xn) for every n ≥ 0. Then

‖xn − x̄‖ = ‖
n−1
∑

k=0

xk+1 − xk‖

≤ ‖x1 − x0‖ +
n−1
∑

k=1

‖ϕ(xk) − ϕ(xk−1)‖

≤
n−1
∑

k=0

Lk ‖x1 − x0‖

=
1 − Ln

1 − L
‖y − g( x̄)‖

≤ (1 − Ln) r ≤ r,
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which implies xn ∈ B̄( x̄, r) for every n ≥ 0. Similarly, for every n ≥ m ≥ 0,

‖xn − xm‖ ≤
n−1
∑

k=m

Lk ‖y − g( x̄)‖,

so that the sequence (xn) is a Cauchy sequence in B̄( x̄, r). SinceB̄( x̄, r) is complete,
there exists limn→∞ xn =: x ∈ B̄( x̄, r). By continuity,

x = y + ϕ(x) = y + x − g(x),

or
g(x) = y.

This proves the above claim, that is, g is locally invertible. It remains to show that
g−1 is continuous (then g is a homeomorphism, and therefore a C1 diffeomorphism
by Lemma 2.3). Contiunity of the inverse function, however, is a direct consequence
of (2.1) (which even implies Lipschitz continuity). �

R 2.4. The iteration formula

xn+1 = y + xn − f ′( x̄)−1 f (xn)

used in the proof of the local inverse theorem in order to find a solution of g(x) =
f ′( x̄)−1 f (x) = y should be compared to the Newton iteration

xn+1 = y + xn − f ′(xn)−1 f (xn).

P     . Consider the function

F : U → X1 × Y,

(x1, x2) 7→ (x1, f (x1, x2)).

Then F is continuously differentiable and

F′( x̄)(h1, h2) = (h1,
∂ f
∂x1

( x̄)h1 +
∂ f
∂x2

( x̄)h2).

In particular, by the assumption, F ′( x̄) is locally invertible with inverse

F′( x̄)−1(y1, y2) = (y1, (
∂ f
∂x2

( x̄))−1(y2 −
∂ f
∂x1

( x̄)y1)).

By the local inverse theorem (Theorem 2.1), there exists a neighbourhood U1 of x̄1,
a neighbourhood U2 of x̄2 and a neighbourhood V of ( x̄1, f ( x̄)) = F( x̄) such that
F : U1 × U2 → V is a C1 diffeomorphism. The inverse is of the form

F−1(y1, y2) = (y1, h2(y1, y2)),

where h2 is a function such that f (y1, h2(y1, y2)) = y2. Let

Ũ1 := {x1 ∈ U1 : (x1, f ( x̄)) ∈ V}.
Then Ũ1 is open by continuity of the function x1 7→ (x1, f ( x̄)), and x̄1 ∈ Ũ1. We
restrict F to Ũ1 × U2, and we define

g : Ũ1 → X2,(2.2)

x1 7→ g(x1) = F−1(x1, f ( x̄))2,
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where F−1(·)2 denotes the second component of F−1(·). Then g is continuously dif-
ferentiable, g(Ũ1) ⊂ U2 and g satisfies the required property of the implicit func-
tion. �

L 2.5 (Higher regularity of the local inverse). Let f ∈ Ck(U; Y) for some
k ≥ 1 and assum that f : U → f (U) is a C1 diffeomorphism. Then f is a Ck

diffeomorphism, that is, f −1 is k times continuously differentiable.

P. For every y ∈ f (U) we have

( f −1)′(y) = f ′( f −1(y))−1.

The proof therefore follows by induction on k. �

L 2.6 (Higher regularity of the implicit function). If, in the implicit function
theorem (Theorem 2.2), the function f is k times continuously differentiable, then the
implicit function g is also k times continuously differentiable.

P. This follows from the previous lemma (Lemma 2.5) and the definition of
the implicit function in the proof of the implicit function theorem. �

3. * Parameter dependence of solutions of ordinary differential equations

Let P and X be two Banach spaces and let f ∈ Ck(P × X; X). Consider the
ordinary differential equation

(3.1) ẋ(t) = f (p, x(t)), x(0) = 0,

where p is a parameter. Fix a parameter p0 ∈ P, let I0 ⊂ R be a compact intervall
such that 0 ∈ I0, and let a solution x0 ∈ C1(I0; X) be a solution of the above problem
for the parameter p = p0.

T 3.1. Then there exists a neighbourhood U0 ⊂ P of p0 and a k times
continuously differentiable function g : U0 → C1(I0; X) such that for every p ∈ U0

the function xp = g(p) is the unique solution of (3.1) for the parameter p. All
solutions of (3.1) in a neighbourhood of (p0, x0) are of this form.

P. Let C1
0(I0; X) = {x ∈ C1(I0; X) : x(0) = 0} be equipped with the norm

‖x‖C1 = ‖x‖∞ + ‖ẋ‖∞, so that C1
0 is a Banach space. Consider the function

F : P × C1
0(I0; X) → C(I0; X),

(p, x) 7→ ẋ − f (p, x).

Then, by definition of F, F(p0, x0) = 0. Moreover, the function F is k times contin-
uously differentiable and ∂F

∂x (p0, x0) is an isomorphism from C1
0(I0; X) onto C(I0; X)

(!!).
By the implicit function theorem (Theorem 2.2), there exists a neighbourhood

U0 of p0 and k times continuously differentiable function g : U0 → C1
0(I0; X) (we

use also Lemma 2.6) such that for every p ∈ U0 one has F(p, g(p)) = 0, that is,
g(p) is the solution of (3.1) for the parameter p, and it also follows from the implicit
function theorem, that every solution of (3.1) is of this form. �
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4. * A bifurcation theorem and ordinary differential equations

We follow [8, Section 4.3].

T 4.1 (Crandall-Rabinowitz). Let X and Y be two Banach spaces, U ⊂
R × X be an open set, let f ∈ C2(U; Y) and (λ̄, x̄) ∈ U. Assume that
(i) f (λ, x̄) = 0 for all λ in a neighbourhood ofλ̄,
(ii) dim Ker ∂ f

∂x (λ̄, x̄) = codim Rg∂ f
∂x (λ̄, x̄) = 1, and

(iii) if x0 ∈ Ker ∂ f
∂x (λ̄, x̄) \ {0}, then ∂

2 f
∂λ ∂x (λ̄, x̄)(1, x0) < Rg ∂ f

∂x (λ̄, x̄).
Denote by X1 the topological complement of Ker ∂ f

∂x (λ̄, x̄) in X.
Then there exists a continuously differentiable curve (λ, x) : (−δ, δ) → R × X1

such that

(λ(0), x(0)) = (λ̄, x̄) and f (λ(t), tx0 + tx(t)) = 0 for every t ∈ (−δ, δ).
Moreover, there is a neighbourhood V ⊂ U of (λ̄, x̄) such that

f (λ, x) = 0 for (λ, x) ∈ V

if and only if
either x = 0 or λ = λ(t), x = tx0 + tx(t).

P. For simplicity, we assume that (λ̄, x̄) = (0, 0). Fix

x0 ∈ Ker
∂ f
∂x

(λ̄, x̄), x0 , 0,

and consider the function F : R × R × X1 → Y which is given by

F(t, λ, x) =















1
t f (λ, t(x0 + x1)) for t , 0,
∂ f
∂x (λ, 0)(x0 + x1) for t = 0.

Then
F(0, 0, 0) = 0

and the operator

R × X1 → Y,

(λ, x1) 7→ ∂F
∂λ

(0, 0, 0)λ +
∂F
∂x

(0, 0, 0)x1

is an isomorphism by assumptions (ii) and (iii). The claim follows from the implicit
function theorem (Theorem 2.2). �

E 4.2. We study the periodic boundary value problem

(4.1)



























ẍ(t) + λx(t) + g(λ, t, x(t), ẋ(t)) = 0, t ∈ [0, 2π],

x(0) = x(2π),

ẋ(0) = ẋ(2π).

The function g : R × [0, 2π] × R × R → R, g = g(λ, t, x, p) satisfies the following
assumptions:
(i) g is k times continuously differentiable for some k ≥ 2, and 2π-periodic with
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respect to t,
(ii) g(λ, t, 0, 0) = 0, and
(iii) ∂g

∂x (λ, t, 0, 0) = ∂g
∂p (λ, t, 0, 0) = 0.

We will study the above problem near the point λ = 0 which is a simple eigen-
value of the associated eigenvalue problem

(4.2)



























ẍ(t) + λx(t) = 0, t ∈ [0, 2π],

x(0) = x(2π),

ẋ(0) = ẋ(2π).

Let

X = {x ∈ C2([0, 2π]) : x(0) = x(2π), ẋ(0) = ẋ(1) and ẍ(0) = ẍ(2π)} and

Y = {y ∈ C([0, 2π]) : y(0) = y(2π)}.
The spaces X and Y are Banach spaces when they are equipped with the norms

‖x‖X = ‖x‖∞ + ‖ẋ‖∞ + ‖ẍ‖∞ and

‖y‖Y = ‖y‖∞,
respectively. Let us define f : R × X → Y by

f (λ, x) = ẍ + λx + g(λ, ·, x, ẋ).

It follows from (i) that f is well-defined and k times continuously differentiable.
Moreover, by hypothesis (iii), we have

∂ f
∂x

(λ, 0)w = ẅ + λw,

which implies

dim Ker
∂ f
∂x

(0, 0) = 1;

in fact, the only functions lying in X and satisfying ẍ = 0 are the constant functions.
Next, let y ∈ Rg ∂ f

∂x (0, 0). Then there exists a function x ∈ X such that ẍ = y.
Integrating this equality over the interval [0, 2π] implies

∫ 2π

0
y =

∫ 2π

0
ẍ = ẋ(1) − ẋ(0) = 0,

so that

Rg
∂ f
∂x

(0, 0) ⊂ {y ∈ Y :
∫ 2π

0
y = 0}.

On the other hand, let y ∈ Y be such that
∫ 2π

0
y = 0. Define

x(t) :=
∫ t

0
(t − s)y(s) ds − t

∫ 2π

0
(2π − s)y(s) ds.

Then x ∈ X and ẍ = y. We have therefore proved the equality

Rg
∂ f
∂x

(0, 0) = {y ∈ Y :
∫ 2π

0
y = 0}.
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From this we deduce

codim Rg
∂ f
∂x

(0, 0) = 1.

Note that Ker ∂ f
∂x (0, 0) is the space of constant functions and that a topological com-

plement is given by

X1 = {x ∈ X :
∫ 2π

0
x(t) dt}.

Since
∂2 f
∂λ ∂x

(0, 0)1 = 1 and 1 < Rg
∂ f
∂x

(0, 0),

the condition (iii) of Theorem 4.1 is satisfied. It follows from the Crandall-
Rabinowitz theorem (Theorem 4.1) that λ = 0 is a point of bifurcation of (4.1).

In particular, the point (0, 0) ∈ R × X belongs to the branch of trivial solutions
(λ, 0), but also to the branch

Γ = {(λ(s), s + sx(s)) : s ∈ (−δ, δ)}
where (λ, x) : (−δ, δ)→ R × X is a curve satisfying

x(0) = 0,
d
ds

x(0) = 0, λ(0) = 0.

Hence, for any s ∈ (−δ, δ), s , 0, the nontrivial solution s+sx(s) (sum of the constant
function s and the perturbation sx(s)) belongs to X1.



CHAPTER 4

Monotone operators

1. Monotone operators

D 1.1. Let v be a real Banach space, and let V ′ be its dual space. An
operator A : V → V ′ is monotone if for every u, v ∈ V one has

〈Au − Av, u − v〉V′,V ≥ 0.

E 1.2. Let Ω ⊂ Rn be open and bounded. For every p ≥ 2 and every
1 ≤ i ≤ n, the linear operator

Bi : W1,p
0 (Ω) → W−1,p′(Ω),

u 7→ ∂u
∂xi
,

is monotone. In fact, for every u ∈ W1,p
0 (Ω), by an integration by parts,

〈Biu, u〉 =
∫

Ω

∂u
∂xi

u

= −
∫

Ω

u
∂u
∂xi

= −〈Biu, u〉,
so that

〈Biu, u〉 = 0.

By linearity, Bi is hence monotone.

E 1.3. The negative p-Laplace operator −∆p : W1,p
0 (Ω) → W−1,p′(Ω) is

monotone. In fact, for every u, v ∈ W1,p
0 (Ω),

−〈∆pu − ∆pv, u − v〉W−1,p′ ,W1,p
0
=

∫

Ω

(|∇u|p−2∇u − |∇v|p−2∇v)(∇u − ∇v)

≥
∫

Ω

(|∇u|p + |∇v|p − |∇u|p−1 |∇v| − |∇u| |∇v|p−1)

=

∫

Ω

(|∇u|p−1 − |∇v|p−1) (|∇u| − |∇v|)

≥ 0.

The fact, that −∆p is a monotone operator, can also be deduced from the follow-
ing simple lemma.

35
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L 1.4. Let ϕ : V → R be a continuously differentiable, convex function.
Then ϕ′ : V → V ′ is monotone.

P. For every u, v ∈ V , the function t 7→ ϕ(tu + (1 − t)v) is convex which
means that its derivative is increasing. In particular,

d
dt
ϕ(tu + (1 − t)v)|t=1 ≥

d
dt
ϕ(tu + (1 − t)v)|t=0,

which means
〈ϕ′(u), u − v〉 ≥ 〈ϕ′(v), u − v〉.

Hence, ϕ′ is monotone. �

Since the negative p-Laplace operator −∆p is the derivative of the continuously
differentiable and convex function ϕ : W1,p

0 (Ω) → R given by ϕ(u) = 1
p

∫

Ω
|∇u|p, the

preceding lemma provides another proof of the monotonicity of −∆p.

D 1.5. Let V be a Banach space. An operator A : V → V ′ is
(i) hemi-continuous if for every u, v, w ∈ V the function t 7→ 〈A(u + tv),w〉 is
continous,
(ii) bounded if it maps bounded sets into bounded sets, and
(iii) pseudo-monotone if A is bounded and if

un ⇀ u in V and

lim supn→∞〈Aun, un − u〉 ≤ 0















⇒ lim inf
n→∞

〈Aun, un − v〉 ≥ 〈Au, u − v〉.

L 1.6. Let V be a Banach space and A : V → V ′ be an operator. Consider
the following properties:
(i) A is monotone, bounded and hemicontinuous,
(ii) A is pseudo-monotone,
(iii) A satisfies

un ⇀ u in V,

Aun ⇀ χ in V ′ and

lim supn→∞〈Aun, un〉 ≤ 〈χ, u〉



























⇒ Au = χ.

Then (i)⇒(ii)⇒(iii).

P. (i)⇒(ii) Assume that A is monotone, bounded and hemicontinuous, and
let (un) ⊂ V be a sequence satisfying

un ⇀ u in V and lim sup
n→∞

〈Aun, un − u〉 ≤ 0.

By monotonicity of A, we have

〈Aun, un − u〉 ≥ 〈Au, un − u〉.
The weak convergence of (un) implies

lim inf
n→∞

〈Aun, un − u〉 ≥ 0.
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Together with the assumption above, this implies

(1.1) lim
n→∞
〈Aun, un − u〉 = 0.

Let v ∈ V and define w := (1 − λ)u + λv (λ ∈ (0, 1)). By monotonicity,

〈Aun − Aw, un − w〉 ≥ 0.

Together with the definition of w, this implies

〈Aun, un − w〉 = 〈Aun, un − u〉 + 〈Aun, u − w〉
= 〈Aun, un − u〉 + λ 〈Aun, u − v〉
≥ 〈Aw, un − w〉
= 〈Aw, un − u〉 + λ 〈Aw, u − v〉.

Since un ⇀ u and by (1.1), we obtain

lim inf
n→∞

〈Aun, u − v〉 ≥ 〈A((1 − λ)u + λv), u − v〉.

Letting λ↘ 0 and using the hemi-continuity of A, we finally obtain

lim inf
n→∞

〈Aun, u − v〉 ≥ 〈Au, u − v〉.

Hence, A is pseudo-monotone.
(ii)⇒(iii) Assume that A is pseudo-monotone, and let (un) ⊂ V be a sequence

such that un ⇀ u, Aun ⇀ χ and lim supn→∞〈Aun, un〉 ≤ 〈χ, u〉. Then

lim sup
n→∞

〈Aun, un − u〉 ≤ 0

which together with the pseudo-monotonicity implies

lim inf
n→∞

〈Aun, un − v〉 ≥ 〈Au, u − v〉 for every v ∈ V.

Together with the assumption above, this implies

〈χ, u〉 − 〈χ, v〉 ≥ 〈Au, u − v〉,

or
〈χ − Au, u − v〉 ≥ 0 for every v ∈ V.

This is equivalent to
〈χ − Au, v〉 ≥ 0 for every v ∈ V,

which in turn implies (the inequality is true for v and −v)

〈χ − Au, v〉 = 0 for every v ∈ V.

Hence, Au = χ. �

C 1.7. Let V be a reflexive Banach space, and let A : V → V ′ be a
monotone, bounded, hemicontinuous operator. Then

un → u in V ⇒ Aun ⇀ Au in V ′.
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P. Assume that un → u in V . Since A is bounded, the sequence (Aun) is
bounded in V ′. Since V is reflexive, and after passing to a subsequence, there exists
χ ∈ V ′ such that Aun ⇀ χ in V ′.

Moreover,

〈Aun, un〉 = 〈Aun, un − u〉 + 〈Aun, u〉
≤ ‖Aun‖ ‖un − u‖ + 〈Aun, u〉.

Hence,
lim sup

n→∞
〈Aun, un〉 ≤ 〈χ, u〉.

By Lemma 1.6 (implication (i)⇒(iii)), we obtain Au = χ. �

2. Surjectivity of monotone operators

In this section we give a sufficient condition for the surjectivity of a monotone
operator A : V → V ′. Before, however, we recall Brouwer’s fixed point theorem,
without proof.

T 2.1 (Brouwer’s fixed point theorem). Let C ⊂ Rn be a nonempty, com-
pact, convex set, and let f : C → C be a continuous function. Then f has a fixed
point, that is, there exists x ∈ C such that f (x) = x.

C 2.2. Let f ∈ C(Rn;Rn). Assume that there exists % > 0 such that
〈 f (x), x〉Rn ≥ 0 whenever ‖x‖ = %. Then there exists x ∈ Rn such that ‖x‖ ≤ % and
f (x) = 0.

P. Assume, on the contrary, that f (x) , 0 whenever ‖x‖ ≤ %, and let C :=
B̄(0, %). Then the function g : C → C given by g(x) = −% f (x)

‖ f (x)‖ is well defined
and continuous. By Brouwer’s fixed point theorem, there exists x ∈ C such that
x = g(x) = −% f (x)

‖ f (x)‖ . Since ‖g(x)‖ = %, this implies ‖x‖ = %. Therefore,

%2 = 〈x, x〉 = −%〈 f (x)
‖ f (x)‖ , x〉 ≤ 0,

using also the assumption on f . This is a contradiction to % > 0, and therefore, there
exists x ∈ C such that f (x) = 0. �

T 2.3. Let V be a separable, reflexive Banach space. Let A : V → V ′ be
a monotone, bounded, hemicontinuous operator and assume that A is also coercive,
that is,

lim
‖v‖→∞

〈Av, v〉
‖v‖

= ∞.

Then A is surjective, that is, for every f ∈ V ′ there exists u ∈ V such that Au = f .

P. Let f ∈ V ′. We have to solve the equation Au = f .
Let (wm) be a total sequence, that is, a sequence such that span {wm : m} is dense

in V; the existence of such a sequence is guaranteed by the assumption that V is
separable.

Let Vm := span {wk : 1 ≤ k ≤ m}.
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We first prove that for every m there exists um ∈ Vm such that

(2.1) 〈Aum,wk〉 = 〈 f ,wk〉 for every 1 ≤ k ≤ m.

For every u ∈ Vm we restrict the linear functional Au ∈ V ′ = L(V,R) to the closed
subspace Vm, and we thus obtain a linear functional on Vm. In other words, we define
an operator Am : Vm → V ′m by

〈Amu,w〉V′m,Vm := 〈Au,w〉V′,V .
By coercivity, there exists % > 0 such that for every u ∈ V , ‖u‖ ≥ %,

〈Amu − f , u〉V′m,Vm = 〈Au − f , u〉V′,V
≥ 〈Au, u〉 − ‖ f ‖ ‖u‖

= ‖u‖ (〈Au, u〉
‖u‖

− ‖ f ‖)

≥ 0.

The operator Am inherits the properties of A, that is, Am is monotone, bounded, hemi-
continuous. By Corollary 1.7, it therefore maps convergent sequences in Vm into
weakly convergent sequences in V ′m; more precisely, if un → u in Vm, then Aum ⇀ Au
in V ′m. However, the space V ′m being finite dimensional, weak convergence and norm
convergence coincide, and hence Am is continuous.

By the continuity of Am, by the above inequality, and by Corollary 2.2, there
exists um ∈ Vm such that Amum − f = 0. In other words, for every w ∈ Vm,

〈Aum − f ,w〉V′,V = 〈Amum − f ,w〉V′m,Vm = 0,

so that we have proved (2.1).
By the preceding equality, for every m,

〈Aum, um〉 = 〈 f , um〉 ≤ ‖ f ‖ ‖um‖.
Therefore, the sequence ( 〈Aum,um〉

‖um‖ ) is bounded in V . By coercivity of A, this implies
that the sequence (um) is bounded in V . Since A is bounded, also the sequence (Aum)
is bounded. Since V and V ′ are reflexive, and after passing to a subsequence, there
exists u ∈ V , χ ∈ V ′ such that

um ⇀ u in V and Aum ⇀ χ in V ′.

For every k we have

〈χ,wk〉 = lim
m→∞
〈Aum,wk〉 = 〈 f ,wk〉.

Since the sequence (wk) is total in V , this implies χ = f . Moreover,

lim sup
m→∞

〈Aum, um〉 = lim sup
m→∞

〈 f , um〉

= lim
m→∞
〈 f , um〉

= 〈 f , u〉.
By Lemma 1.6 (implication (i)⇒(iii)), Au = f . �
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L 2.4. Let A : V → V ′ be monotone and assume that one of the following
conditions holds:
(i) A is strictly monotone, that is

〈Au − Av, u − v〉 > 0 for every u, v ∈ V, u , v,

(ii) A is hemicontinuous, V is strictly convex, and Au = Av implies ‖u‖ = ‖v‖.
Then A is injective.

P. (i) If Au = Av, then 〈Au − Av, u − v〉 = 0, and therefore u = v by strict
monotonicity.
(ii) We first prove that for every f ∈ V ′

(2.2) Au = f ⇔ ∀v ∈ V : 〈Av − f , v − u〉 ≥ 0.

In fact, if Au = f , then 〈Av − f , v − u〉 ≥ 0 by monotonicity of A. For the converse
implication, let w ∈ V , λ ≥ 0 and put v = u + λw. Then

〈A(u + λw) − f , λw〉 ≥ 0,

or
〈A(u + λw) − f ,w〉 ≥ 0.

Letting λ↘ 0 and using that A is hemicontinuous, we obtain

〈Au − f ,w〉 ≥ 0.

Replacing w by −w, we obtain 〈Au− f ,w〉 = 0, and since w ∈ V is arbitrary, Au = f .
Hence we have proved (2.2).

Let S := {u ∈ V : Au = f } be the set of all solutions of the equation Au = f .
For every v ∈ V , the set S v := {u ∈ V : 〈Av − f , v − u〉 ≥ 0} is convex, and by (2.2),
S =

⋂

v∈V S v is therefore convex, too. By assumption, S ⊂ {‖u‖ = %} for some % ≥ 0.
Since V is strictly convex, the set S is therefore reduced to at most one point. As a
consequence, A is injective. �

3. * A nonlinear elliptic problem

Let Ω ⊂ Rn be a bounded open set and let p ≥ 2. Let b ∈ Rn, and let f : Ω →
R be some function in L2(Ω). We consider the nonlinear elliptic boundary value
problem

(3.1)















−∆pu(x) + b · ∇u(x) = f (x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

We call a function u ∈ W1,p
0 (Ω) a weak solution of this problem if

(3.2)
∫

Ω

|∇u|p−2∇u∇ϕ +
n

∑

i=1

∫

Ω

bi
∂u
∂xi
ϕ =

∫

Ω

fϕ for every ϕ ∈ C1
c (Ω).

Note that u ∈ W1,p
0 (Ω) is a weak solution of (3.1) if and only if −∆Ωp u+

∑n
i=1 bi

∂u
∂xi
= f ,

where ∆Ωp is the p-Laplace operator defined in Chapter 1, Section 3.
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T 3.1. For every f ∈ L2(Ω) there exists a unique weak solution u ∈
W1,p

0 (Ω) of the problem (3.1).

For the proof, we first prove a general result.

L 3.2. Let bi ∈ C(R;R) be a function satisfying the growth condition

(3.3) |bi(s)| ≤ C (1 + |s|)p−2 for some C ≥ 0 and all s ∈ R.
Then the operator

Bi : W1,p
0 (Ω) → W−1,p′(Ω),

u 7→ bi(u)
∂u
∂xi
,

is well defined, bounded and hemicontinuous. If bi is constant, then Bi is in addition
monotone.

P. Let u, v ∈ W1,p
0 (Ω). Then, by the growth estimate (3.3) and by Hölder’s

inequality,
∫

Ω

|Bi(u)v| =
∫

Ω

|bi(u)
∂u
∂xi

v|

≤ C
∫

Ω

(1 + |u|)p−2 | ∂u
∂xi

v|

≤ C
(

∫

Ω

(1 + |u|)
p(p−2)

p−1 |v|
p

p−1
)

p−1
p ‖ ∂u
∂xi
‖p

≤ C
(

∫

Ω

(1 + |u|)p)
p−2

p ‖v‖p ‖
∂u
∂xi
‖p

< ∞,
so that Bi is well-defined. From this estimate we obtain in addition for every u ∈
W1,p

0 (Ω)

‖Bi(u)‖W−1,p′ = sup
‖v‖

W
1,p
0
≤1

∣

∣

∣

∫

Ω

Bi(u)v
∣

∣

∣

≤ sup
‖v‖

W
1,p
0
≤1
‖1 + |u|‖p−2

p ‖v‖p ‖
∂u
∂xi
‖p

≤
(

C + ‖u‖p
)p−2 ‖u‖W1,p

0
,

so that Bi is bounded.
Next, let u, v, w ∈ W1,p

0 (Ω). Then

|〈Bi(u + tv) − Bi(u),w〉| ≤
∫

Ω

|bi(u + tv) − bi(u)| | ∂u
∂xi
| |w| +

+ t
∫

Ω

|bi(u + tv)| | ∂v
∂xi
| |w|

→ 0 as t → 0,


