Institut für Analysis Prof. Dr. R. Chill Dr. M. Waurick

Analysis 1

33. Untersuchen Sie folgende Reihen auf Konvergenz oder Divergenz:

(a)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
; (b) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

(b)
$$\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)^n$$
;

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n}$$
;

(d)
$$\sum_{n=1}^{\infty} \frac{n+4}{n^3-3n+1}$$
;

(d)
$$\sum_{n=1}^{\infty} \frac{n+4}{n^3-3n+1}$$
; (e) $\sum_{n=2}^{\infty} (\frac{1}{\sqrt{n}-1} + \frac{1}{\sqrt{n}+1})$;

(f)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
.

34. Zeigen Sie die folgenden Gleichungen für eine komplexe Zahl $z \in \mathbb{C}$:

(i)
$$z\overline{z} = |z|^2 = (\text{Re } z)^2 + (\text{Im } z)^2;$$
 (ii) $\text{Re } z = \frac{1}{2}(z + \overline{z});$

(ii) Re
$$z = \frac{1}{2} (z + \overline{z});$$

(iii) Im
$$z = \frac{1}{2i} (z - \overline{z});$$

(iv)
$$z^{-1} = \frac{\text{Re } z}{|z|^2} - i \frac{\text{Im } z}{|z|^2} \quad (z \neq 0).$$

35. Skizzieren Sie diejenigen komplexen Zahlen $z \in \mathbb{C}$ in der Gauß'schen Zahlenebene, die jeweils den folgenden Bedingungen genügen:

(i)
$$|z-1| < |z+1|$$
;

(i)
$$|z-1| < |z+1|$$
; (ii) $|z-z_0| = r$ für ein $z_0 \in \mathbb{C}$ und $r > 0$;

(iii) Re
$$\left(\frac{1}{z}\right) = \frac{1}{2}$$
;

(iii) Re
$$\left(\frac{1}{z}\right) = \frac{1}{2}$$
; (iv) $|z - 2| + |z + 2| = 10$.

36. Denote the limit of the Leibniz series

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

by s. Prove the convergence of the series

(i)
$$s^+ := 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + + - \dots$$
, (ii) $s^- := 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + - - \dots$

(ii)
$$s^- := 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots$$

and express the respective limits in terms of s.

Hint:
$$s_{3n}^+ + s_{3n}^- = s_{2n} + s_{4n}$$
 and $\frac{1}{2k+1} - \frac{1}{4k+2} - \frac{1}{4k+4} = \frac{1}{2} \left(\frac{1}{2k+1} - \frac{1}{2k+2} \right)$ for all $n \in \mathbb{N}$ and $k \in \mathbb{N}$.

Zusatzaufgabe (Riemannscher Umordnungssatz). Die Reihe $\sum_{n=1}^{\infty} a_n$ reeller Zahlen sei konvergent aber nicht absolut konvergent. Zeigen Sie, dass es für jedes $s \in \mathbb{R}$ eine Umordnung $\varphi : \mathbb{N} \to \mathbb{N}$ gibt mit $s = \sum_{n=1}^{\infty} a_{\varphi(n)}$.

Abgabe: Montag 03.12.12 bis 16:30 Uhr, Briefkasten C-Flügel.